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ABSTRACT We describe a strategy for experimentally-constraining computational simulations of intrinsically disordered pro-
teins (IDPs), using a-synuclein, an IDP with a central role in Parkinson’s disease pathology, as an example. Previously, data
from single-molecule Förster Resonance Energy Transfer (FRET) experiments have been effectively utilized to generate exper-
imentally constrained computational models of IDPs. However, the fluorophores required for single-molecule FRET experiments
are not amenable to the study of short-range (<30 Å) interactions. Using ensemble FRET measurements allows one to acquire
data from probes with multiple distance ranges, which can be used to constrain Monte Carlo simulations in PyRosetta. To appro-
priately employ ensemble FRET data as constraints, we optimized the shape and weight of constraining potentials to afford
ensembles of structures that are consistent with experimental data. We also used this approach to examine the structure of
a-synuclein in the presence of the compacting osmolyte trimethylamine-N-oxide. Despite significant compaction imparted by
2 M trimethylamine-N-oxide, the underlying ensemble of a-synuclein remains largely disordered and capable of aggregation,
also in agreement with experimental data. These proof-of-concept experiments demonstrate that our modeling protocol enables
one to efficiently generate experimentally constrained models of IDPs that incorporate atomic-scale detail, allowing one to study
an IDP under a variety of conditions.
INTRODUCTION
Intrinsically disordered proteins (IDPs) and proteins contain-
ing disordered regions are exceptionally responsive to
changes in solution conditions, making them prone to mis-
folding and aggregation. One such IDP is a-synuclein
(aS), a 140-amino-acid neuronal protein, the aggregation
of which is implicated in Parkinson’s disease pathogenesis
(1,2). aS is primarily expressed at presynaptic termini and
is suspected to play roles in regulating neurotransmitter
release and maintaining synaptic function and plasticity
(3). Likely the most recognized aspect of aS is its ability
to misfold and self-associate, resulting in the production of
toxic amyloid fibrils. These fibrils are the primary compo-
nents of Lewy Bodies, which have been long been recog-
nized as a postmortem hallmark of Parkinson’s disease (1).
The protein is comprised of three domains: the N-terminal
domain (residues 1–60), comprised of four imperfect
11-amino-acid repeats featuring a KTKEGV motif found
in amphipathic helices; the nonamyloid b-component, or
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NAC domain (residues 61–95), which contains two addi-
tional KTKEGV repeats and forms the b-sheet rich core of
amyloid aggregates; and the acidic C-terminal domain,
which is highly charged and is considered to be largely disor-
dered. The first two domains adopt an a-helical structure in
the presence of lipid membranes or detergent micelles
whereas, in solution, the aS monomer is largely disordered
(2,4–8). The structural plasticity of aS and most IDPs is
attributed to a lack of hydrophobic residues and an excess
of charged residues, producing systems that are self-repulsive
and unable to form a collapsed hydrophobic core (6). Despite
these characteristics, aS has been shown to be partially
collapsed and to deviate from a true random coil structure
(9–14). Moreover, the dynamic structure of aS has high envi-
ronmental sensitivity that has largely hindered development
of a cohesive characterization of the structural ensemble of
monomeric aS in solution (6,10–18). Solution conditions
including temperature, salt concentration, and pH all have
substantial effects on the partial folding and collapse of aS.
Furthermore, cosolvents and osmolytes have been shown to
drive conformational readjustment of aS (6,19–22). In
particular, seminal work by Uversky, Fink, and coworkers
(23) demonstrated the ability of trimethylamine-N-oxide
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(TMAO) to promote compaction and partial helical folding
of aS monomers, and in high concentrations drive the forma-
tion of helical oligomers. Intriguingly, these helical confor-
mations are morphologically distinct from the helical
structure formed on membranes, and the presence of osmo-
lytes has been show to affect fibril formation (24).

TMAO is a naturally occurring amphiphilic osmolyte that
is found in several aquatic organisms, where it counteracts
the destabilizing effects of high concentrations of urea
required for regulation of osmotic pressure (25–27). Exper-
imental and theoretical efforts have afforded an effective
model by which preferential exclusion of TMAO from the
protein backbone and sequestration of water by TMAO pro-
motes the formation of intramolecular hydrogen bonds and a
reduction in exposed surface area for the protein (28–34).
Solution studies of TMAO have revealed that the large
4.67 D dipole moment prompts significant water ordering
around each molecule (35). Comprised of a total of �13
water molecules, direct coordination of water to the oxygen
along with formation of a clathrate like structure about the
methyl groups produces a first solvation shell with a 6 Å
radius, and elicits an excluded volume effect that entropi-
cally drives protein compaction (28,35–37). In addition to
the effects of excluded volume and water arrangement,
TMAO has been proposed to act as a nanocrowder and
also serves as a poor solvent of the peptide backbone
(38,39). Single-molecule Förster resonance energy transfer
(FRET) has been previously used by Deniz and coworkers
(24,40) to investigate the compact structure of aS in
TMAO. These studies were performed with a limited set
of measurements and demonstrated that successive compac-
tion of aS occurs with increasing concentrations of TMAO
while maintaining a single, broadly distributed conforma-
tional state. Moreover, the work by Deniz and coworkers
showed that despite the emergence of a partially helical sec-
ondary structure, the folding pathway and resulting structure
were distinct from helices formed on membranes. Although
a putative structural ensemble was not proposed in this
work, our laboratory and others have demonstrated the abil-
ity to apply distances and distributions obtained from single
molecule FRET data as constraints for Monte Carlo (MC)
simulations (15). In the context of the present problem of
TMAO compaction of aS, we wish to further develop a
method for employing FRET constraints to generate exper-
imentally constrained models of IDP ensembles.

