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Superconducting gap anisotropy sensitive to
nematic domains in FeSe
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Kozo Okazaki 1 & Shik Shin1

The structure of the superconducting gap in unconventional superconductors holds a key to

understand the momentum-dependent pairing interactions. In superconducting FeSe, there

have been controversial results reporting nodal and nodeless gap structures, raising a fun-

damental issue of pairing mechanisms of iron-based superconductivity. Here, by utilizing

polarization-dependent laser-excited angle-resolved photoemission spectroscopy, we report

a detailed momentum dependence of the gap in single- and multi-domain regions of

orthorhombic FeSe crystals. We confirm that the superconducting gap has a twofold in-plane

anisotropy, associated with the nematicity due to orbital ordering. In twinned regions, we

clearly find finite gap minima near the vertices of the major axis of the elliptical zone-centered

Fermi surface, indicating a nodeless state. In contrast, the single-domain gap drops steeply to

zero in a narrow angle range, evidencing for nascent nodes. Such unusual node lifting in

multi-domain regions can be explained by the nematicity-induced time-reversal symmetry

breaking near the twin boundaries.
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S ince the discovery of Fe-based superconductors1, they have
been actively investigated to fully understand their super-
conducting (SC) mechanisms. Among the several kinds of

Fe-based superconductors discovered so far, FeSe has the simplest
crystal structure consisting only of SC layers2. After high-quality
single crystals grown by the vapor transport method became
available3, intrinsic properties of FeSe have attracted much
attention. One of the noticeable properties of FeSe is its SC
transition temperature (Tc). While Tc of bulk FeSe is ∼10 K at
ambient pressure4 and it increases to 37 K under applied pressure
of 9 GPa5, it has been reported that superconductivity above 100
K is observed for single-layer FeSe grown on SrTiO3

6. Another
prominent feature of FeSe is its small Fermi energy (εF), and thus,
FeSe has been proposed to be in the crossover regime between
weakly coupled Bardeen–Cooper–Schrieffer (BCS) and strongly
coupled Bose–Einstein-condensate (BEC) limits4, where εF is
comparable to the SC gap, as well as the bands around the Γ point
of FeSe1−xTex7,8.

The other features that may be directly related to the
mechanism of superconductivity in FeSe are the existence of the
structural transition from the tetragonal phase to the orthor-
hombic phase at Ts ∼ 90 K and the absence of the anti-
ferromagnetic ordering9 unlike other Fe-based superconductors.
It has been discussed based on the angle-resolved photoemission
spectroscopy (ARPES) measurements10–14 that the structural
transition is accompanied by orbital ordering. They reported that
the splitting of the Fe 3dyz and 3dzx bands emerges at the M point
around Ts and it increases as large as 50 meV. This large splitting
has been considered to be too large for the crystal field splitting
due to the structural transition, and thus regarded as the evidence
of an electronically driven orbital ordering. On the other hand,
however, several recent reports have interpreted this splitting as
that of 3dyz/zx and 3dxy15,16, or that due to the spin–orbit

coupling17. At the Γ point, it has been confirmed that the 3dyz
and 3dzx bands split, and one of the bands sinks below EF and the
other forms an elliptical hole Fermi surface (FS) by ARPES on the
detwinned FeSe18. Similar inequivalent electron occupation of the
Fe 3dyz and 3dzx orbitals has been observed by ARPES in Ba(Fe,
Co)2As219 and NaFeAs20,21. However, the interplay of this band
splitting accompanied with the orbital ordering and super-
conductivity is still elusive. Revealing the SC gap anisotropy of the
elliptical FS at the Γ point of FeSe should be crucial for under-
standing the role of the orbital ordering in superconductivity. In
addition, the existence of line nodes in the SC gap of FeSe has
been suggested from the thermal conductivity and scanning
tunneling microscopy/spectroscopy (STM/STS) measurements4,
although some reports suggest a fully gapped state without
nodes22–25. Determination of the positions of the SC gap nodes is
important for clarifying the SC mechanism.

