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DNA to form mutagenic lesions. Among the reactive species, lipid

peroxidation�derived aldehydes react with nucleobases and form

bulky exocyclic adducts. Many types of aldehyde�derived DNA

adducts have been characterized, identified and detected in vitro

and in vivo, whereas relative quantitative and pathophysiological

contributions of each adduct still remain unclear. In recent years,

an abundant class of DNA adducts derived from 4�oxo�2�alkenals

have been identified, in addition to classic aldehyde�derived

adducts. The presence of 4�oxo�2�alkenal�derived DNA adducts

associated with age�related diseases has been revealed in rodents

and humans. In vitro studies have demonstrated that 4�oxo�2�

alkenals, as compared with other classes of lipid peroxidation�

derived aldehydes, are highly reactive with nucleobases. It has

been generally recognized that 4�oxo�2�alkenals are generated

through oxidative degradation of the corresponding 4�hydroperoxy�

2�alkenals, homolytic degradation products of polyunsaturated

fatty acid hydroperoxides. Our recent results have also shown an

alternative pathway for the formation of 4�oxo�2�alkenals, in

which 2�alkenals could undergo the metal�catalyzed autoxidation

resulting in the formation of the corresponding 4�oxo�2�alkenals.

This review summarizes the basis of the formation of lipid

peroxidation�derived genotoxic aldehydes and their covalent

adduction to nucleobases, especially focusing on the abundance

of 4�oxo�2�alkenal�derived DNA adducts.
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IntroductionCovalent modifications of DNA bases by various exogenous
and endogenous compounds have been implicated in the

process of carcinogenesis and various diseases.(1–3) Although DNA
adducts are normally repaired and excreted in urine in order to
maintain the fidelity of the DNA, if the lesions were not repaired,
subsequent DNA replication can lead to mutations or apoptosis
(Fig. 1A).(4,5) Mutations in protooncogenes and tumor suppressor
genes have been implicated in cancer,(6) cardiovascular diseases
and neurodegenerative diseases.(7–9) Endogenously generated reac-
tive oxygen species (ROS) can attack nucleobases in free

nucleotides/nucleosides and DNA/RNA to form oxidatively
modified nucleobases, such as 8-hydroxy-2'-deoxyguanosine (8-
OHdG, Fig. 1B).(10,11) Reactive nitrogen and halogen species,
such as peroxynitrite and hypohalous acids (hypochlorous acid
and hypobromous acid), can also modify nucleobases to form
nitrated and halogenated products, such as 8-nitroguanine and
8-halogenated-2'-deoxyguanosine (Fig. 1B), respectively.(12–16)

Alternatively, ROS can initiate lipid peroxidation reactions,
generating a variety of reactive products that react with nucleo-
bases to form adducts.(4,10,11,17) Thus, much attention has long been
focused on the relationships between lipid peroxidation and
carcinogenesis. Because the processes of lipid peroxidation
reactions are quite complex and not fully understood, the elucida-
tion of overall structures and reaction mechanisms of lipid
peroxidation-derived DNA adducts has not yet been completed.
Recent advances in mass spectrometric analysis, especially
liquid chromatography-tandem mass spectrometry (LC-MS/MS),
enable us to detect multiple compounds simultaneously. Recently,
some researchers have reported the detection of various lipid
peroxidation-derived DNA adducts comprehensively using LC-
MS/MS, called “DNA adductomics” approach,(18,19) and exhibited
the relationship between the amount/pattern of DNA adducts
and the risk of several diseases. Through such DNA adductomics,
we and other several research groups have focused on the
abundant formation of 4-oxo-2-alkenal-derived DNA adducts in
vitro and in vivo.(19–22) This review summarizes the formation of
lipid peroxidation-derived DNA adducts, especially focusing on
the formation of 4-oxo-2-alkenal-derived DNA adducts.

Lipid Peroxidation�Derived DNA Damage

Lipid peroxidation, one of the results from the accumulation of
ROS, termed “oxidative stress”, is considered to be involved in
various diseases such as cancer, cardiovascular diseases and
neurodegenerative diseases.(23–25) Polyunsaturated fatty acids, such
as arachidonic acid and linoleic acid, essential components of
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cellular membranes and lipoproteins, are the major targets for
lipid peroxidation. During lipid peroxidation reactions, lipid
hydroperoxides are generated as primary products and then oxida-
tively degraded to a variety of aldehydes as secondary products.(26)

