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Abstract

Purpose of Review—Type 1 Diabetes (T1D) is an autoimmune disease marked by β-cell 

destruction. Immunotherapies for T1D have been investigated since the 1980s and have focused on 

restoration of tolerance, T-cell or B-cell inhibition, regulatory T-cell (Treg) induction, suppression 

of innate immunity and inflammation, immune system reset, and islet transplantation. The purpose 

of this review is to provide an overview and lessons learned from single immunotherapy trials, 

describe recent and ongoing combination immunotherapy trials, and provide perspectives on 

strategies for future combination clinical interventions aimed at preserving insulin secretion in 

T1D.

Recent Findings—Combination immunotherapies have had mixed results in improving short-

term glycemic control and insulin secretion in recent-onset T1D.

Summary—A handful of studies have successfully reached their primary end-point of improved 

insulin secretion in recent-onset T1D. However, long-term improvements glycemic control and the 

restoration of insulin independence remain elusive. Future interventions should focus on strategies 

*Carmella Evans-Molina, MD, PhD, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN, USA, 
Tel: (317) 274-4145, Fax: (317) 274-4107, cevansmo@iu.edu.
Robert N. Bone, PhD, Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN, USA, Tel: (317) 
278-9517, rbone@iu.edu

Compliance with Ethics Guidelines

Conflict of Interest
Robert N. Bone and Carmella Evans-Molina declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent
Carmella Evans-Molina is a coauthor on three references cited that utilized human or animal subjects; these studies complied with all 
relevant human and animal subject Ethical Guidelines.

HHS Public Access
Author manuscript
Curr Diab Rep. Author manuscript; available in PMC 2018 July 01.

Published in final edited form as:
Curr Diab Rep. 2017 July ; 17(7): 50. doi:10.1007/s11892-017-0878-z.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that combine immunomodulation with efforts to alleviate β-cell stress and address the formation of 

antigens that activate autoimmunity.
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Introduction

Type 1 diabetes (T1D) is characterized by absolute insulin deficiency secondary to 

autoimmune-mediated ablation of pancreatic islet β cells (1). Hallmarks of T1D are the 

development of circulating autoantibodies against β-cell antigens (2), the presence of 

immune cell infiltrates within pancreatic islets (3), and a progressive decline in insulin 

secretion that eventually culminates in clinically significant hyperglycemia and metabolic 

instability. Once a terminal disease, T1D is now manageable with exogenous insulin 

administration. However, insulin therapy is not a cure, and persons with T1D remain 

susceptible to labile blood glucose levels and the development of microvascular and 

macrovascular diabetic complications (4, 5).

The first clinical trial that tested an immunological intervention in T1D was the French 

Cyclosporine Diabetes Study (6). Cyclosporine A (CSA) interferes with T-cell receptor-

mediated signal transduction thereby inhibiting T-cell activation and helper T-cell IL-2 

production (7). Two studies showed a significant decrease in the need for exogenous insulin 

following CSA treatment for over one year (6, 8), however, after CSA withdrawal, blood 

glucose control worsened and autoantibody levels rebounded (9). Furthermore, CSA 

treatment had the potential for renal and β-cell toxicity (9). Despite this lack of a lasting 

impact and potential toxicity, these trials ushered in a new clinical era focused on 

immunomodulatory strategies to delay or prevent T1D. To date, a number of additional 

interventions have been tested, including parenteral insulin administration, dietary 

exposures, broad spectrum immunosuppressants, anti-inflammatory drugs, and T- or B-cell 

targeted immunosuppressants. While a handful of trials have shown moderate benefits, true 

remission, as defined by insulin independence, remains elusive. The goal of this review is to 

provide an overview of lessons learned from early single target immunotherapy regimens 

and to describe more recent efforts focused on combination immunotherapies for T1D 

treatment and prevention.