Although the use of FRET data has not been extensively
explored as a basis for generating structural ensembles of
IDPs, the application of other long-range measurements
has demonstrated success. Work by Forman-Kay, Zweck-
stetter, Blackledge, and others has shown the efficacy of uti-
lizing data from paramagnetic relaxation enhancement
(PRE) NMR experiments as restraints for simulating ensem-
bles of IDPs (12–14,41,42). Dobson, Vendruscolo, and Eli-
ezer have also applied NMR-based methods to study the
disordered ensemble of aS (10,11). Moreover, efforts by
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Langen have demonstrated the similar usefulness of electron
paramagnetic resonance (5,43). To date, most studies
have focused on the application of PRE data, which lacks
description of the underlying distribution of states (42). Sin-
gle-molecule FRET has demonstrated an exceptional ability
to visualize subpopulations of disordered ensembles (44).
Furthermore, Best and Schuler have addressed some of the
major concerns surrounding distance extraction from
FRET data (17,18). Studies of chemically denatured ubiqui-
tin have shown that FRET and small angle x-ray scattering
(SAXS) data afford comparable molecular sizes, and that
the inclusion of large hydrophobic probe molecules does
not significantly impact the structural ensemble (17). More-
over, recent work by Schuler has verified that distributions
extracted from single-molecule FRET data display a high
degree of agreement with distributions compiled from struc-
tural ensembles generated frommolecular dynamics simula-
tions restrained with NMR and SAXS data (18).

In this report, we focus on elucidating the structural
changes associated with TMAO-induced compaction of
aS by combining MC simulations in PyRosetta with exper-
imental constraints from ensemble FRET measurements.
Although single-molecule FRET measurements provide
additional information regarding the number of distributions
as well as the distribution breadth associated with a partic-
ular average value, the photophysical requisites for these
measurements (i.e., bright, visible wavelength fluorophore
pairs, which tend to have 30–70 Å working ranges) gener-
ally preclude accurate measurement of distances below
�30 Å. This limitation is important, as we wish to generate
atomically detailed computational models of aS and there-
fore need short distance constraints for our simulations.
Based on the aforementioned results from Deniz and co-
workers (24,40,44), we assume that the observed ensemble
FRET efficiencies are resultant from single distributions,
well described by polymer physics models, allowing us to
rely on distances obtained from single distribution analysis.
Furthermore, we propose that the most effective set of con-
straints would encompass not only long distances, such as
those traditionally afforded from single-molecule FRET,
but also short distances closer to those obtained via PRE
measurements, which should more effectively limit the
conformational variability within the ensemble.

Previously, we have studied aS compaction using the
p-cyanophenylalanine (Cnf) and thioamide probe pair,
which has a short Förster radius (R0, the distance of half-
maximal energy transfer) of 18 Å (45–47). We showed
that increases in FRET efficiency (EFRET) indicating
compaction are observable as aS is incubated with
increasing concentrations of TMAO. However, these Cnf-
thioamide-labeled proteins required semisynthesis through
native chemical ligation, a method with insufficient
throughput for FRET library construction. Herein, we
employ Cnf-tryptophan (Trp) as a genetically incorporable,
short-range probe pair allowing for more facile production
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of a library of labeled constructs for measuring distinct in-
tramolecular distances in the presence of TMAO (48,49).
Additionally, we have incorporated a second, longer-range
probe pair, fluorescein-5-maleimide (Fam) conjugated to
cysteine and tetramethylrhodamine azide (Raz) conjugated
to an O-propargyl tyrosine unnatural amino acid (50). The
Fam-Raz pair has a working distance around 50 Å and pro-
vides accuracy in ranges equivalent to those accessible
through single-molecule FRET.

By applying measurements from these two complemen-
tary FRET libraries as weighted constraints for atomically
detailed MC simulations in PyRosetta, we construct model
conformational ensembles that agree well with experimental
data such as fluorescence correlation spectroscopy (FCS),
reporting on the overall average size of the protein. This
strategy of using FRET data to direct all atom models in
MC simulations provides a means to generate structure-
guided hypotheses for allosteric transitions in aS to under-
stand the effects of changes in environment or interactions
with ligands.
MATERIALS AND METHODS

Protein overexpression and purification

Protein expression was performed in Escherichia coli, where unnatural

amino acids were incorporated via amber stop codon suppression and trace-

less purification was facilitated via attachment of a C-terminal intein con-

taining a C-terminal His-tag (Fig. 1). For the Cnf-Trp library, all native

tyrosine residues were mutated to phenylalanine to assure that all energy

transfer occurred exclusively between Cnf and Trp. Details of postexpres-

sion dye attachment, purification, and construct confirmation are reported

in the Supporting Material.
FRET measurements in TMAO

All labeled aS variants were dialyzed into 20 mM Tris, 100 mM NaCl (pH

7.5). TMAO containing buffers were also prepared with 20 mM Tris,
FIGURE 1 Scheme for labeled protein production. Top: Direct incorporation o

mutagenesis and conventional mutagenesis, respectively. Bottom: Incorporation

by fluorescein-5-maleimide (Fam) and tetramethylrhodamine azide (Raz), respe
100 mM NaCl, and the pH was adjusted to 7.5 after the addition of

