Skip to main content
. Author manuscript; available in PMC: 2019 Jan 1.
Published in final edited form as: Psychol Rev. 2017 Oct 16;125(1):1–32. doi: 10.1037/rev0000074

Table 4.

Utility-weighted sampling explains the Allais paradox.

ΔU p
E[q]
E[q]/p

0 0.66 0 0
z = 2400:
u(2500) − u(2400) 0.33 0.58 1.8
u(2400) 0.01 0.42 42
ΔU p
E[q]
E[q]/p

0 0.66 · 0.67 0 0
z = 0 : u(2400) 0.67 · 0.34 0.5 2.19
u(2500) −u(2400) 0.33 · 0.34 0.01 0.08
u(2500) 0.33 · 0.66 0.49 2.26

Note: The agent’s simulation yields ΔU = Δ u with probability q(Δu)p(Δu)|Δu| where p is Δ u’s objective probability.