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PLK1 protects against sepsis-
induced intestinal barrier 
dysfunction
Yingya Cao, Qun Chen, Zhen Wang, Tao Yu, Jingyi Wu, Xiaogan Jiang, Xiaoju Jin & Weihua Lu

Sepsis and sepsis-associated intestinal barrier dysfunction are common in intensive care units, with 
high mortality. The aim of this study is to investigate whether Polo-like kinase 1 (PLK1) ameliorates 
sepsis-induced intestinal barrier dysfunction in the intestinal epithelium. The mouse intestinal barrier 
was disrupted after Lipopolysaccharide (LPS) injection due to intestinal epithelial cell apoptosis and 
proliferation inhibition, accompanied by decreased PLK1. In HT-29 intestinal epithelial cells, LPS 
stimulation induced cell apoptosis and inhibited cell proliferation. Overexpression of PLK1 partly 
rescued the apoptosis and proliferation inhibition in HT29 cells caused by LPS. Finally, LPS stimulation 
promoted the reduction of PLK1, resulting in apoptosis and proliferation inhibition in intestinal 
epithelial cells, disrupting the intestinal epithelial barrier. These findings indicate that PLK1 might be a 
potential therapeutic target for the treatment of sepsis-induced intestinal barrier dysfunction.

Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, 
which may lead to tissue and organ injures and finally to death1. Despite advances in management, sepsis remains 
the dominant challenge in the care of critically ill patients for its unacceptable morbidity and mortality rates2.

The intestine, which is very vulnerable to the effects of sepsis, plays a crucial role in the pathophysiology of 
sepsis. Indeed, it has been defined as the motor of sepsis3. The intestinal barrier prevents the entry of bacteria and 
toxins into the circulation4. During sepsis, the barrier is disrupted, provide an outlet for viable bacteria and their 
antigens to move to other locations, leading to the development or aggravation of sepsis5. Hence, maintenance of 
the intestinal barrier is critical for sepsis prevention and treatment.

The main component of the mucosal barrier is the intestinal epithelium, which mostly consists of epithelial 
cells. Some pro-inflammatory cytokines, such as TNF-α, can induce apoptosis of epithelial cells and thereby 
disrupt intestinal epithelial barrier function6,7. Apoptosis is a form of programmed cell death, and inhibition of 
sepsis-induced intestinal apoptosis increases survival rates in sepsis, although the underlying mechanisms are 
unknown8.

PLK1 is a highly conserved serine (Ser)/threonine (Thr) kinase that has been implicated in the control of 
cell-cycle progression and mitosis and regulates a multitude of mitotic processes9. Knockdown of PLK1 induces 
mitotic arrest and apoptosis in several human cancer cell lines10,11. The stability of the intestinal mucosal barrier 
depends on the balance of proliferation and apoptosis of intestinal epithelial cells.

The role of sepsis-induced intestinal mucosal barrier dysfunction has not been extensively studied. In this 
study, we assessed apoptosis and proliferation in intestinal mucosal cells in sepsis and detected the expression of 
PLK1. PLK1 may be a novel player in the underlying molecular mechanism of sepsis-induced intestinal barrier 
dysfunction.

Materials and Methods
Animals and sepsis model.  This study was approved by the Ethics Committee/Institutional Review Board 
of Wannan Medical College Yijishan Hospital. All animals were treated in accordance with the guidelines of 
the NIH’s Guide for the Care and Use of Laboratory Animals and followed the guidelines of the International 
Association for the Study of Pain (IASP). Twenty C57/BL male mice (10–12 weeks, 20–25 g), purchased from 
HFK Bioscience, Beijing, China, were randomized and assigned to two equal groups. The LPS groups were 
injected intraperitoneally with 20 mg/kg LPS (Sigma 055:B5, L2880) to establish the sepsis models. The control 
groups were injected with an equivalent amount of normal saline.
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Sample collection and handling.  Twelve hours after injection with LPS or saline, mice were killed and 
blood samples were collected. The blood samples were centrifuged at 3000 g for 15 min at 4 °C, and the serum was 
separated from clotted blood and stored at −80 °C for use in assays. Intestinal tissue samples were collected for 
histopathologic examination, immunohistochemistry, and western blotting.