The Pathogenesis of T1D

Multiple different cell types contribute to the pathogenesis of T1D, which involves a 

complex interaction between the β cell and components of both the innate (non-specific) and 

adaptive (specific) immune responses. While the focus of this review will be 

immunotherapies, a basic understanding of the mechanisms of T1D development is integral 

and will be summarized here (for additional detail see reviews by Wållberg and Cooke (10) 

or Lehuen and associates (11)). The precipitating trigger of the autoimmune attack on the β 
cell remains unclear. However, it is thought to result from the complex interplay between 

genetic predisposition and environmental influences (12). The strongest contributor to 

genetic predisposition (~60%) is the human leukocyte antigen (HLA) class II, which 
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encodes for components of the class II major histocompatibility complex present on antigen 

presenting cells (APCs) (13). HLA class and other major genetic predisposition contributors 

(e.g. INS, CTLA4, PTPN22, and IL2RA) persist for life and progression to T1D is usually 

preceded by years of autoantibody expression against β-cell autoantigens (13). Emerging 

opinions suggest β-cell autoantigens may be generated by posttranslational modifications in 

which newly generated “foreign” β-cell proteins are not present during thymic selection 

leading to autoantibody production (14). In the initial phases of disease, islet resident APCs 

(e.g. macrophages and dendritic cells) take up autoantigens and migrate to pancreatic lymph 

nodes (15). Within the lymph nodes, autoantigens are presented by APCs resulting in the 

activation of circulating naïve autoreactive T cells (15). Activation of these T cells allows 

them to migrate through tissues and into the islet, where they encounter β-cell autoantigens, 

resulting in T-cell reactivation and the initiation of islet inflammation and insulitis. (15). 

These islet infiltrates typically contain a mixture of cytotoxic CD8+ T cells, helper CD4+ T 

cells, B cells, dendritic cells, and macrophages, and each of these cell types plays a role in 

autoimmune-mediated β-cell death (11, 16). In addition to antigen presentation, islet-

associated macrophages secrete pro-inflammatory cytokines that promote T-cell responses 

and the production of cytotoxic free radical species, which contribute to β-cell death (17). 

Dendritic cells have been implicated in the development of regulatory T cells (Tregs) that 

promote immune cell tolerance and prevent autoimmunity (18). However, dendritic cell 

populations are diminished in at-risk individuals and in recent-onset T1D (19). B cells also 

serve as APCs, and following CD4+ T-cell-mediated activation, produce autoantibodies 

against islet autoantigens (20) and secrete TNFα contributing to inflammation (21). Pro-

inflammatory CD4+ T-cells do not cause β-cell death through direct contact, but rather CD4+ 

T cells secrete pro-inflammatory cytokines to promote recruitment of other immune cells 

(22). In contrast, CD8+ T cells lead to β-cell death through direct contact with β cells (23, 

24), predominately utilizing the perforin/granzyme B apoptotic death pathway (25), but they 

may also utilize the Fas/FasL apoptotic death pathway (24). Pro-inflammatory cytokines 

secreted from T cells and macrophages, such as IFNγ, IL-1β, and TNFα, also promote β-

cell apoptosis, exacerbating islet loss during T1D development (26, 27).

Single immunotherapies

Immune-mediated reactions against the β cell encompass several different cell types and 

multiple pathways of autoimmune-mediated death, providing ample targets for 

immunotherapies aimed at treating or preventing T1D. Since the French Cyclosporine 

Diabetes study, a number of therapies have been tested. To date, the majority of these initial 

studies have undertaken a single intervention approach. A focus of many trials has been on 

the induction of self-tolerance to prevent autoimmunity. The Diabetes Prevention Trial-Type 

1 Diabetes (DPT-1) consisted of two studies aimed at defining whether oral or parenteral 

insulin could prevent or delay T1D development in first- or second-degree relatives of a 

person with T1D. In the first DPT-1 study, participants with a high risk of T1D development 

(>50%) administered twice daily subcutaneous doses of insulin (0.25 U/kg body weight/day) 

plus annual insulin infusions (28), while in the second DPT-1 study, participants with an 

elevated risk of T1D development (26-50%) consumed oral insulin capsules daily (7.5 mg/

day) (29). Subcutaneous insulin did not delay or prevent T1D (28). Similarly, oral insulin did 
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not alter T1D incidence, however, in a subgroup with higher insulin autoantibody, the 

incidence rate was improved (29).