TMAO. Concentrations for the Cnf-Trp library were determined using

the Sigma-Aldrich FluoroProfile Quantification Kit, whereas concentra-

tions for the Fam-Raz library were determined via ultraviolet-visible

absorbance. Steady-state measurements for the Cnf-Trp library and

time-correlated single photon counting (TCSPC) measurements of the

Fam-Raz library were performed at a 1 mM concentration, whereas

steady-state measurements for the Fam-Raz library were performed at a

100 nM concentration. Measurements were taken in triplicate in 0,

2, and 4 M TMAO. TCSPC measurements were performed for Fam-

Raz constructs under solution conditions identical to the steady-state

measurements. Intramolecular FRET measurements were performed at

concentrations of 1 mM, whereas intermolecular FRET measurements

were performed by mixing single-labeled aS containing Fam with sin-

gle-labeled aS containing Raz, at a concentration of 1 mM for each labeled

construct.
Analysis of steady-state and TCSPC data

EFRET values from steady-state measurements were determined by

minimizing the squared difference between the spectrum from the double-

labeled construct and a linear weighted sum of two single-labeled constructs

using the equationX
l

�
IðlÞDA � AIðlÞD � BIðlÞA

�2
/min: (1)

In Eq. 1, I(l) represents the intensity as a function of wavelength for the

construct indicated by the subscript, where A, D, and DA refer to constructs
containing the acceptor fluorophore, the donor fluorophore, and both fluo-

rophores, respectively. The weighting values A and B were used to deter-

mine EFRET values from donor quenching and donor-sensitized emission

of the acceptor to produce an error-weighted EFRET value as described in

the Supporting Material. The interresidue distances were calculated from

EFRET using a polymer-scaled version of the Förster equation:

EFRET ¼
X
r

Pnðr; xÞ
.�

1þ ðr=R0Þ6
�
; (2)

� �3=2 �
2
�

P1ðr; xÞ ¼ 4pr
3

2px2
exp � 3

2

r

x2
; (3)
f p-cyanophenylalanine (Cnf) and tryptophan (Trp) via unnatural amino acid

of Cysteine (Cys) and O-propargyl tyrosine (Ppy) with subsequent labeling

ctively. To see this figure in color, go online.
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p exp � 1

2

ðr � xÞ
s2

; (4)

where r and x represent the interresidue distance and the average interresi-

due distance. The reported distances determined from EFRET values are the

average interresidue distances. Two different polymer distributions, P(r,x),

based on the Gaussian chain model (Eq. 3) and a semiempirically derived

normal distribution (Eq. 4), where the standard deviation, s, was deter-

mined from polymer-liked simulation (detailed in the Supporting Material),

were used to determine average distances. Additionally, fluorescence life-

times from constructs containing only Fam (tD) and from constructs con-

taining both Fam and Raz (tDA) were used to calculate the ratiometric

change in lifetime (tDA/tD), and thus EFRET values for comparison with

steady-state data. Full details regarding TCSPC analysis are provided in

the Supporting Material.
FCS

FCS measurements of 20 nM aS labeled with Alexa Fluor 488 at positions

9, 114, and 130 were taken in the presence of 0, 2, and 4 M TMAO using a

laboratory-built instrument based on an Olympus IX71 microscope

described in further detail in the Supporting Material. Before addition of

labeled protein, chambers were incubated with 400 mMwild-type aS to pre-

vent sticking of the labeled protein to the surface. Free Alexa Fluor 488 dye

was measured in each concentration of TMAO to account for changes in

viscosity. Additional information regarding FCS measurement and analysis

can be found in the Supporting Material.
PyRosetta simulations

MC simulations were performed in PyRosetta on the University of Pennsyl-

vania School of Arts and Sciences General Purpose Cluster. The simulation

sampling includes �1.5 � 106 backbone 4/j torsion angle changes in a

simulated annealing score function gradient along with sample of side-

chain rotamers. Constraints were applied either in the form of a harmonic

potential or a potential derived from the Gaussian chain probability distri-

bution. Output structures represent the lowest energy structures generated

over the course of the simulation as determined by the sum of the ‘‘beta’’

Rosetta score function and the constraint energy. Additional details and

the base PyRosetta script are provided in the Supporting Material.
RESULTS

Webegan by generating two libraries of proteins, labeledwith
either Cnf-Trp or Fam-Raz pairs, andmaking FRETmeasure-
ments in varying concentrations of TMAO. For both FRET
pairs, we observed changes in photophysical parameters im-
pacting the extraction of distance information from FRET
data that necessitated performing control fluorescence mea-
surements using single-labeled proteins. When calculating
R0 (Eq. S8 in the SupportingMaterials andMethods) for these
experiments, there were four parameters of interest, FD, J, k

