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Purpose: Currently, in clinical practice of intensity-modulated proton therapy (IMPT), the influence
of the minimum monitor unit (MU) constraint is taken into account through postprocessing after the
optimization is completed. This may degrade the plan quality and plan robustness. This study aims to
mitigate the impact of the minimum MU constraint directly during the plan robust optimization.
Methods and materials: Cao et al. have demonstrated a two-stage method to account for the mini-
mum MU constraint using linear programming without the impact of uncertainties considered. In this
study, we took the minimum MU constraint into consideration using quadratic optimization and
simultaneously had the impact of uncertainties considered using robust optimization. We evaluated
our method using seven cancer patients with different machine settings.
Result: The new method achieved better plan quality than the conventional method. The D95% of the
clinical target volume (CTV) normalized to the prescription dose was (mean [min–max]): (99.4%
[99.2%–99.6%]) vs. (99.2% [98.6%–99.6%]). Plan robustness derived from these two methods was
comparable. For all seven patients, the CTV dose–volume histogram band gap (narrower band gap
means more robust plans) at D95% normalized to the prescription dose was (mean [min–max]): (1.5%
[0.5%–4.3%]) vs. (1.2% [0.6%–3.8%]).
Conclusion: Our new method of incorporating the minimum MU constraint directly into the plan
robust optimization can produce machine-deliverable plans with better tumor coverage while main-
taining high-plan robustness. © 2017 American Association of Physicists in Medicine [https://
doi.org/10.1002/mp.12677]

Key words: deliverable robustness, intensity-modulated proton therapy (IMPT), L-BFGS-B, mini-
mum MU constraint, quadratic optimization

1. INTRODUCTION

Intensity-modulated proton therapy (IMPT) is receiving
increased attention in cancer care for its ability to better spare
normal tissue compared with intensity-modulated radiation
therapy (IMRT) and the passive scattering proton therapy.1–3

In IMPT, intensities of beamlets are optimized using compli-
cated computer algorithms to deposit adequate tumoricidal
dose to targets while depositing as little dose as possible to
nearby normal tissues.4

IMPT is precise but is sensitive to uncertainties caused by
patient setup and range uncertainties, respiratory motion, and
anatomic changes.5,6 Several robust optimization methods
have been proposed and have been shown to have great
advantages by achieving robust plans while maintaining high
plan quality.2,7–24 Unfortunately, in proton therapy besides
uncertainties, there are machine hardware constraints, for
example, field-size constraint, minimum–maximum energy
constraint, dose-rate constraint for synchrotron-based proton
therapy systems, and minimum–maximum monitor unit
(MU) constraint. Among them, the minimum MU constraint
is the most prominent one.25 The minimum MU constraint in
proton therapy is mostly due to the minimum charge needed

for the spot profile monitor to work properly. Therefore, a
small number of protons cannot be delivered reliably, leading
to the minimum MU constraint for proton machines.

To date, however, all published robust optimization meth-
ods in IMPT ignored the effect of the minimum MU con-
straint during optimization. To meet the minimum MU
constraint, many clinical practices still use the expedient of
postprocessing procedure provided by the current commercial
treatment planning systems (TPS). This is a procedure that
modifies the intensity map to meet the minimum MU con-
straint after optimization is completed. Different methods are
used for postprocessing. A simple one is to round up/down
the spots which have intensities lower than minimum
MU.25,26 This postprocessing procedure can introduce signif-
icant distortions of the dose distributions, thus degrading plan
quality.25 Recently, Lin et al. proposed a greedy reassignment
method, which reassigned the removed spot’s intensity to its
neighbor spots to maintain a less distorted dose distribu-
tion.27 Compared to the round up/down method, they better
mitigated the impact of the minimum MU constraint.

There is a long history in photon therapy to account for
the hardware constraints in treatment planning. IMRT uses
multiple leaf collimators (MLCs) to form some very
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complicated dose distributions. Currently, most IMRT plans
still need a conversion process (using a leaf-sequencing algo-
rithm) after a fluence map optimization. This conversion pro-
cess is very similar to the postprocessing used in IMPT to
make the IMPT plans deliverable (as discussed before). Due
to the hardware constraints of MLC, plan quality degradation
could happen in this conversion process for IMRT. Therefore,
the regularization method has been proposed in IMRT to
make the optimized fluence map smoother since “smooth
profiles are easier to convert into step-and-shoot segments
than jagged profiles”.28 In addition, nonuniform fluence map
usually leads to dose distributions less robust to geometric
uncertainties29 and reduces the delivery efficiency30 in
IMRT. Several regularization methods have been proposed
including variational methods,31–34 filtering methods,34–37

and iterative methods.28 Alternatively, people have developed
the direct machine optimization methods (DMPO) to incor-
porate machine constraints directly in the IMRT optimization
so that the distortion to the optimized dose distribution
caused by the conversion process can be avoided.38–40