Following the DPT-1 oral insulin study, The Type 1 Diabetes TrialNet Study initiated a 

second prevention trial in relatives of persons with T1D. TrialNet Oral Insulin participants 

were confirmed IAA positive with at least one other autoantibody and then randomized to 

receive a once daily insulin capsule (7.5 mg) or placebo. At follow-up, participants will have 

glycemic control and autoantibody status recorded (https://clinicaltrials.gov/ct2/show/

NCT00419562), and results from this trial are due to be reported soon. Another ongoing 

study centered on restoring tolerance to insulin is the Fr1da Insulin Intervention study. While 

TrialNet Oral Insulin participants had a relative with T1D, Fr1da participants are not 

required to have a relative with T1D and could be identified by population-based screening. 

Additionally, Fr1da treatment boosted the oral insulin dose from 7.5 mg/day to 67.5 mg/day 

after the first three months of the study. Fr1da participants are extensively screened for 

presence of islet autoantibodies (GADA, IA2A, and ZnT8) and then randomized to receive 

oral insulin capsules or placebo (30). At follow-up, participants will be screened for changes 

in islet autoantibodies, CD4+ T-cell response to insulin, and changes to the number of 

circulating Tregs (https://clinicaltrials.gov/ct2/show/NCT02620072) (30).

Multiple studies have also focused on intranasal insulin delivery to delay or prevent T1D. 

The Type 1 Diabetes Prediction and Prevention (DIPP) study screened for T1D HLA 

susceptibility alleles in infants and in siblings of individuals with T1D. Those with high-risk 

HLA alleles were eligible to receive daily doses of intranasal insulin (1 U/kg/day); however, 

the rate of progression to T1D was unchanged in either cohort (31). The Intranasal Insulin 

Trial (INIT I) treated autoantibody-positive participants with intranasal insulin (1.6 mg/day) 

and similarly showed that intranasal insulin did not prevent or accelerate T1D incidence. In 

this trial, intranasal insulin was associated with increased antibody and decreased T-cell 

responses to insulin (32). The INIT II study is ongoing and will expand the number of 

subjects from 38 to 300 and will further investigate autoantibody level changes in addition to 

glycemic control (https://clinicaltrials.gov/show/NCT00336674).

Early prevention studies have also focused on neonatal dietary interventions. A study of 

infants with a first-degree relative with T1D found that infants receiving hydrolyzed casein-

based formula in place of breast milk were less likely to be positive for two or more 

autoantibodies, versus infants receiving conventional formula. At study end, no difference in 

autoantibodies or diabetes incidence was evident seven years post intervention (33, 34). The 

FINDIA pilot study found that removal of bovine insulin from formula resulted in blunted 

progression of additional islet autoantibodies three years after intervention compared to 

conventional cow’s milk formula, supporting the idea of restoration of tolerance. However 

no long term follow-up has been reported from this study (35). Other dietary intervention 

including delayed gluten exposure (36), omega-3 fatty acid supplementation (37), and 

nicotinamide (38) have not significantly prevented or delayed T1D onset.

While the above studies focused on intervention prior to clinical onset of T1D, interventions 

after clinical onset of T1D have tested a number of immunosuppressive drugs to prevent or 

reverse T1D development. This strategy has produced limited long-term success or 
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detrimental side effects that precluded therapeutic outcomes. The Cyclosporine trials 

provided an impetus for targeting T-cells, and several antibodies against the Fc receptor of T-

cells preventing complement binding have been tested. While the mechanism of CD3 

inhibition is not well understood, T-cell apoptosis, altered T-cell trafficking, antigenic 

immunomodulation of the T-cell receptor, and Treg induction have been observed pre-

clinically following anti-CD3 therapy (39). Given these effects, the anti-CD3 antibody 

teplizumab was administered to individuals with recent-onset T1D. Unfortunately, one year 

after initiation, participants in placebo, full-dose, and low-dose teplizumab were not insulin 

independent (40). After two-year follow-up, post hoc analysis revealed that teplizumab 

improved C-peptide and HbA1c levels in responders with higher baseline glycemic control 

or altered memory T-cell populations (41, 42). Otelixizumab, another anti-CD3 antibody, led 

to an improvement in C-peptide levels, but only in participants whose β-cell function was in 

the top 50th percentile at baseline (43). TrialNet is currently testing tepluzimab for 

prevention or delay of T1D in high-risk relatives of persons with T1D (https://

clinicaltrials.gov/ct2/show/NCT01030861).