In this paper, a study on the SC gap anisotropy of the zone-
centered hole FS is presented based on the laser-excited ARPES
measurements26,27 of single-crystal FeSe. We observe that the
fourfold symmetry is significantly broken in the SC gap aniso-
tropy, which is considered to be due to the orbital ordering, and
find that while the SC gap node is not observed for multi-domain
samples, it exists at the vertices of the major axis of the elliptical
FS for single-domain samples. This can be attributed to breaking
of time-reversal symmetry at the twin boundaries and our results
reveal the effects of time-reversal symmetry breaking on the nodal
SC gap anisotropy.

Results
Fermi surfaces and band dispersions of the twinned FeSe.
Figure 1c and f shows the FS maps at the Brillouin-zone (BZ)
center measured at 15 K (>Tc), taken with p- and s-polarized
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Fig. 1 Electronic structure of the twinned FeSe at 15 K in the orbital ordered state. a Schematic FSs at the zone center. x and y are coordinates along the
crystal axes of the orthorhombic setting. Due to the orbital ordering, two elliptical FSs are overlapped. Portions of the orbital contributions in those FSs are
indicated by red and green for even and odd parity with respect to the mirror plane defined in b, respectively. b Experimental configuration. A mirror plane
is defined to be parallel to the detector slit. Definition of p- and s-polarized light and sample axes is shown. c Plots of the ARPES intensity at EF as a function
of the two-dimensional wavevector measured with p-polarized light. The intensity is obtained by integrating the spectra within ±3meV with respect to EF.
The experimental FS (solid ellipse) and a duplicate rotated by 90° caused by twin domains (dashed ellipse) are shown. d ARPES intensity plot, e
momentum second derivative of d at #1 in c. The arrow indicates a kF position. f–h The same as c–e but taken with s-polarized light reflecting the other
domain
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incident light. Two FSs were observed and their shapes were
twofold symmetric and elliptical. They are rotated to each other
by 90° and elongated along the ky and kx directions, respectively.
Photoemission intensity of the FS elongated along the ky (kx)
direction was higher for p-(s-) polarization. Below Ts, the crystal
symmetry is transformed from the tetragonal phase to the
orthorhombic phase, and therefore, the formation of structural
twins is generally inevitable. Observed polarization dependence
can be explained by the orbital character of these two FSs due to
twinning. Each Fe 3d orbital can be classified into even or odd
parity with regard to the mirror plane which is parallel to the
detector slit (see Supplementary Fig. 1 and Supplementary Note 1
for details). Due to the parity selection rule, p- (s-) polarized light
predominantly observes orbital with odd (even) parity. Con-
sidering orbital components of the FS determined by the previous
work18, the FS of two domains can be selectively observed by p-
(s-) polarized light as shown in Fig. 1c, f. Figure 1d and g shows
energy–momentum (E–k) images in cut #1 in Fig. 1c and cut #2
in Fig. 1f taken with p- and s-polarized light, respectively. Fig-
ure 1e and h are their momentum second derivatives. One can see
that a hole band crosses the Fermi level (EF) at different Fermi
wavevector kF positions for each polarization. The different kF
positions of the observed bands correspond to those of the major
and minor axes of the elliptical FS. The kF positions are deter-
mined from momentum distribution curves (MDCs) at EF (see
Supplementary Fig. 6 and Supplementary Note 6 for details).