Among numerous lipid peroxidation-derived degradation products,
malondialdehyde (MDA), acrolein, crotonaldehyde, 4-hydroxy-2-
nonenal (HNE) and 4-hydroxy-2-hexenal have been well-studied
in the reactivity to biomolecules such as protein and DNA.(27,28)

Especially, HNE and 4-hydroxy-2-hexenal are considered as
specific markers for peroxidation of ω-6 and ω-3 polyunsaturated
fatty acids, respectively.(29,30) Among the lipid peroxidation-
derived degradation products, several classes of aldehydes possess
high reactivity against nucleobases, in particular guanine, which is
prone to oxidative modifications under physiological conditions.
Formation of 1,N2-substituted cyclic 2'-deoxyguanosine (dG)
adducts with various aldehydes have been characterized and
identified.(31–33) The most widely studied exocyclic adducts are
the propano-, etheno (ε)- and MDA-derived dG adducts (Fig. 1B).
The propano-adducts are formed from α,β-unsaturated aldehydes
or enals, such as acrolein, crotonaldehyde, and HNE.(32,33) The
propano-dG adducts are formed by Michael addition of N-1 of dG
to C-3 of the α,β-unsaturated aldehydes, followed by ring closure
between N2 of dG and the C-1 aldehyde group. The propano
adducts are also formed through the ring closure in the opposite
direction (Fig. 2A). The ε-adducts are products of reactions with
epoxides of enals.(34,35) The ε-adducts are formed as follows.
Attack by the exocyclic amino group of the nucleoside on the
carbonyl carbon of the epoxyaldehyde, followed by cyclization
via nucleophilic attack on the internal carbon of the C2 epoxy
group by N-1 and H2O elimination, yields alkyl-substituted ε-
adducts. Further elimination of the carbon side chain leads to the
formation of non-substituted ε-adduct (Fig. 2B). Formation of
DNA lesions caused by these aldehydes in vivo have been revealed
in rodents and human tissues by various analytical methods such
as mass spectrometry, 32P-postlabeling, and immunostaining.(36–40)

Discovery of 4�Oxo�2�Alkenals as a New Class of Lipid
Peroxidation Products

These studies, described above, strongly support that lipid
peroxidation-derived reactive aldehydes could be important
endogenous genotoxins. However, the relative contribution of
different types of aldehydes to the formation of exocyclic DNA
adducts has not yet been established. After 1999, in addition to
already well-investigated genotoxic aldehydes, Blair’s group has
discovered the formation of 4-oxo-2-nonenal (ONE) as a novel
lipid peroxidation-derived aldehyde.(41) They have shown that
ONE is formed through the decomposition of linoleic acid
hydroperoxides and reacts with dG, 2'-deoxyadenosine (dA), and
2'-deoxycytidine (dC) yielding 2-oxo-heptyl-substituted ε-adducts
in vitro and in vivo.(41–44) The reaction mechanism for the forma-
tion of ONE-dG adduct is initiated by nucleophilic addition of N2

of dG to the aldehydic carbon of ONE followed by Michael-type
addition reaction between C-2 of ONE and N-1 of dG, resulting in
the generation of ethano ring. This intermediate readily underwent
dehydration to stable 2-oxo-heptyl-substituted ε-adducts (Fig. 3A).
Through similar reaction mechanisms to the formation of dG
adducts, 4-oxo-2-alkenals could form 2-oxo-alkyl-substituted
3,N4-etheno-dC and 1,N6-etheno-dA adducts upon reaction with
dC and dA, respectively.(42,43) Our group has immunohistochemi-
cally demonstrated, for the first time, the presence of the ONE-dG
adduct in vivo in a rat carcinogenesis model.(20) These findings
suggested that ONE and perhaps other 4-oxo-2-alkenals could be
a new class of endogenous genotoxins.
Our group has also developed a monoclonal antibody (mAb6A3)

specific to ONE-dG adduct and revealed for the first time the
presence of this adduct in vivo.(20) Significant immunostaining
with mAb6A3 was observed in the liver of rats fed the choline-
deficient L-amino acid defined (CDAA) diet. The CDAA diet is
known as an experimental model for endogenous rat liver carcino-
genesis associated with oxidative stress.(45) It has been shown that

Fig. 1. Oxidative DNA modification by ROS and their secondary products. (A) Scheme for oxidative DNA modification and its consequences, if not
repaired, associated with various diseases. (B) Representative well�known 2'�deoxyguanosine (dG) adducts formed by ROS, reactive halogen species,
and lipid peroxidation products. 8�OHdG is a well�studied, major oxidative DNA product formed mainly by the reaction with hydroxyl radical. 8�
chloro�2'�deoxyguanosine (8�CldG) is a chlorinated DNA product formed by the reaction with hypochlorous acid. Three types of lipid peroxidation�
derived dG adducts are also illustrated. Malondialdehyde, 2�alkenals and epoxyaldehydes (formed by peroxide�mediated oxidation of 2�alkenals)
react with dG to form M1dG, 1,N2�propano�dG (R1 = OH, R2 = alkyl or R1 = alkyl, R2 = OH), and 1,N2�etheno (ε)�dG, respectively.