2

and n, which represent the quantum yield of the FRET donor,
the overlap integral between donor emission and acceptor
absorbance, the orientation factor between the two fluoro-
phores, and the refractive index of the solution, respectively.
Of these parameters, we determined that changes in FD as a
function of environment contributed most significantly to
changes in R0 for both Cnf and Fam. Additionally, Zheng
56 Biophysical Journal 114, 53–64, January 9, 2018
et al. (18) previously demonstrated that for disordered pro-
teins, the orientations of the fluorophores are sufficiently
isotropic to warrant the approximation of k2 ¼ 2/3, which is
the value for an isotropic distribution of orientations. Fluores-
cence measurements made on donor-only and acceptor-only
proteins enabled us to not only account for changes in FD to
enhance our accuracy in calculating R0, but also allowed us
to easily overcome the difficulties of interpreting highly over-
lapped spectra and extract distances from EFRET measure-
ments for use in modeling.
Cnf-Trp library

The Cnf-Trp construct library consisted of a total of 27 pro-
teins (17 double-labeled and 10 single-labeled aS mutants)
spanning 16 unique intramolecular distances. Acquiring
concentration-matched emission spectra for each single-
labeled construct in varying TMAO conditions allowed for
tracking of changes in the quantum yield and spectral shape
of Cnf and Trp emission. The sensitivity of these photophys-
ical properties to increasing concentrations of TMAO was
initially assessed for the free amino acids (Fig. S43).
Although a decrease in the quantum yield was observed
for both Cnf and Trp, no major change in emission
maximum was observed in the Trp spectrum. In contrast
to the free amino acid measurements, Trp-containing aS
mutants successively blue-shifted in increasing concentra-
tions of TMAO, as a result of changes in local environment
upon compaction. Thus, measuring single-labeled spectra
was not only crucial for tracking spectral changes due to
environmental effects, but was also essential for deconvolut-
ing the highly overlapped Cnf and Trp emission spectra in
constructs containing both fluorophores. EFRET values
were obtained for each probe pair in buffer containing 0,
2, and 4 M TMAO. Fig. 2 shows the deconvolution of a
0 M measurement as well as a 2 M measurement for the
Cnf125-Trp94 pair. As expected, EFRET increases, correlating
with the expected decrease in interresidue distance resulting
from compaction in TMAO. Without TMAO, in most cases
this probe pair is not able to accurately capture the apparent
intraresidue distance, as seen in low EFRET values outside of
the most reliable FRET range (EFRET ¼ 0.3–0.7). This is
most clearly observed in Fig. 3, where the distances ex-
tracted from these data are largely invariant above sequence
separations of 50 residues. However, in cases where the
probes are relatively close in primary sequence, the utility
of this short-range pair is clearly demonstrated. In the pres-
ence of 2 M, and especially 4 M TMAO, a significant num-
ber of the probed regions display EFRET values within the
optimal range for accurate distance determination.
Fam-Raz library

To complement our Cnf-Trp data, we also performed FRET
measurements with a probe pair with a longer working



FIGURE 2 Determination of EFRET. Left: Background subtracted fluores-

cence emission spectra of constructs labeled with Cnf, Trp, or both Cnf and

Trp in 0 M (top) and 2 M TMAO (bottom). Right: Double-labeled Cnf-Trp

spectrum compared to weighted sum of Cnf-only and Trp-only spectra,

along with the contributions from each single-labeled spectrum shown for

0 M (top) and 2 M TMAO (bottom) spectra. To see this figure in color,

go online.
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range. A set of 21 constructs, consisting of 10 dual-labeled
and 11 single-labeled analogs containing Fam and/or Raz,
was produced to accurately monitor long-range distance
changes during the compaction of aS by TMAO. In cases
where exceedingly low EFRET was observed with the
short-range probe pair, we observed efficiencies much
closer to the optimal efficiency range for the Fam-Raz
pair. This was most significant in the absence of TMAO.
However, our measurements approached the short end of
the working range for the Fam-Raz pair in some instances
in 2 M TMAO, and exhausted its utility in 4 M TMAO.

In 4 M TMAO, the long working range of this probe pair
was effective for assessing the formation of oligomers, which
were reported by Uversky et al. (23). When mixing Fam and
Raz single-labeled species in 4M TMAO, there was a signif-
icant reduction in the lifetime of the Fam labeled construct,
consistent with intermolecular FRET (Figs. S48–S50). In
buffer or 2 M TMAO, there was no observed change in the
lifetime of the Fam-labeled protein due to the presence of
the protein containing Raz. FCS and atomic force micro-
scopy measurements also demonstrate the formation of
oligomers in 4 M TMAO (Figs. S51 and S52). As a result
of these observations, we decided to forego modeling the
4 M structure due to the complexity of deconvoluting intra-
and intermolecular FRET in oligomers.
Interpretation of FRET data

Because aS is disordered, the interresidue distance sepa-
rating anygiven label pair iswidely distributed. To accurately
obtain an average distance value, this distribution needs to be
taken into account. Therefore, the corresponding interresidue
distances were calculated using a polymer-scaled Förster
equation, Eq. 2, taking into account changes in R0 resulting
from changes in quantum yield for each labeling position.
Distances were calculated using both the Gaussian chain
(Eq. 3) and semiempirical (Eq. 4) models, which produced
significantly different sets of results. Conceptually, two
FIGURE 3 Comparison of experimental and

