Table 1.
Diffusion Model Parameters from Fits to Data
Discrimination task | a | Ter | η | sz | st | v1 | v2 | v3 | G2 |
---|---|---|---|---|---|---|---|---|---|
Numerosity | 0.129 | 0.411 | 0.124 | 0.068 | 0.197 | 0.074 | 0.225 | 0.344 | 43.0 |
Numerosity (random) | 0.127 | 0.396 | 0.153 | 0.073 | 0.178 | 0.072 | 0.220 | 0.348 | 39.4 |
Letter | 0.111 | 0.381 | 0.209 | 0.032 | 0.160 | 0.104 | 0.260 | 0.364 | 58.2 |
Motion | 0.098 | 0.438 | 0.156 | 0.062 | 0.238 | 0.098 | 0.139 | 0.191 | 43.0 |
Static brightness | 0.104 | 0.431 | 0.164 | 0.044 | 0.208 | 0.173 | 0.274 | 31.0 | |
Dynamic brightness | 0.113 | 0.423 | 0.157 | 0.070 | 0.230 | 0.135 | 0.246 | 31.4 |
The parameters were: Boundary separation a (starting point z = a/2), mean nondecision component of response time, Ter, SD in drift across trials η, range of the distribution of starting point sz and range of the distribution of nondecision times, st. 95% critical values of chi-squares (G2 is asymptotically distributed χ2 square) are 37.6 for 25 degrees of freedom for the numerosity, letter, and motion discrimination tasks and 25.0 for 15 degrees of freedom for the brightness discrimination tasks. Values of the mean χ2 between 1 and 2 times the critical value are representative of adequate fits (Ratcliff and Childers, 2015). For drift rates, v1 represents the most difficult condition, v2 easier, and v3 the easiest condition.