 J. Clin. Biochem. Nutr. | January 2018 | vol. 62 | no. 1 | 5

©2018 JCBN
Y. Kawai et al.

8-OHdG, an established promutagenic oxidative DNA lesion, was
significantly increased in livers by the CDAA diet and was
involved in the development of putative preneoplastic lesions.(45)

In agreement with the increasing lipid peroxidation (thiobarbituric
acid-reactive substances) levels, positive staining with mAb6A3
was observed in nuclei of the liver of CDAA-fed rats, but not
stained in control groups, showing the formation of ONE-dG
adduct in nuclear DNA associated with lipid peroxidation levels.
Significant immunopositive staining of ONE-dG was also observed
in the spinal cord motor neurons of patients with sporadic
amyotrophic lateral sclerosis.(46)

ONE is one of the major breakdown products of linoleic acid
hydroperoxides.(41) ONE is an analogue of HNE, a representative
end-product commonly derived from oxidized ω-6 polyunsaturated
fatty acids. It was also found that ONE-dG formation was
commonly observed in the DNA incubated with oxidized ω-6
polyunsaturated fatty acids (linoleic acid, arachidonic acid and
γ-linolenic acid).(20,47) These results clearly shown that the hydro-
peroxides of ω-6 polyunsaturated fatty acids are potential sources
of ONE and its DNA adducts in vivo. In contrast, although ONE-

derived adducts were not formed upon reaction with oxidized ω-3
polyunsaturated fatty acids (α-linolenic acid, eicosapentaenoic
acid and docosahexaenoic acid),(20) the formation of DNA adducts
with 4-oxo-2-hexenal were also observed instead.(22)

It has recently been reported that ONE reacts not only with
nucleobases but also with nucleophilic amino acids, such as
arginine, cysteine, histidine, methionine and lysine residues.(48–51)

It is notable that ONE is far more reactive with cysteine and
reduced glutathione (GSH), than HNE.(48) GSH, ubiquitously
distributed in biological systems, is known to be important in
defense systems against oxidative stress.(52–54) The α,β-unsaturated
aldehydes react with the sulfhydryl group of GSH via a Michael-
type addition reaction, resulting in the formation of covalently
adducts and the loss of sulfhydryl groups.(55) Relatively weak
mutagenic activity of HNE may be due to its higher reactivity with
sulfhydryl groups,(56) rather than nucleobases. GSH also can bind
to ONE, as well as HNE, to a greater extent than other α,β-
unsaturated aldehydes. These observations suggest that intracellular
sulfhydryl groups, especially GSH, could largely contribute to
protect DNA bases. Therefore, if the intracellular GSH were

Fig. 2. Proposed reaction schemes for the formation of 1,N2�propano�2'�deoxyguanosine (dG) (A) and 1,N2�εdG (B).
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depleted under oxidative stress, 4-oxo-2-alkenals and other reac-
tive aldehydes may significantly react with intracellular nucleo-
bases and then play an important role in the endogenous process
of carcinogenesis.

Abundance of ONE�Derived DNA Adducts

To identify the major DNA adducts with lipid peroxidation
products, we have previously examined the reactions of each 2'-
deoxynucleoside (dG, dC, dA, or thymidine) with oxidized
linoleic acid, and then analyzed the products by high-performance
liquid chromatography, mass spectrometry, and nuclear magnetic
resonance.(21) During incubation with oxidized linoleic acid, dG
and dC were significantly decreased and several new products
were detected instead. The modification of dA was not significant
and no modification of thymidine, which has no exocyclic NH2

groups, was observed. It is of interest that the major dG and dC
adducts were all derived from ONE or the carboxylic analog 9,12-
dioxo-10-dodecenoic acid. As an example, a chromatogram and a
proposed scheme for the formation of the major dG adducts are

shown in Fig. 4A and B. In addition, higher reactivity of ONE
with dG and dC, rather than dA and thymidine, was reproduced in
vitro.
Abundant formation of ONE-derived adducts could also be