Enzyme-linked immunosorbent assay (ELISA).  To measure the diamine oxidase (DAO) in serum, the 
serum samples were thawed at 37 °C for 1 h, and DAO was detected with an ELISA kit (Mlbio, Shanghai, China), 
according to the manufacturer’s instructions. The experiment was repeated three times, and the results are pre-
sented as the mean value.

Histopathology and immunohistochemistry.  Intestinal tissues were fixed in 10% neutral buffered for-
malin, transferred to phosphate-buffered saline (PBS; pH 7.4), and sectioned (4 mm thick). Then, some of the 
sections were stained with hematoxylin and eosin (H&E) and the others was prepared for immunohistochemi-
cal (IHC) analysis as described12. Accordingly, the slides were deparaffinized, rehydrated, and immersed in 3% 
hydrogen peroxide solution for 10 min. Antigen retrieval was performed by heating samples in citrate buffer at 
95 °C for 25 min and cooled at room temperature for 60 min. After each incubation step, the slides were washed 
with PBS (pH 7.4). Then, the slides were incubated separately with anti-PLK1 antibody (dilution 1:500, Abcam, 
England) and anti-Ki67 antibody (dilution 1:500, Cell Signaling Technology) overnight at 4 °C. Immunostaining 
was performed by the use of the PV-9000 Polymer Detection System with diaminobenzidine according to the 
manufacturer’s recommendations (GBI Labs). Slides were subsequently counterstained with haematoxylin.

Intestinal epithelial apoptosis.  Apoptotic cells in intestinal epithelium were detected with the terminal 
deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick-end labeling (TUNEL) assay, by use of 
the DeadEnd TM Fluorometric TUNEL system (Promega, Madison, WI) on deparaffinized and rehydrated tissue 
sections, according to the manufacturer’s protocol.

Cell culture and treatment.  The human colorectal cancer cell line HT-29 was purchased from Basic 
Medical College of Peking Union Medical College, Beijing. The cells were cultured in RPMI 1640 medium sup-
plemented with 10% foetal bovine serum (Invitrogen, San Diego, CA), penicillin (100 U/mL), and streptomycin 
(100 mg/mL) at 37 °C under 5% CO 2 in a humidified incubator. The HT-29 cells were incubated with LPS at 
various concentrations and times. Vehicle-treated cells were used as controls. The cells were then harvested for 
ensuing tests.

Plasmid construction and transfection.  The full-length human PLK1 coding region was amplified from 
total cDNA with forward primer 5′-CCGCTCGAGGGAGATGAGTGCTGCAGTGAC-3′ with an XhoI site and 
the reverse primer 5′-CCGGAATTCCTATTAGGAGGCCTTGAGACGG-3′ with an EcoRI site. The amplified 
sequence was inserted into pcDNA 3.1 to generate pcDNA-PLK1-myc. The construction was confirmed with 
DNA sequencing. HT-29 cells were then transfected with the plasmid vectors by use of Lipofectamine 2000 
(Invitrogen, San Diego, CA).

Apoptosis detection.  Apoptotic cells were double-labelled with AnnexinV–fluorescein isothiocyanate and 
propidium iodide using the Annexin V/FITC kit (Neo Bioscience, Beijing, China) and analysed with a BDTM 

Figure 1.  Sepsis-induced intestinal barrier dysfunction. (A) Intestinal tissue from the control and sepsis groups 
at 12 h after injection of LPS (haematoxylin and eosin staining); sections are representative of ten animals in 
each group. (B) DAO (a marker of intestinal permeability) concentrations in serum 12 h after administration of 
LPS. DAO concentrations are expressed as the mean ± SD. ***P < 0.001, control versus sepsis (n = 10).
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LSRΙΙ flow cytometer (BD Biosciences). Annexin V-positive cells were counted and defined as apoptotic cells. The 
experiment was repeated three times, and the results are presented as the mean value.