SC gap structure of the twinned FeSe. Figure 2b and e shows the
energy distribution curves (EDCs) at kF below Tc and above Tc
taken with p- and s-polarized light, respectively. Each EDC is

identified with a FS angle θ, and the kF positions are shown in
Fig. 2a, d. To cancel out the effect of the Fermi–Dirac cutoff, the
EDCs were symmetrized with respect to EF, and the results are
shown in Fig. 2c, f. Sharp SC coherence peaks can be recognized
very clearly in the spectra below Tc. The vertical dashed line
in Fig. 2c indicates the peak position of the EDC at θ = 91°,
which is at the end of the major axis of the elliptical FS. The EDC
at θ = 61°, for example, has a higher peak energy, indicating a
finite SC gap anisotropy. Previous STM/STS measurements
reported a two-peak structure4 indicating two SC gaps (Δ ∼ 2.5
and 3.5 meV). Current results correspond to the smaller gap, and
the larger gap may exist at the zone corner. In order to quantify
the SC gap sizes, we fitted the spectra to the BCS spectral function
and the results are shown as solid lines (see Supplementary
Note 7 for details of the fitting function). The observed spectra
are well reproduced by the fitting function, indicating reliability
of the obtained SC gap sizes.

SC structure of single-domain FeSe. Figure 3 shows the results
for another sample, which has a different intensity ratio between
two polarizations from Fig. 1. The observed FSs are shown in
Fig. 3a, b. The intensity of the FS observed by s-polarized light is
much weaker compared to that by p-polarized light, and this
intensity difference is similar to that of the detwinned sample
(Supplementary Fig. 2 and Supplementary Note 2). By contrast,
Fig. 1c, f shows similar intensity of the FS between s- and p-
polarized light. Considering this difference, the results shown in
Fig. 3 can be interpreted as observation of the single-domain
region, although any intentional uniaxial tensile strain was not
applied to the sample. This is probably owing to the small laser
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Fig. 2 Superconducting gap anisotropy of twinned FeSe. a Definition of FS angle in case of p-polarized light. Red points indicate the kF positions where
energy distribution curves (EDCs) in b and c are taken. b EDCs at various kF points along the FS at 15 K (gray) and 2 K (red). Black lines show the fits to the
BCS fitting function. FS angle defined in a is shown for each EDC. c The same as b but symmetrized with respect to EF. d–f The same as a–c but taken with
s-polarized light
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spot size (∼200 μm) and the large domain size of the cleaved
surface (see Supplementary Fig. 5 and Supplementary Note 5 for
the position dependence of the spectra). Similar results for the
observation of the single-domain region have been reported for
FeSe by Raman scattering28 and ARPES29.

The clear image in Fig. 3c enables a discussion about the band
dispersions. The value of kz for the present results obtained with
7-eV laser can be estimated from the position of the β band,

which lies below EF as shown in Fig. 3c. The top of the β band is
located at ∼18 meV below EF. Watson et al. have reported that the
top of the β band is located at ∼25 and 16 meV below EF for the Γ
and Z point, respectively12. Therefore, kz for 7 eV can be
estimated to be closer to the Z point than the Γ point according to
the results of Watson et al. As mentioned above, FeSe has been
suggested to be in a BCS–BEC crossover regime4. The present
result shows εF ∼ 10 meV for the α band (Fig. 3c). This
corresponds to Δ=εF � 0.2 for the hole band at the BZ center.
This is almost consistent with the previous report of Δ=εF � 0.3
from the STM/STS measurements4, which is smaller than the
criteria of the BCS–BEC crossover regime, and should be an
evidence that our results are reasonable and reliable. The electron
band at the BZ corner might have Δ=εF � 1 and satisfy this
criterion, as suggested from the STS/STM measurements4.