simulated data. Left: Distances extracted from

EFRET measurements of the Cnf-Trp and Fam-

Raz libraries shown with interresidue distances

for a given primary sequence separation in uncon-

strained or constrained MC simulations. The

average (solid line) and standard deviation (dashed

line) of interresidue distances are shown for the

simulated ensembles. Right: Experimental and

simulated EFRET values. Dashes represent average

EFRET values for each pair of labeled residues,

with interconnecting lines to guide the eye. The

average (point) and standard deviation (line) of

EFRET values obtained based on interresidue sepa-

rations in the unconstrained or constrained simu-

lated ensembles. To see this figure in color, go

online.
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positions labeled with two FRET pairs with different R0

values should have distinct FRET efficiencies, but compara-
ble extracted distances. Since the Cnf-Trp and Fam-Raz li-
braries contained a limited number of labeled positions in
common, for comparison the distances were plotted in
Fig. S44 as a function of probe pair primary sequence sepa-
ration. We reasoned that the consistency between data from
the Cnf-Trp and Fam-Raz libraries on a Flory scaling plot
should help us to identify the more accurate probability
distribution. In Fig. S44, it is clear that there is substantially
better agreement between the Cnf-Trp and Fam-Raz data sets
when applying the Gaussian chain distribution to extract dis-
tance data from the EFRET values.
Simulations

After data collection, simulations were performed in
PyRosetta to generate structural ensembles that represent
the changes observed by FRET. Before introducing FRET-
based constraints, we optimized a PyRosetta script to effec-
tively produce ensembles of structures in general agreement
with previously published radius of gyration (Rg) and radius
of hydration (Rh) values (21,51). Simulations were per-
formed where the weighting of the FRET constraints relative
to other Rosetta energy terms (a, Eqs. S18 and S19 in the
SupportingMaterials andMethods) was varied, and different
shapes for the FRET constraint function were assessed.
These constraint function shapes were based on the Gaussian
chain (Eq. 3) or semiempirical (Eq. 4) distance distributions
used in the FRETanalyses. Given the greater consistency be-
tween Cnf-Trp and Fam-Raz data when using the Gaussian
chain probability distribution (above), we favored using
this function for implementing constraints as well. However,
we tested all combinations to ensure that no bias was intro-
duced based on the pairing of distribution functions used in
FRET data analysis and in constraint implementation. The
results of these tests are detailed in the Supporting Material
(Figs. S53–S64) and are discussed further below. We found
that setting the weight of the constraints relative to the other
score function components to unity allowed the FRET con-
straints to influence the structure without overconstraining,
and that reasonable variations of the shape of the constraint
function did not dramatically influence the simulation re-
sults. Thus, in the main text, we exclusively report simula-
tions performed using the Gaussian chain distribution, with
all other simulations reported in the Supporting Material.
The 2 M TMAO simulations were performed with the solva-
tion term removed in an effort to account for the significant
change in solvation. Unconstrained simulations performed
with this altered score function provided a more compact
starting point for introducing FRET constraints, whereas
constrained ensembles were noticeably more compact
(Figs. S56–S58). Moreover, for simulations of the 2 M
ensemble, fragment insertion was incorporated within the
MC search to increase the amount of resultant secondary
58 Biophysical Journal 114, 53–64, January 9, 2018
structure, which has been observed by circular dichroism
studies of the TMAO-induced conformation (23). Although
this significantly increased the number of helices, there was
nomarked improvement in the match of simulated structures
with experimental FRET data (Figs. S56–S58).

Initially, we compared the constrained simulations to the
FRET data using Flory scaling plots, where the average in-
terresidue distance (between a-carbons) as a function of
sequence separation was plotted for the ensemble of 1000
lowest energy structures with experimental FRET data over-
laid as discrete points (Fig. 3, left). All experimental data
were close to the average simulation distance or within
the standard deviation for both 0 and 2 M ensembles, with
the notable exception of the Fam9-Raz136 FRET data. It is
notable that the distance determined for this FRET pair us-
ing the harmonic potential (Fig. S44) does not show such
dramatic discord with the other distances, potentially sug-
gesting a limitation of the Gaussian chain model for very
long distance ranges. We also predicted FRET values for
all of the pairs of label sites for comparison to the experi-
mental FRET data (Fig. 3, right). Distances between the
a-carbons of the amino acids at the label sites were ex-
tracted from each structure in a simulated structural
ensemble and converted to EFRET values using the classical
Förster equation (Eq. 2, where P(r,x) ¼ 1). Since the varia-
tions in conformation in the ensemble explicitly capture the
distribution of interresidue distances, the average EFRETwas
computed as a simple average of the values extracted from
each structure with no further correction for polymer scaling
of the distance distribution. We found good agreement, with
an average absolute EFRET difference of 0.09 and all exper-
imental values falling within the standard deviation of the
simulated values. As discussed below, the close match be-
tween these values helps to validate our choice of a poly-
mer-scaled distance distribution function in interpreting
EFRET values to input constraints in the simulations.