explained by the observation that the reactivity of ONE with
nucleobases in vitro was much higher than other lipid peroxidation-
derived aldehydes (acrolein, MDA and HNE).(21) One exception
was in the case of glyoxal, which significantly reacted with dG.
However, glyoxal-dG adduct was scarcely detected in the reaction
of oxidized linoleic acid with dG, suggesting the relatively low
amount of glyoxal formed during linoleic acid peroxidation. These
results strongly suggested that dG and dC adducts with 4-oxo-2-
alkenals could represent the major DNA adducts derived from
lipid peroxidation products. To further study the formation of
ONE-derived adducts in double-stranded DNA, ONE-derived dG,
dC and dA adducts in enzymatic hydrolysates of DNA samples
were analyzed using LC-MS/MS. It is of interest that, although all
of the ONE adducts were detected in double-stranded DNA
treated with ONE, the DNA hydrolysates contained a large
amount of ONE-dC adduct compared with the dG and dA adducts.

Fig. 3. Formation of 4�oxo�2�alkenals and their dG adducts. (A) Scheme for the reaction of 4�oxo�2�alkenals with 2'�deoxyguanosine (dG) to form
7�(2�oxo�alkyl)�εdG. (B) Proposed two pathways of the formation of 4�oxo�2�alkenals during lipid peroxidation. 4�Oxo�2�alkenals are presumed to be
formed from the corresponding 4�hydroperoxy�2�alkenals, which are thought to be formed through homolytic degradation of polyunsaturated
fatty acid hydroperoxides. It was recently found that metal�catalyzed autoxidation of 2�alkenals also generates 4�oxo�2�alkenals,(57) probably
through the formation of 4�hydroperoxy�2�alkenals.
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The preferential formation of ONE-dC adduct was also repro-
duced upon reaction of ONE with single-stranded DNA or 12-mer
homo-oligonucleotides. These results suggest that, in contrast to
the comparable levels of dG and dC adducts in the free nucleo-
sides, dC residues may represent the major target of ONE and
perhaps other 4-oxo-2-alkenals in higher molecular DNA and
oligonucleotides. Several research groups have demonstrated,
using DNA adductomic analyses, the abundant formation of 4-
oxo-2-alkenal-derived DNA adducts in vitro and in vivo.(19–22) The
observation that ONE-dC adduct was indeed detected as one of
the major adducts in one human pulmonary DNA could support
the in vitro studies for higher reactivity of ONE with dC residues
in DNA.(19)

New Pathway for the Formation of 4�Oxo�2�Alkenals

The example of discovering ONE raises the possibility that
there could still be unidentified lipid peroxidation-derived
aldehydes and the DNA adducts. Thus, we investigated the DNA
adductomics derived from the Fe2+-oxidized arachidonic acid, and

then found several unidentified lipid peroxidation-derived dG
adducts in vitro. We detected a major unidentified adduct by LC-
MS/MS at m/z 390 → 274.(57) Based on the molecular ion, we
speculated that the aldehyde(s) with 8-carbon chain as the reac-
tants. We then analyzed the reaction mixture of dG with several
commercially available aldehydes with 8-carbon chain and found
that this unidentified adduct was successfully detected upon
reaction with 2-octenal. Surprisingly, 1H-NMR spectrum of this
adduct was similar to those of previously reported ONE- and 4-
oxo-2-pentenal-derived dG adducts.(21,41) We then identified this
adduct to be 7-(2-oxo-hexyl)-εdG, which is presumed to be
formed upon reaction with 4-oxo-2-octenal (OOE). Indeed, this
adduct was predominantly formed in the reaction of dG with
authentic OOE. This unexpected finding suggested that OOE
could be formed during incubation of 2-octenal and dG.
It has been understood that 2-alkenals mainly generate propano-

adducts through Michael-type addition. Otherwise, peroxide-
mediated epoxidation of 2-alkenals leads to the formation of
different types of DNA adducts, etheno-adducts, through epoxide-
opening and/or retro-aldol reactions.(58–60) Indeed, Michael-type 2-