CTLA4-Ig is a co-stimulatory modulator that prevents T-cell activation by binding to CD80 

and CD86, preventing subsequent APC binding and downstream signaling (44). In recent-

onset T1D, abatacept administration delayed C-peptide decline and decreased the need for 

exogenous insulin over the first twelve months (44). However, protection was lost by 

twenty-four months (44), and blockade of CD80 and CD86 drastically reduced Tregs and 

exacerbated autoimmunity (45). Prevention of T1D with abatacept is currently being tested 

in autoantibody positive relatives of persons with T1D (https://clinicaltrials.gov/ct2/show/

NCT01773707).

Since Tregs have been shown to be reduced in T1D, efforts to restore functional Tregs to 

reverse autoimmunity and preserve remaining β-cell mass are underway. Marek-

Trzonkowska and associates (46) and Bluestone and associates (47) recently reported on 

respective phase I trials to assess safety of using Treg adoptive immunotherapy in T1D. 

Participants with T1D, either within two months of diagnosis or ranging from 14-104 weeks 

post diagnosis, had their own Tregs isolated from peripheral blood, expanded ex vivo with 

anti-CD3 and anti-CD28 plus IL-2, and varying numbers of cells were adoptively transferred 

back into the donor (46, 47). Bluestone found a population of transferred Tregs that were 

long-lived and still in circulation one year post transfer (47). Marek-Trzonkowska study 

participants exhibited an increase in C-peptide levels and lower exogenous insulin 

requirement (46). Bluestone study participants exhibited no decline in C-peptide levels and 

no worsening in HbA1c over 1 year post transfer (47). Bluestone and associates are 

currently investigating the combined use of adoptively transferred Tregs plus IL-2 

administration (https://clinicaltrials.gov/ct2/show/NCT02772679). Taken together, these 

early data suggest that Treg therapy may be beneficial for preserving β-cell mass and 

possibly reversing T1D.

At least one trial has focused on the B cell using Rituximab, which targets the B-cell μ 

immunoglobulin chain. In recent onset T1D, Rituximab was found to significantly lower 

HbA1c levels, increase C-peptide levels, and reduce exogenous insulin demand (48). 

However, CD19+ B cells steadily rebounded over the following twelve months as tolerance 
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was not established with rituximab (48). Two-year post-intervention follow-up reported 

rituximab delayed the decrease in C-peptide levels, but did not appear to alter CD19+ B cells 

or antibody production (49). Interestingly, Rituximab has yet to be tested in the pre-clinical 

phase of T1D.

Another avenue of intervention has been to target inflammation and innate immunity. 

Imatinib is an inhibitor of protein tyrosine kinases, specifically c-Abl, c-Arg, PDGFR, and c-

Kit (50). Imatinib also has anti-inflammatory effects, including decreasing production of 

TNFα by macrophages. In mouse models, imatinib has been shown to protect β cells against 

cytokine and chemical agent induced apoptosis and protect against autoimmune-mediated 

and chemical agent-induced T1D (51, 52). Currently, imatinib is being used in a phase II 

study in recent-onset T1D (https://clinicaltrials.gov/ct2/show/NCT01781975). Another 

inhibitor of TNFα activity is entanercept, which is a soluble recombinant TNFα receptor 

fusion protein that binds to TNFα to inhibit activity (53). In participants with recent-onset 

T1D, entanercept improved HbA1c and C-peptide levels (53). IL-1 has also been a target for 

intervention in two studies. Anakinra is an IL-1 receptor agonist and has also been used for 

rheumatoid arthritis therapy (54). Anakinra was administered to recent-onset T1D 

participants. Unfortunately, this agent did not alter C-peptide levels (55). Canakinumab is a 

monocolonal antibody against IL-1β, which was investigated in recent-onset T1D 

concurrently with anakinra (55). In similar fashion, canakinumab did not improve C-peptide 

levels (55). Innate immunity modulation is also being investigated with the use of the 

Bacillus Calmette-Guérin (BCG) vaccine. BCG is an FDA approved vaccine primarily used 

for tuberculosis prevention, which also induces production of TNF (56). TNF destroys 

insulin-reactive T cells and may also induce Treg production, but does not destroy healthy T 

cells (56). Over twenty years ago, an initial clinical trial with low dose BCG induced 

remission of T1D in some participants (57). Unfortunately, remission was not observed in an 

expanded trial. More recently, a small proof of concept trial in participants with long-

standing T1D resulted in improved C-peptide levels, fewer circulating autoreactive T cells, 

reduced GAD autoantibody levels, and Treg induction (56). Currently, BCG is being 

investigated in a larger clinical trial in participants with long standing T1D in effort to repeat 

the pilot trial’s results (https://clinicaltrials.gov/ct2/show/NCT02081326).