Fig. 4 shows the 10 lowest energy structures from the
0 and 2 M simulations, aligned and with a single structure
darkened for clarity. One can see significant compaction
of the 2 M ensemble, which can be quantified using
histograms of the Rg for each structure in the ensemble.
The average radius of gyration in 0 M TMAO is
29.3 5 4.6 Å, which shrinks to 23.5 5 3.4 Å in 2 M
TMAO. Interestingly, despite this compaction, aS remains
disordered in 2 M TMAO. The disorder can be visualized
using a plot of the distribution of interresidue distances as
a two-dimensional ‘‘heat map,’’ with interresidue distances
for the entire ensemble plotted above the diagonal and
interresidue distances for the single darkened structure
below the diagonal. As seen in the middle plots in Fig. 4,
in both 0 and 2 M TMAO, the average interresidue distance
scales with primary sequence separation, despite the fact
that long-range contacts occur in individual structures
within the ensembles (Fig. S67). This combined information
indicated that, in the presence of 2M TMAO, aS populates a



FIGURE 4 Analysis of aS structural ensembles. Left: Representative structures from 0 and 2 M simulations. The darkened structure in the foreground is

the lowest energy structure and the faded ensemble in the background includes the 10 lowest energy structures. Middle: Heat maps showing the average

interresidue distances in the simulated ensembles. Each heat map shows the average distance for the full simulated ensemble of structures above the diagonal

and distances from the single lowest energy structure below the diagonal. Top right: Histograms of radii of gyration of structures from simulations, plotted

with literature values of Rg determined from SAXS data and the hydrodynamic radius from NMR studies. Bottom right: Diffusion coefficients from FCS and

simulated structures. To see this figure in color, go online.
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compacted disordered ensemble that still maintains a high
degree of structural heterogeneity. To confirm that the struc-
ture ensembles were consistent with other experimental ob-
servables, we calculated the diffusion coefficient for each
structure of the 0 and 2 M ensembles using HydroPro
(52). As seen in Fig. 4, the calculated diffusion coefficients
are slightly (16%) smaller, but in reasonable agreement with
those measured in our FCS experiments.
Comparison of structure ensembles to data from
literature

We compared our structural models in the absence of
TMAO to data from the literature as well as other published
models. The average Rg of our 0 M ensemble matched well
with reported values of Rg from SAXS experiments and Rh

(typically 30% larger than Rg) from NMR experiments
(21,51). Furthermore, our models agreed remarkably well
with both the primary NMR PRE data (Fig. S66) and Flory
scaling plots of the resulting models (Fig. S65) reported by
Allison et al. (10). We do observe rare contacts between re-
gions of the protein that are distant in primary sequence
(Fig. S67), consistent with reports of transient C-terminal
contacts with the NAC and N-terminus (14). Although there
is limited information on the structure of aS in 2 M TMAO,
we find that our models agree with the available informa-
tion. Similar to previous studies, our circular dichroism
measurements made in 0 or 2 M TMAO show little change
in aS helicity (Fig. S73), consistent with our models which
show that the 2 M ensembles are still highly disordered. Pre-
viously, Uversky and coworkers monitored fibrillization of
aS in TMAO using thioflavin T (ThT) fluorescence, and
found that aggregation was accelerated, but that the final
level of ThT fluorescence was lower. Our own studies
with Congo Red (Fig. S71) corroborated this observation,
although, intriguingly, changes in fluorescence polarization
(Fig. S72) were slower in 2 M TMAO, possibly indicating
that the ThT and Congo Red spectroscopic properties are
changed in TMAO. Thus, although compacted, aS remains
disordered and able to sample conformations that lead to
fibril formation. This can be seen in Figs. S69 and S70
where, despite compaction observed by changes in sol-
vent-accessible surface area, metrics such as numbers of in-
tramolecular hydrogen bonds and backbone dihedral angles
do not indicate the presence of persistent structure.
DISCUSSION

Our previous study of aS structures using MC simulations
with only a repulsive Lennard-Jones potential and
Biophysical Journal 114, 53–64, January 9, 2018 59
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harmonic constraints based on single-molecule FRET data
gave structural ensembles with global properties that
matched well to experimental measurements such as Rg.
This modeling protocol, with constrained simulations uti-
lizing exclusively a repulsive van der Waals potential,
was extremely efficient in its simplicity, but the resulting
models lacked atomic-scale details that could be used in
generating hypotheses or interpreting mechanisms of
conformational change. We and others have also performed
unconstrained simulations which included the amino acids
using single-sphere ‘‘centroid’’ representations of the side
chains, as well as all-atom molecular dynamics simulations
of aS, which do provide such detailed information, but are
much more computationally intensive and generally
limited in the conformational space explored. We wished
to find an intermediate level of simulation wherein we
could include side chains in MC simulations and maintain
efficient sampling. However, we reasoned that the previous
long-range constraints (>30 Å) derived from single-mole-
cule FRET data would not provide sufficient information
on short-range interactions to properly direct these simula-
tions. Thus, we here included data from the short-range
Cnf-Trp pair along with data from the Fam-Raz pair, which
has a comparable FRET range to the previous single-mole-
cule FRET probes. These short-range probe pairs may be
crucial for identifying contacts or collapsed regions that
can exist under varied solution conditions or in the pres-
ence of allosteric molecules.
Assessing the validity of P(r)