Cell survival assays.  The effects of LPS on viability of HT29 cells were assessed with a Cell Counting Kit-8 
(CCK-8, Dojindo, Japan). Briefly, the cells were plated in 96-well plates. After treatment with plumbagin at the 
indicated concentrations and times, CCK-8 (10 μl) was added to each well and incubated at 37 °C for 1 h. The 
absorbance (450 nm) was measured using a microplate spectrophotometer.

Western blot assays.  Western blotting was used to determine the levels of cellular proteins. Cells were 
washed with cold PBS and then lysed in a radioimmunoprecipitation assay lysis buffer containing protease 
inhibitor and phosphatase inhibitor cocktails. The total protein concentrations were measured using the Protein 
Assay Kit (Bio-Rad, Richmond, CA). Equal amounts of protein samples (30–80 μg) were electrophoresed by 10% 
sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), and then the resolved proteins were 
transferred to polyvinylidene fluoride (PVDF) membranes (Millipore, Bedford, MA, USA) at 100 V for 1 hour at 
4 °C. Subsequently, membranes were blocked with Tris Buffered Saline Tween (TBST) containing 5% non-fat dry 
milk for 1 hour at room temperature. After blocking, membranes were probed with the indicated primary anti-
body overnight at 4 °C and then blotted with the respective secondary antibodies. The membranes were analysed 
by the use of super ECL detection reagent (Applygen, Beijing, China).

The following antibodies were used: anti-PLK1(dilution 1:1,000, Upstate), anti-Ki67 (dilution 1:500, Abcam), 
anti-caspase3 (dilution 1:500, Proteintech), anti-Myc (dilution 1:500, Santa Cruz Biotechnology), anti-ERK1/2 
(dilution 1:500, Cell Signaling Technology) and anti-β-actin (dilution 1:5,000, Sigma).

Statistical Analysis.  Data are expressed as the mean ± SD from 3 independent experiments. Comparisons 
of continuous variables between groups were conducted using the Student’s t-test or one-way analysis of variance. 
PRISM 5.0 (GraphPad Software, Inc., San Diego, CA) was used to perform the data analysis. P values < 0.05 were 
considered statistically significant.

Figure 2.  Sepsis suppresses intestinal epithelial-cell proliferation and induces apoptosis. (A) TUNEL assay was 
used to determine apoptosis in intestinal epithelium. The green-stained (fluorescein isothiocyanate (FITC)) 
cells are apoptotic cells. (B) Intestinal tissue protein of each group was extracted, and western blot was used to 
determine the levels of Ki67 and caspase3. Actin was used as control. The graph represents the relative band 
densities. Values are mean ± SEM (n = 3). ***P < 0.001 versus control group.
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Results
Sepsis-induced intestinal barrier dysfunction.  To evaluate the intestinal barrier function during sepsis, 
we examined H&E-stained sections of the intestinal mucosa and measured DAO concentrations to assess intes-
tinal permeability. In animals of the sepsis group, the intestinal mucosa appeared atrophic, with loss of intestinal 
villi (Fig. 1A), and the serum DAO concentration was increased (Fig. 1B).

Sepsis suppresses intestinal epithelial cell proliferation and induces apoptosis.  We hypothesized 
that the disequilibrium between proliferation and apoptosis in intestinal epithelial cells would result in intestinal 
barrier dysfunction. To test this, we conducted TUNEL and western blot experiments on intestinal epithelium. 
We found the number of apoptotic cells in intestinal epithelium of the sepsis group was markedly greater than 
in the control group (Fig. 2A). The levels of caspase3 and Ki67 were significantly decreased in the sepsis group 
(Fig. 2B).