Combination Immunotherapies

Whereas trials of single agent immunotherapeutic regimens have elucidated important 

insights into T1D pathogenesis, long-term insulin independence remains an aspirational 

outcome. The majority of single-agent studies have focused on recent-onset diabetes, when 

the autoimmune reaction against β cells has been occurring for a number of years and 

substantial loss of β-cell mass has already occurred (58). To address this, several drugs are 

now being tested as preventive therapies in autoantibody positive at-risk individuals, 

including GAD-alum, oral insulin, Tregs, abatacept, and tepluzimab. A second approach has 

been to develop multifaceted combination approaches that target different arms of T1D 

pathology. Preclinical studies in animal models (see reviews by Shoda and associates (59) 

and Reed and Herold (60)), insights from other autoimmune diseases, and experience from 

the islet transplantation field provide justification for this approach.
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Since the publication of the Edmonton Protocol (61), the islet transplantation field has tested 

a number of combination immunotherapy approaches to prevent nonspecific inflammatory 

reactions against the islet graft and to prevent recurrent autoimmunity. These include: 

daclizumab or basiliximab (62, 63), anti-thymocyte globulin with entanercept (64), anti-CD3 

antibodies with TNFα inhibition (65), alemtuzumab (63), and anakinra with etanercept (66, 

67). These strategies have led to improved glycemic control following islet transplant and 

have provided insight into modulating the immune system and promoting β-cell survival.

One of the first combination trials tested mycophenolate mofetil (MMF) alone or in 

combination with daclizumab (DZB) in recent onset T1D. MMF is an immunosuppressant 

used during organ transplantation, that when hydrolyzed becomes mycophenolic acid 

(MPA). MPA is an inhibitor of inosine monophosphate dehydrogenase, which controls 

guanine monophosphate production during purine synthesis required for T- and B-cell 

proliferation (68). DZB binds to the α subunit (CD25) of IL-2 receptor expressed on 

activated T and B cells (69). The combination of MMF and DZB proved successful in 

delaying or preventing diabetes in rats (70). However, in the human trial, MMF/DZB or 

MMF alone was unsuccessful in preventing loss of C-peptide or the need for exogenous 

insulin over two years (71). Additionally, despite an initial drop in HbA1c at three months 

post treatment, HbA1c levels gradually rose to baseline levels over two years (71). 

Furthermore, a number of adverse effects were reported during the study, including 

neutropenia and leukopenia (71). Mechanistic follow-up also suggested that MMF/DZB was 

likely ineffective because levels of CD4+CD25+ Tregs, essential regulators of self-tolerance 

in T1D, were reduced by the intervention (72).

A phase I trial focused on use of rapamycin and IL-2 in an effort to boost Treg function in 

recent-onset T1D, and the use of this combination was based on strong preclinical data 

suggesting modulation of multiple aspects of T1D pathogenesis in mouse studies (73, 74). 

Rapamycin is routinely used during organ transplantation and blocks the mammalian target 

of rapamycin complex 1 (mTORc1), which is an important regulator of cell cycle 

progression (75). Rapamycin inhibits proliferation of pro-inflammatory Th1 and Th17 T-

cells, but has a weaker effect on Tregs, which do not require mTORc1 for cell growth (76, 

77). Furthermore, low dose rapamycin had been shown to enhance Treg function (78). IL-2 

acts on multiple cell types expressing the IL-2 receptor and has been shown to prevent or 

reverse hyperglycemia in NOD mice through activation and expansion of Tregs (79, 80). 