Fig. 4. 4�Oxo�2�alkenals are highly reactive aldehydes toward nucleobases. (A) Representative high�performance liquid chromatography (HPLC)
profile for the reaction mixture of 2'�deoxyguanosine (dG) and linoleic acid in the presence of Fe2+/ascorbate, a free radical generation system. This
HPLC chromatogram was modified from our previous paper.(21) Two dG adducts with ONE (4�oxo�2�nonenal) and DODE (9,12�dioxo�10�dodecenoic
acid) were detected as major products. (B) Proposed scheme for the formation of ONE, DODE and their dG adducts.
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octenal-dG adducts and 2,3-epoxyoctanal-derived dG adducts were
also detected upon reaction with 2-octenal. However, OOE-dG
was unexpectedly formed as one of the major products in the
reaction of dG with 2-octenal. We also confirmed that other 2-
alkenals (with at least 5 carbon atoms) also generated corre-
sponding 7-(2-oxo-alkyl)-εdG adducts, suggesting that 4-oxo-2-
alkenals could be formed from the autoxidation of 2-alkenals.
Furthermore, we confirmed by LC-MS/MS that OOE itself was
indeed produced during incubation of 2-octenal in the presence
of transition metals. Thus, we proposed a new pathway for the
formation of 2-alkenal-derived DNA adducts, in which 2-alkenals
(with five or more carbons) could be oxidized at C4-position into
the corresponding 4-oxo-2-alkenals and then react with DNA bases
(Fig. 3B). It has been reported 4-hydroperoxy-2-nonenal, a major
homolytic degradation product of hydroperoxy ω-6 polyunsaturated
fatty acids, undergoes metal-catalyzed degradation into ONE
and HNE.(61) Similarly, the formation of OOE could be mediated
through 4-hydroperoxy-2-octenal, although the formation of 4-
hydroperoxy- and 4-hydroxy-2-octenal has not yet been revealed
during autoxidation of 2-octenal.

Biological Consequences of Lipid Peroxidation�Derived
DNA Adducts

DNA damage is thought to contribute to carcinogenesis, aging,
and neurodegenerative diseases through mutations, genome
instability, and perturbed signaling. Several papers have reported
that lipid peroxidation-derived aldehydes and their exocyclic
DNA adducts could be implicated in mutations. For example,
five-membered exocyclic dG adducts could induce nucleotide
misincorporation in vitro and in vivo.(62) It has also been reported
that 2,3-epoxy-4-hydroxynonanal, which reacts with dG generating
alkyl-substituted εdG adducts, analogous to ONE-dG, is highly
mutagenic in Salmonella typhimurium.(56) In addition, the forma-
tion of 2-oxo-propyl-εdG, structurally analogous to ONE-dG, was
reported upon incubation of dG with 4-oxo-2-pentenal, a hydro-
lyzed metabolite of N-nitrosopiperidine, a carcinogenic cyclic
nitrosamine.(63,64) Furthermore, the mutagenic potential of the
substituted εdC adduct has also been suggested.(65) The genotoxicity
of 4-oxo-2-alkenals has also been directly examined.(66,67) These
results strongly suggest that, in addition to other well-investigated
aldehydes, 4-oxo-2-alkenals could also be mutagenic aldehydes
associated with carcinogenesis.
Researchers have already known that epigenetic changes could

be associated with cancer. Importantly, epigenetic changes
affecting genetic regulation and cellular differentiation may lead
to alterations in embryology, aging, cancer and other diseases.(68)

The best known epigenetic modification is cytosine methylation,
the role of which is not fully understood. However, it is well
accepted that cytosine methylation functions to control gene

expression and protects the host organism from expression of
undesired sequences.(69) Aberrant DNA methylation patterns,
hypermethylation and hypomethylation, have been discovered
in many kinds of human cancers.(70,71) At present, we didn’t yet
know whether oxidative DNA damage could be associated with
epigenetic alteration and cause or consequence of cancer. 8-OHdG
is considered the most frequently detected and studied oxidative
DNA lesion.(72) The presence of 8-OHdG in oligonucleotides
profoundly alters the enzymatic methylation of adjacent cytosines.
Therefore, it is possible that increased levels of 8-OHdG reduce
cytosine methylation, and influence the carcinogenic process.
Moreover, global DNA methylation levels, and levels of oxidative
stress markers 8-OHdG and 8-isoprostane were assessed in metal
oxide nanomaterial handling workers.(73)

In contrast to the only major oxidative DNA lesion 8-OHdG,
relatively few information is available on the biological conse-
quences of lipid peroxidation-derived DNA lesions. To clarify the
importance of lipid peroxidation-derived DNA modifications in
the next future, we have to investigate further comprehensive
analysis of major aldehyde-DNA adducts in vivo, identify the
specific modification sites of lipid-derived aldehydes in DNA, as
previously reported,(74) and also analyze their relationships with
mutations, cell death, and also DNA methylation.
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