We reasoned at the outset that the Gaussian chain P(r) was
more accurate because it led to greater consistency be-
tween the distances obtained from the Cnf-Trp and Fam-
Raz libraries. However, this method of analysis was
complicated by the limited numbers of intramolecular
distances in a range that could be accurately captured by
both pairs, as these probes were selected specifically for
their efficacy across different distance ranges. Further-
more, one can observe that the Cnf-Trp distances are
largely invariant after reaching a sequences separation of
�50 residues due to a working range that extends to
only �35 Å. Therefore, our assignment of the Gaussian
chain P(r) as the more accurate distribution function arises
from visual inspection of the Flory scaling plots in
Fig. S44 in the 25–45 Å range, which encompass the up-
per and lower bounds of the Cnf-Trp and Fam-Raz probe
pairs, respectively. It is important to note that at very short
(<15 residues) and very long (>115 residues) sequence
separations, the calculated distances are likely unable to
be accommodated by any conformation of the protein.
Furthermore, the functional form of the distribution may
also be dependent on the number of residues between
two probes (e.g., short sequence separations cannot have
truly polymer-like behavior and may need to be treated
60 Biophysical Journal 114, 53–64, January 9, 2018
with classical FRET equations) or heterogeneity not ac-
counted for by polymer-scaling behaviors (53).
Differences between constraint methods

Since IDPs have relatively flat energetic landscapes,
improper introduction of constraints can easily result in en-
sembles where the resultant conformations are not suffi-
ciently diverse, especially proximal to constrained sites.
This arises primarily from constraining potentials that are
too deep or too narrow, but can also occur when conforma-
tional space is not effectively sampled. The latter problem
could be caused by poor parameterization of the Metropolis
criterion (such as selection of a kT value that is too low) or
by not having an appropriate score function to produce the
multiple local minima present within a single pair-wise
constraint potential. By expanding our score function from
a single repulsive van der Waals term to the current optimal
score function utilized by Rosetta, we assure that output
states populate local minima that allow us to extract high-
resolution information and provide an effective buffer for
constraint introduction. Achieving unconstrained simula-
tions of this quality required significant adjustment of
PyRosetta scripts, which normally are used to model folded
proteins rather than IDPs. These optimization efforts will be
reported in detail elsewhere. In addition to improved
modeling scripts, we hypothesized that issues related to
the constraint functional form could be circumvented by
directly employing appropriate distance distributions for
disordered ensembles to analyze the FRET data.

Nonetheless, we performed simulations with all four
combinations of the two P(r) functions used to obtain dis-
tances and the two corresponding constraining functions.
This allowed us to consider how the ensembles were influ-
enced by the method of constraining in addition to the sets
of distances used as constraints. Figs. S56–S63 demonstrate
that neither the method of constraint nor the P(r) utilized for
the distance determination through Eq. 2 had a dramatic
impact on the resulting structures. This likely arises from
the fact that distances from the unconstrained simulation
are already very close to the distances obtained from the ex-
periments. Despite the relative agreement between the en-
sembles produced across all constraining methods for a
given concentration of TMAO, there are several noteworthy
observations. Figs. S60–S63 show that in all cases in which
a harmonic potential was employed, the structural diversity,
most clearly observable in the dispersion of Rg values, is
visibly decreased. Moreover, harmonic constraints consis-
tently produced deviations in the scaling behavior, where
the heat maps (Figs. S60–S64) reveal distances between
the N-terminal region and the NAC domain that are, on
average, longer than those between the C-terminal region
and the NAC. This observation is independent of the input
data, as these nuances are observed for both data sets,
with constraints from data obtained utilizing P2(r,x) further
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enhancing these trends. These observations demonstrate that
there are significant differences between these ensembles
which result exclusively from the functional form of the
constraining potential.

The relative impacts of changes in the score function or in
the constraints are evident in comparisons between 2M sim-
ulations performed using Gaussian chain derived data with
or without constraints or solvation term modification
(Figs. S56, S60–S63). FRET constraints alone compacted
the 2 M ensemble (2 M GC-GC) relative to the 0 M
ensemble (0 M GC-GC), but were not sufficient to generate
ensembles that were consistent with the 2 M experimental
data. However, it is important to note the marked differences
between the 0 and 2 M ensembles, as these demonstrate that
simulations in PyRosetta can be significantly influenced by
constraints, which was not evident from the 0 M simulations
alone. The fact that these constraints alone were unable to
produce ensembles in full agreement with the 2 M data sug-
gests that aS in the presence of molar quantities of TMAO
populates a subset of conformations that are not accessible
with the standard score function. With the solvation term
removed, comparison of the 2 M constrained (2M GC-
GCy, see Fig. S62) and unconstrained (Unconstrainedy, see
Fig. S61) simulations demonstrate that the constraints serve
to exclude extended structures. This further suggests that the
application of constraints does not produce new conforma-
tions not present in the unconstrained population, but can
effectively remove unfavorable structures from an ensemble
based on experimental data. Overall, we see this as a favor-
able compromise as the necessity to modulate the uncon-
strained population through changes to the PyRosetta
scoring is likely driven by the dramatic change in buffer
conditions, which would not be present in many other
applications. Systems where dramatic changes in solvent
conditions occur (as in this study) can be effectively repre-
sented by adjusting the score function, whereas intramolec-
ular (or intermolecular) contacts can be accounted for by
changing the constraint functional form to accurately repre-
sent experimental data.
Comparison of experimental and simulated data