Figure 3d shows the E–k image below Tc (2 K) of cut #3
indicated in Fig. 3a, symmetrized with respect to EF. This shows
no detectable gap, which may demonstrate the existence of SC
gap nodes. Figure 3f and g shows the EDCs at kF and
symmetrized EDCs with respect to EF, respectively, taken with
p-polarized light. Each EDC is identified with a FS angle θ, and
the momentum positions in the FS are shown in Fig. 3e. Some of
the symmetrized EDCs above Tc (15 K) seem to have a
pseudogap. This might correspond to the preformed Cooper
pairing associated with the BCS–BEC crossover regime reported
by Kasahara et al30. They reported that the experimental
signatures of the preformed Cooper pairing were observed below
20 K. It is clear from the spectra that the SC gap becomes smaller
as θ reaches to 90°. Furthermore, the spectra around θ = 90° show
an undetectable gap, and thus, nodes may exist around θ = 90°.
On the other hand, since the experimental observation limit is
estimated to be ∼0.2 meV, the SC gap minimum is at least smaller
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twofold orthorhombic symmetry. The fitting function is
ΔðθÞ ¼ jAþ B cosð2θÞ þ C cosð4θÞ þ D cosð6θÞ þ E cosð8θÞj
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than 0.2 meV. The BCS spectra fitting is shown in Fig. 3f, g as
solid lines.

Figure 4 shows the obtained SC gap anisotropy. The results
from the multi- and single-domain samples are shown together.
For the multi-domain samples, the results with p- and s-polarized
light are shown together, considering that each polarization
shows a higher intensity for the domain rotated to each other by
90°. We fitted the results of the multi-domain samples to the
following twofold symmetric formula of the summation of
harmonic series:

ΔðθÞ ¼ jAþ B cosð2θÞ þ C cosð4θÞ
þD cosð6θÞ þ E cosð8θÞj; ð1Þ

and the obtained fitting parameters were A = 1.19 meV, B = 0.079
meV, C = 0.02 meV, D = 0.228 meV, and E = –0.141 meV.

The observed SC gap anisotropy shows two major character-
istics. First, it shows twofold symmetry. The orbital ordering
makes the electronic structure twofold symmetric, and the SC gap
anisotropy follows the symmetry. The SC gap at θ = 90° shows a
minimum, while that at θ = 0° shows a maximum. This clearly
demonstrates the breaking of the fourfold symmetry of the SC
gap anisotropy. Fitting of the SC gap anisotropy also shows the
breaking of the fourfold symmetry as well. Second, the observed
SC gap anisotropy shows sharp anisotropy around θ = 90°. The
gap shows a sharp drop toward θ = 90°. In contrast, the
anisotropy becomes very weak around θ = 180°. These two
observations show the necessity for considering the fourfold

symmetry breaking due to the orbital ordering when one
pursues the mechanism of superconductivity in FeSe. Addition-
ally, there are local minima around θ =±45° and± 135°. The
breaking of fourfold symmetry in SC gap anisotropy is basically
consistent with very recent reports of ARPES on a similar
compound FeSe0.93S0.0731, and Bogoliubov quasiparticle inter-
ference (BQPI) on FeSe32. Theoretically, twofold symmetry of SC
gap anisotropy is explained based on spin fluctuations33,34,
cooperation between spin and orbital fluctuations35, competition
between nematic order and superconductivity36, or orbital
nematic fluctuations37.

The observed SC gap anisotropy summarized in Fig. 5a shows a
considerable difference between the multi- and single-domain
samples. The results for the multi-domain samples show
finite gaps at any θ, while those for the single-domain samples
show an undetectable gap around θ = 90°. The difference of the
SC gap size between the multi- and single-domain samples away
from θ = 90° becomes small and is almost within error bars at θ =
80° and 100°.

Discussion
It is not likely that this different gap anisotropy is caused by the
difference of disorder level among the pieces of samples.
Teknowijoyo et al. have reported from the London penetration
depth measurements that the gap minimum increases by ∼0.05
meV after introducing point-like disorder by electron irradia-
tion24, when the created Frenkel pairs of interstitial vacancies are
estimated to be ∼0.05% per Fe and per Se (0.1% total pairs per
formula). For our single crystals, the number of impurities and
defects was confirmed to be <0.05% per Fe by scanning tunneling
microscope topography4,38, and thus, the increase of the gap
minimum due to impurities and defects is expected to be less than
∼0.05 meV, which is much smaller than the difference of the gap
minimum at θ = 90° between the multi- and single-domain
samples (∼0.5 meV).

