Skip to main content
. 2017 Dec 1;18(Suppl 13):464. doi: 10.1186/s12859-017-1875-6

Table 1.

The performance of multi-label learning methods based on different features

Method Feature Recall Precision ACC F AUC AUPR
PLS Markov 0.508 0.478 0.961 0.473 0.879 0.476
PWM 0.521 0.454 0.958 0.465 0.868 0.455
DN 0.534 0.437 0.957 0.461 0.877 0.461
SP 0.545 0.455 0.958 0.477 0.874 0.483
PPT 0.574 0.098 0.787 0.170 0.698 0.103
CCA Markov 0.529 0.461 0.959 0.472 0.880 0.476
PWM 0.521 0.453 0.958 0.465 0.868 0.455
DN 0.566 0.423 0.955 0.466 0.883 0.468
SP 0.533 0.466 0.960 0.477 0.878 0.485
PPT 0.488 0.118 0.844 0.182 0.703 0.114
LSCCA Markov 0.502 0.501 0.963 0.482 0.882 0.486
PWM 0.516 0.471 0.960 0.472 0.871 0.467
DN 0.546 0.442 0.957 0.469 0.883 0.453
SP 0.513 0.513 0.963 0.494 0.882 0.487
PPT 0.472 0.085 0.790 0.129 0.690 0.086