PLK1 down-regulation in intestinal epithelium during sepsis.  PLK1 overexpression contributes to 
resistance to apoptosis, and knockdown of PLK1 leads to apoptosis in oesophageal squamous cell carcinoma 
cells13,14. To determine whether PLK1 is involved in sepsis-induced apoptosis of intestinal epithelial cells, we 
examined the expression of PLK1 with immunohistochemistry and western blot. PLK1 expression was decreased 
in intestinal tissue in septic mice (Fig. 3A,B).

LPS suppresses proliferation in HT29 Cells.  To explore the underlying mechanism of intestinal barrier 
dysfunction in sepsis, we first examined the effect of LPS on cell proliferation in HT29 cells. Exposure to LPS for 
24 h inhibited the growth of HT29 cells in a dose-dependent manner (Fig. 4A). We then tested the expression of 
Ki67, a marker of proliferation, in LPS-treated HT29 cells. The expression of Ki67 was markedly decreased after 
treatment with LPS (30 μg/ml) for 24 h (Fig. 4B).

Figure 3.  Sepsis induces PLK1 down-regulation in intestinal epithelium. (A) Immunohistochemical staining 
for PLK1 in intestinal tissue sections of control and septic animals. (B) Western blot analysis of PLK1 in 
intestinal tissue of control and septic mice. ERK1/2 was used as control. The graph represents the relative band 
densities. Values are mean ± SEM (n = 3). ***P 0.001 versus control group.
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LPS induces apoptosis in HT29 cells.  We used Annexin V-FITC/PI double-labelled flow cytometry anal-
ysis for the detection of apoptotic cells. The proportion of apoptotic cells was less than 10% in HT29 cells treated 
for 24 h with control vehicle only (0.9% NS). In contrast, the proportions of apoptotic cells (total of early + late 

Figure 4.  LPS suppresses proliferation in HT29 Cells. (A) The cell-proliferative inhibition effect of LPS in HT29 
cells (CCK-8 assay). ***P < 0.001 compared with control group. (B) The levels of PLK1 and Ki67 in HT29 cells 
after treatment with 30 μg/mL LPS for 24 h. The graph represents the relative band densities. Values are mean ± 
SEM (n = 3). ***P < 0.001 versus control group.

Figure 5.  LPS induces apoptosis in HT29 cells. (A) HT29 cells were exposed to various concentrations of LPS 
for 24 h. Apoptosis was analysed by Annexin V-FITC/PI double-labelling assay. (B) The degree of apoptotic cell 
death was quantified. Data represent the mean ± SD (**P < 0.01, ***P < 0.001 compared with control group.). 
(C) The levels of PLK1 and caspase-3 in HT29 cells after treatment with LPS at various concentrations for 24 h. 
The graph represents the relative band densities. Values are mean ± SEM (n = 3). **P < 0.01, ***P < 0.001 
versus control group.
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apoptosis) after treatment with LPS at 10, 20 and 30 μg/ml were 5.4%, 18.5% and 31.3%, respectively (Fig. 5A,B). 
With increasing doses of LPS, the level of caspase3 gradually decreased (Fig. 5C).

LPS down-regulates PLK1 in HT29 cells.  According to the results of immunohistochemistry and west-
ern blot, PLK1 was significantly reduced in intestinal tissue of septic mice. To further examine the relationship 
between PLK1 and sepsis, we treated HT29 with various doses of LPS and then detected the expression of PLK1. 
With increasing doses of LPS, PLK1 gradually decreased (Figs 4B and 5C).