Moreover, Rapamycin/IL-2 prevented diabetes in NOD mice (74) . Surprisingly, this 

combination led to a marked decrease of β-cell function, as measured by C-peptide, in 

participants with T1D duration between 4 and 48 months (81). However, rapamycin/IL-2 

treatment was successful in boosting the number of Tregs and participants maintained an 

enhanced response to IL-2, however, no differences were found in CD4+/CD8+ T-cell ratio 

and participants exhibited increased eosinophilia and acute TGF-β and soluble IL-2 receptor 

elevations (81). The investigators who conducted the study concluded, combined with 

published reports, that IL-2 therapy may be beneficial in enhancing Tregs in T1D subjects, 

but in combination with rapamycin, a suspected β-cell toxicant (82), led to impaired β-cell 

function (81).
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Recently, combination therapy with low-dose anti-thymocyte globulin (ATG) and pegylated 

granulocyte CSF (G-CSF) has shown promising results. While other efforts to preserve 

functional β-cell mass largely focused on recent-onset intervention, within 100 days of 

clinical diagnosis, ATG/G-CSF administration was focused on patients with established T1D 

of at least four months, but less than two years duration (83). ATG has previously used as 

acute anti-rejection therapy during organ transplantation, and the main mechanism of this 

agent is T-cell depletion in the circulation and peripheral lymphoid tissues through 

complement-dependent lysis and T-cell activation and subsequent apoptosis (84). 

Additionally, ATG has diverse effects on other immune system components, including: 

altered cell-surface moieties that mediate leukocyte interactions, B-cell apoptosis induction, 

dendritic cell inhibition, and stimulation of Tregs and natural killer T cells (84). G-CSF, or 

granulocyte colony stimulating factor, also has diverse functions. G-CSF maintains 

circulating neutrophils in a steady state, inhibits TLR-induced pro-inflammatory cytokine 

production in macrophages and neutrophils, enhances IL-4 and IL-10 production from T 

cells, and decreases pro-inflammatory Th-17 cell populations (85). In this Phase IIa clinical 

trial, participants received a low-dose ATG/G-CSF regimen and β-cell function tended to 

maintained at 12 months in the treated group, as measured by the 4 hour area under the 

curve of the C-peptide response to mixed meal tolerance stimulation. HbA1c levels also 

tended to be lower at 6 months in those who received ATG/G-CSF (83). A two-year follow-

up revealed no difference in C-peptide levels 24 months post-intervention (86). However, 

this follow-up study found subjects receiving ATG/G-CSF had reduced CD4+ T-cells and 

CD4+/CD8+ T-cell ratio and increased natural killer cells, memory T-cells, and neutrophils 

(86). Additionally, Tregs were elevated after 6, 12, and 18 months, but not after 24 months 

(86). Taken together, these results suggest that ATG/G-CSF therapy leads to prolonged 

immunomodulatory effects and a larger clinical trial in recent-onset T1D is underway within 

the TrialNet Clinical Network (https://clinicaltrials.gov/ct2/show/NCT02215200).

A recently reported study tested intralymphatic injection of GAD65 in an aluminum 

hydroxide formulated vaccine (GAD-alum) in combination with oral vitamin D in recent 

onset T1D (87). L-glutamic acid decarboxylase (GAD) is an autoantigen found in ~80% of 

recent-onset T1D (88). In a phase II clinical trial, GAD-alum alone preserved C-peptide in 

recent-onset T1D (89) and participants exhibited increased Tregs (90, 91), however, a 

subsequent phase III trial showed no significantly beneficial effect in glycemic control (92). 

In a separate TrialNet study, two- or three-doses of GAD-alum did not improve C-peptide 

level, HbA1c levels, or insulin requirement (93). In mouse studies, vitamin D3 has been 

shown to reduce insulitis and diabetes (94) and modulate dendritic cell maturation (95). In 

clinical trials, however, vitamin D3 has failed to significantly improve C-peptide, HbA1c, or 

exogenous insulin requirements (96, 97). Intralymphatic GAD-alum injection resulted in 

stable C-peptide levels, improved HbA1c levels, and reduced insulin requirement and led to 

up-regulation of anti-inflammatory Th2 T-cells and decreased pro-inflammatory Th1 T-cell 

cytokines (87). Additional GAD-alum combination studies are ongoing, including combined 

with: vitamin D and the anti-inflammatory ibuprofen (https://clinicaltrials.gov/ct2/show/

NCT01785108), the anti-inflammatory agent GABA, (https://clinicaltrials.gov/ct2/show/

NCT02002130), etanercept and vitamin D (https://clinicaltrials.gov/ct2/show/

NCT02464033), and alone with vitamin D for T1D prevention in high-risk subjects (https://
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www.clinicaltrials.gov/ct2/show/NCT02387164). These studies should yield insight into 

whether GAD-alum is more effective in combination with other immunomodulatory agents 

versus GAD-alum alone.