Alternatively, SC gap anisotropy could be affected by the
existence of twin boundaries. According to Watashige et al., it has
been suggested that twin boundaries induce a twist of the order
parameter, and accordingly, time-reversal symmetry is broken
and a fully gapped state is observed over a distance several times
larger than the coherence length near twin boundaries38. Because
there should exist many twin boundaries within the laser spot for
the multi-domain samples, the SC gap anisotropy for the multi-
domain samples could reflect a fully gapped state due to time-
reversal symmetry breaking. This could settle a contradiction
between the different results for the thermal conductivity mea-
surements. While Kasahara et al. observed a large κ0=T (a resi-
dual linear term in the thermal conductivity as T→ 0 K) and
suggested line nodes in the SC gap4, Bourgeois-Hope et al.
observed a very small κ0=T22, although a residual resistivity is not
significantly different between these two studies. This difference
might be due to the density of twin boundaries. Moreover, the
difference of the SC gap anisotropy between the multi- and
single-domain samples around θ = 90° is consistent with the
theoretically calculated node disappearance due to time-reversal
symmetry breaking39. Therefore, the difference of the SC gap
anisotropy between the multi- and single-domain samples is
considered as the effect of time-reversal symmetry breaking near
twin boundaries.

According to the SC gap determined from BQPI32, significantly
anisotropic gap has been suggested for the zone-centered hole FS.
Although the gap nodes were not observed by BQPI, since its
reason might be due to the finite scanned area for the Fourier
transform, our results should be totally consistent with the gap
anisotropy determined from BQPI. If a single node is assumed at
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the vertex, this means that a sign change occurs at each vertex of
the major axis (θ =±90°) as schematically shown in Fig. 5b.
Although the signed values of the SC gap should become more
continuous at θ =±90° in this case, the SC gap symmetry is
considered to be a p-wave. This would be difficult to expect
because there is no theoretical argument for p-wave pairing in
this system and this seems inconsistent with the temperature
dependence of the upper critical field40,41. Thus, two nodes are
assumed to exist at each vertex of the major axis (θ =±90°) as
shown in Fig. 5c, similar to KFe2As2, which shows an octet-line
node structure where two nodes exist within the narrow FS angle
range26. In this case, the sign changes occur twice around the
vertices and the sign of the gap is consistent with the s-wave
symmetry.

Methods
Sample preparation. High-quality single crystals were grown by the chemical
vapor transport method using KCl/AlCl3 as transport agent as described in ref. 3.

Laser-ARPES measurements. ARPES data were collected using a laser-ARPES
apparatus at ISSP with 6.994 eV, sixth harmonics of Nd:YVO4 quasi-continuous-
wave (repetition rate = 960MHz) laser, and VG-Scienta HR8000 electron analyzer
as described in ref. 26. This apparatus achieves a maximum energy resolution of 70
μeV and the lowest cooling temperature of 1.5 K, which enables a direct mea-
surement of the SC gap of FeSe. The overall energy resolution was set to ∼1.2 meV
and the angular resolution was 0.1°. The Fermi edge of an evaporated gold film was
measured to calibrate EF energy positions. The error bars of the SC gap size were
determined from the stability of EF position, and evaluated to be 200 μeV. More
details for the accuracy of the measured gap size were described in the previous
reports26,42. Polarization of the incident excitation laser was adjusted using half-
wave (λ/2) and quarter-wave (λ/4) plates. Samples were cleaved in situ under
ultrahigh vacuum and measurements were carried out at pressures better than 5 ×
10−11 Torr. The measurements were limited to the hole FS at the zone center due to
the relatively low excitation energy of 6.994 eV, with which the momentum around
the electron FS at the zone corner cannot be accessed.

Data availability. The data supporting the findings of this study are available from
the corresponding author on request.
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