Initial comparisons between the experimental and simulated
distances in Figs. 3 and S56 demonstrate that most of the ob-
tained distances fall within 1 SD of the average interresidue
distance for the given sequence separation. The observed
disagreements at high and low sequence separation are
likely due to inaccuracies in the determination of the exper-
imental distance arising from either the working range of the
probe or the polymer-scaling function, as previously dis-
cussed. Moreover, agreement in simulated and experimental
FRET efficiencies in Figs. 3, S57, and S58 demonstrate that
the underlying conformation dispersion is accurately
captured, since appropriate efficiencies are obtained for
both probe pairs. The FCS measurements herein also
demonstrate that the simulated ensembles are of approxi-
mately the correct overall size and that the degree of
compaction is qualitatively accurate. The quantitative
disagreement between the simulated diffusion coefficients
observed in Fig. 4, where the simulated diffusion coeffi-
cients are systematically lower than the experimental
values, could arise from several different factors. Given
that the overall size agrees with previously published
NMR and SAXS data, it is possible that we encountered
small, systematic inaccuracies in determining diffusion co-
efficients resulting from a combination of the treatment of
the disordered ensemble in HydroPro, the need for an
empirical conversion factor, or accounting for the change
in viscosity induced by TMAO. Importantly, we have
demonstrated in Figs. S65 and S66, respectively, that our
0 M ensembles agree with previously published PRE data
and the structural ensembles generated from those data
(10,11).

It is worth noting that in our effort to establish an effi-
cient, intermediate level of simulation, we chose not to pur-
sue some elements that could have further improved the
accuracy or tested the boundaries of our simulations. For
example, we elected not to incorporate probe/linker spatial
exploration. Although we acknowledge that simulations
would be made more accurate by including representations
of the probes, with FRET based on distances between fluo-
rophore transition dipoles instead of a-carbons, this would
have significantly increased the computational time, under-
mining our intention of creating an efficient approach. Addi-
tionally, we envision that coupling our method with the
strategy previously employed by Dobson and Vendruscolo,
where constraining functions were iteratively updated,
could produce a more refined, but computationally inten-
sive, version of our modeling protocol (11). Moreover,
this method circumvents the need to assume a probability
distribution function when interpreting the FRET data, as
the constraints would be applied directly as FRET effi-
ciencies. Finally, since introduction of a new constraint
functional form is as simple as writing a new function in
Python, we hypothesize that our method of constraint intro-
duction, where assumptions regarding underlying distribu-
tions are directly converted into a potential, is not only
useful for applying FRET data from disordered systems,
but would also allow for efficient incorporation of other
types of experimental data such as PRE data (10,13,41).
CONCLUSIONS

We have developed a Rosetta modeling protocol using
explicit protein side chains and sophisticated score func-
tions in combination with appropriately weighted distance
constraints to generate models of IDPs. By performing
simulations that were constrained with experimental
FRET data from two libraries containing different FRET
pairs, we were able to model the ensemble of aS in buffer
Biophysical Journal 114, 53–64, January 9, 2018 61
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and in the presence of 2 M TMAO. Our models agreed well
with independent measurements of aS structure from FCS,
NMR, PRE, and SAXS data, and were computationally less
taxing than traditional molecular dynamics simulations. In
future work, we intend to explore the degree to which en-
sembles generated in PyRosetta capture residual secondary
structure and the accuracy of values computed from these
ensembles, such as chemical shifts or J-couplings in com-
parison with NMR experiments. The modifications made
to our Rosetta modeling protocol allowed us to produce
reasonable aS starting models in the absence of constraints.
The quality of these unconstrained models gives us greater
confidence in interpreting the interactions observed in the
constrained structural ensembles, and makes the simulations
more robust to the inclusion of an inconsistent constraint.
After careful consideration of constraint function shape
and weight, we have found a form that allows them to influ-
ence the structural ensemble without overconstraining.
Future investigations could employ different weights for
different FRET pairs, or different functional forms for
different distance ranges.

Our modeling protocol for IDPs incorporates atomic
detail relevant to the study of chemical-, ligand-, or environ-
ment-induced conformational changes, and yet is suffi-
ciently rapid both in data collection and simulation time
to be applied in a moderate throughput fashion. Once li-
braries of labeled proteins have been generated, FRET mea-
surements of the type reported here could easily be acquired
under a variety of conditions, potentially even in a multiwell
format. The collection of FRET constraints could then be
used to generate structural ensembles to explore hypotheses
for mechanisms of conformational change or to rationalize
trends among molecules and modifications that modulate
IDP conformation. For example, Kakish et al. (54) have
recently shown that bis-heterocycles linked by a flexible
tether are able to bind to aS and induce conformational
changes in the monomer that inhibit its propensity to aggre-
gate. The procedures used here to study the effects of
TMAO on aS structure could be applied to study such mol-
ecules with therapeutic potential. Furthermore, recent work
has shown that modifications such as serine glycosylation
and tyrosine phosphorylation affect aggregation and mem-
brane binding respectively (55,56). Subsequent modifica-
tion of the current labeled library, or production of a new
library, would allow one to utilize the method reported here-
in to visualize the effect of these and other posttranslational
modifications on the disordered ensemble. Although certain
classes of molecules or solution conditions may spectro-
scopically interfere with our FRET probes, it is important
to note that we can easily vary these probes using essentially
the same labeling strategies. For example, we have recently
reported a methoxycoumarin-acridonylalanine FRET pair
that can be introduced by a combination of cysteine modifi-
cation and unnatural amino acid mutagenesis (57). Finally, it
is important to note that our methods are not restricted to
62 Biophysical Journal 114, 53–64, January 9, 2018
pure IDPs like monomeric aS, but can be applied to disor-
dered regions of folded proteins or ordered aggregates
such as the N- and C-terminal regions of fibrillar aS (58,59).
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