Autologous hematopoietic stem cell transplantation (AHSCT) is currently being investigated 

as therapy for T1D. AHSCT are thought to “reset” immune tolerance system by ablating all 

immune cells (98). Following peripheral blood hematopoietic stem cells mobilization from 

the bone marrow with cyclophosphamide/G-CSF, they are collected by leukapheresis and 

frozen (99). Shortly thereafter, high dose immunosuppression with cyclophosphamide/ATG 

is administered to ablate the immune system and the previously collected stem cells are 

reconstituted and injected intravenously (99). Following AHSCT, participants with recent-

onset T1D had improved C-peptide levels, with many participants found to be insulin 

independent beyond one year (99-101). Other studies have shown varying degrees of 

improved C-peptide levels and exogenous insulin independence, however, risk of adverse 

effects due to immune system ablation are high and success of AHSCT is predicated by the 

participant’s glycemic control history (102-104). Additionally, an ongoing clinical trial in 

multiple autoantibody positive participants is investigating the feasibility of infusing 

cryopreserved core blood to prevent T1D development (https://www.anzctr.org.au/Trial/

Registration/TrialReview.aspx?ACTRN=12613000186752), an approach that may prove 

applicable to future AHSCT or tolerance restoration studies.

Concluding Remarks and Future Perspectives

The discovery of insulin in the 1920s was essential for transforming a once fatal disease into 

a manageable disease. Exogenous insulin therapy, however, is not an outright cure and 

persons utilizing exogenous insulin are unable to manage the minute-to-minute fluctuations 

in blood glucose and are still subject to the development of significant co-morbidities, 

including micro and macrovascular complications and severe hypoglycemia. Closed-loop 

artificial pancreas systems (105, 106) are a step in the right direction, but do not address the 

underlying causes of T1D. Since the identification of T1D as an autoimmune disease in the 

1970s (2, 3), efforts to reverse or prevent the autoimmune insult have focused solely on the 

immune system. As summarized in this review, multiple strategies have been utilized in an 

effort to cure T1D and active immunotherapy clinical trials are summarized in Table 1. 

Single target immunotherapies have shown success in achieving their predetermined 

endpoints, however, they have largely been unsuccessful in maintaining long-term glycemic 

control and significantly preserving insulin secretion. Refinement and combinations of these 

immunotherapies have the potential to lengthen the duration of glycemic control, but as of 

yet, combination immunotherapies have not completely reversed T1D. Continued refinement 

of intervention doses, more rigorous investigation of intervention responders, and/or 

combinations of minimally successful single target immunotherapies should continue to be 

investigated in a clinical setting.

The majority of interventions reviewed here were implemented in recent-onset T1D. Since 

60-90% of β-cell mass is dysfunctional or destroyed by the time of clinical onset, 

intervention may be more beneficial prior to onset of T1D. Prevention studies mentioned 

above used autoantibodies as biomarkers for T1D. Other potential biomarkers of T1D 
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development include: genetic predisposition (13, 58, 107-109), unmethylated preproinsulin 

(110, 111), proinsulin-to-C-peptide ratios (112, 113), and microRNA species (114). In 

addition, β-cell derived neo-antigens offer another potential biomarker of T1D, but also a 

target for T1D prevention (115, 116). Alleviation of inherent β-cell stress has emerged 

recently as an important avenue to consider in future therapies. ER stress has been shown to 

precede T1D development and lead to β-cell death and formation of neo-antigens (117-119). 

A clinical trial is underway using TUDCA, a chemical chaperone that alleviates ER stress, in 

recent-onset T1D (https://clinicaltrials.gov/ct2/show/NCT02218619). Furthermore, imatinib 

has been found to suppress β-cell ER stress mediated through IRE1α signaling (120). This 

finding supports the concept of utilizing interventions to target not only the immune system, 

but also the β cell. In addition, lessons on preventing β-cell death and promoting β-cell 

regeneration may be discerned from therapies used to treat type 2 diabetes (reviewed in 

(121, 122)) in combination with immunotherapies and agents focused on alleviating β-cell 

stress.
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