Over-expression of PLK1 partly rescues the apoptosis and proliferation inhibition caused by 
LPS in HT29 cells.  To determine whether the lack of PLK1 contributed to the LPS-induced apoptosis and 

Figure 6.  Over-expression of PLK1 partly rescues the apoptosis and proliferation inhibition caused by LPS in 
HT29 cells HT29 cells were transfected with pcDNA-PLK1-myc or the control cDNA for 24 h, then exposed 
to LPS (30 μg/ml) for 24 h. (A) A representative result of apoptosis analysed by Annexin V-FITC/PI double-
labelling assay in HT29 cells after the above treatments. (B) Percentages of apoptotic cells in HT29 cells after the 
above treatments. Values are mean ± SEM (n = 3). **P < 0.01, ***P < 0.001. (C) The absorbance at 450 nm of 
HT29 cells after the above treatments. Values are mean ± SEM (n = 3). **P < 0.01, ***P < 0.001. (D) The levels 
of Ki67 and caspase3 after the above treatments. The graph represents the relative band densities. Values are 
mean ± SEM (n = 3). ***P < 0.001 versus control group. **P < 0.01 versus LPS group.
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proliferation inhibition in HT29 cells, PLK1-overexpressing HT29 cells were exposed to 30 μg/ml LPS for 24 h, 
then the proliferation and apoptosis of cells were assessed. LPS-induced apoptosis and proliferation inhibition 
were significantly prevented by PLK1 cDNA transfection in HT29 cells (Fig. 6A–D).

Discussion
In this study, we found that proliferation and apoptosis of intestinal epithelial cells play critical roles in 
sepsis-induced intestinal mucosal barrier dysfunction, and the down-regulation of PLK1 is involved in the intes-
tinal epithelial proliferation inhibition and apoptosis that occurs with sepsis.

The main component of the intestinal barrier is the epithelial cells of the mucosa15,16. Apoptosis of the epi-
thelial cells destroys the tight junctions between cells and thereby increases intestinal permeability17. Whether 
intestinal mucosal barrier dysfunction is a consequence of inflammatory response or a primary cause of mucosal 
inflammation is still unclear18. Other studies19–21 have demonstrated that proinflammatory cytokines disrupt 
intestinal barrier function both in vitro and in vivo, observations that are consistent with our finding that, in 
septic mice, the intestinal mucosa was damaged, with hyperaemia and oedema. Restoration of intestinal barrier 
function is a meaningful therapeutic strategy in sepsis.

The integrity of the intestinal mucosal barrier depends on the balance of epithelial cell proliferation and apop-
tosis22,23. PLK1, as a member of the polo-like kinase family, which are highly conserved serine/threonine kinases, 
plays critical roles in centrosomes at the G2/M transition, separation of sister chromatids, assembly of mitotic 
spindles, and cytokinesis24. PLK1 usually is highly expressed in embryonic tissues, corresponding to embryonic 
cells’ high proliferation rate. In the adult, PLK1 can be detected in proliferative tissues, such as bone marrow and 
epithelium, indicating that PLK1 expression has a bearing on cell proliferation25–27. Overexpression of PLK1 
promotes cell proliferation, and depletion of PLK1 results in an inhibition of proliferation and induces apoptosis 
in other tissues28–30. In this study, we found that PLK1 was down-regulated during sepsis in vivo and vitro, and we 
propose that the down-regulation of PLK1 disrupts the balance between proliferation and apoptosis of intestinal 
epithelial cells in sepsis.

We acknowledge that our study has some limitations. First, we used intraperitoneally injected LPS to establish 
the sepsis model, which doubtless is not representative of the various types of sepsis encountered in clinical set-
tings. Second, we were not able to use PLK1+/+ mice; instead we over-expressed the PLK1 gene in HT29 cells as a 
means of testing the role of PLK1 in sepsis.

In conclusion, this study has contributed to understanding the mechanisms involved in the disruption of the 
intestinal mucosal barrier in sepsis. The results indicate that sepsis-induced intestinal barrier dysfunction may 
be the result of disequilibrium between proliferation and apoptosis in intestinal epithelial cells, which is caused 
by the down-regulation of PLK1. These observations might be useful in the development of measures to treat 
sepsis-induced intestinal barrier dysfunction.
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