The minimum MU constraint in proton therapy restricts spot
intensities to be either zero or no smaller than the minimum
MU, which cannot be solved by smoothing the fluence map as
the regularization method does for IMRT. Some methods with
the minimum MU constraint considered directly during the
plan optimization have also been proposed in proton therapy.
Cao et al.41 proposed one method composed of two optimiza-
tion stages using linear programming. In the first stage, they
performed an optimization to find an intermediately optimized
IMPT plan without the minimum MU constraint considered. In
the second stage, they performed a boundary-constrained opti-
mization, in which the optimizer would enforce lower bound
constraints for every beamlet that has positive intensity after
the first stage. The limitations of this methodology are that plan
robustness is not considered and the linear programming is not
compatible with the existing commercial TPS. The commercial
TPS for proton therapy, RaystationTM (RaySearch Laboratories,
Stockholm, Sweden), has the minimum MU constraint consid-
ered in the optimization. In the newest version of EclipseTM, the
minimum MU constraint has also been considered in the new
optimization algorithm [nonlinear proton optimizer (NUPO)]42

via two-phase optimization strategy. In the first phase, optimal
fluences are derived with respect to user-defined objectives. In
the second phase, the optimal fluences are converted into deliv-
erable spots, in which spots with smaller intensities are gradu-
ally discarded and the left spots are reoptimized. However, this
method cannot be straightforwardly integrated into the most
popular optimization algorithm of the EclipseTM [proton convo-
lution superposition optimizer (PCS)], which directly optimizes
the spots’ intensities.

In this study, we integrated the minimum MU constraint
into robust optimization for IMPT treatment planning based
on the conventional quadratic programming. We developed a
new robust optimization algorithm and used L-BFGS-B opti-
mizer43,44 to incorporate the minimum MU constraint into
robust optimization by turning the boundary constraints on
and off alternatingly during optimization, so that the

algorithm will dynamically apply the boundary constraints to
determine whether the intensity of one spot should be either
zero or above the minimum MU on the fly. Thus, the opti-
mization explored the full solution domain and led to a better
deliverable robust plan compared to the postprocessing
method. We further assessed the effectiveness of our new
planning method by comparing plan quality and robustness
of IMPT plans for seven patients with different spot size and
different minimum MU constraint to those achieved with the
use of the conventional robust optimization method.

2. METHODS

In this study, IMPT plans were retrospectively generated
for seven patients with real CT images and clinical structures
using both the conventional and new optimization methods
with two different machine settings: (a) for a machine with an
in-air, energy-dependent, large spot size at isocenter (r: 5–
15 mm) and spacing (1.3r), and (b) for a small spot size (r:
2–6 mm) and fixed spacing (5 mm). One MU is defined
according to the IAEA TRS 398 during our machine commis-
sioning. The minimum MU constraint was 0.003 MU for the
small spot machine and 0.005 MU for the large spot
machine. For each patient, three plans were generated: the
conventional nondeliverable robust plan (plan A), the con-
ventional deliverable robust plan using postprocessing (plan
B), and our new deliverable robust plan (plan C). They all
use the same objectives and stopping criteria. To illustrate the
capability of our proposed method more clearly, we also did
the comparison with artificially large (10 times larger than
realistic values) minimum MU setting.

2.A. Conventional robust optimization without the
minimum MU constraint considered

Robust optimization methods can be implemented by dif-
ferent models: for example, a probabilistic robust optimiza-
tion model,12,13 an objective-wise min–max robust
optimization model,8 a multiple criteria robust optimization
model,7 or a voxel-wise worst-case robust optimization
model.9,11,45 The worst-case robust optimization model has
been verified to simultaneously improve robustness and plan
quality, particularly in terms of sparing normal tissues, com-
pared with the conventional planning target volume (PTV)
methods.22,46,47 For brevity, hereafter, we will use the term
robust optimization to refer to voxel-wise worst-case robust
optimization.

In robust optimization, the setup uncertainty and range
uncertainty are considered in the optimization process, as
shown in the following formula:

FrobustðxjÞ ¼
X

i2CTV
pCTV ;minðDi;min � D0;CTVÞ2

þ
X

i2CTV
pCTV ;maxðDi;max � D0;CTV Þ2

þ
X

i2OARs
pOARs � HðDi;max � D0;OARsÞðDi;max � D0;OARsÞ2
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Dm
i ¼

X

j

kmi;jx
2
j

Di;min ¼ min
m

ðDm
i Þ

Di;max ¼ max
m

ðDm
i Þ

Where p denotes the penalty weight of the corresponding
term and D0 denotes the prescribed dose for the correspond-
ing region of interest (ROI). The Heaviside function, H
(Di�D0), is defined conventionally (i.e., its value is unity if
Di > D0 but zero if Di ≤ D0). The terms Di,min = minm(Dm

i )
and Di,max = maxm(Dm

i ), respectively, indicate the minimum
and maximum dose among possible doses Dm

i in voxel i
(m = 1. . .9 here, is the index of the corresponding uncer-
tainty scenario with setup and range uncertainties consid-
ered), which are calculated using Dm

i ¼ P
j
kmi;jx

2
j in each

iteration. The mth influence matrix kmi;j incorporates range

and setup uncertainties. x2
j is the non-negative intensity map.

Dose–volume constraints (DVCs) were used following the
method proposed by Wu and Mohan.48 In the DVH curves,
the DVCs to limit the hot spots in the DVH can be specified
as: Vð[D1Þ\V1, that is, the volume receiving dose Di;max

greater than D1 should be less than V1. Then, another dose
value D2 can be derived so that in the current DVH,
V D2ð Þ ¼ V1. Then, the part in the objective function related
to DVC can be written as:

X
i2CTV pCTVH D2�Di;max

� �
H Di;max�D1
� �

Di;max�D1
� �2

þ�� � ;

Only voxels with Di;max between D1and D2 are penalized.
The ellipsis means that additional DVC for the target (also
normal tissues) can be specified to have more complete con-
trol of the shape of the DVH curves. Similar concepts apply
to the DVC to limit the cold spots in the DVH of the targets
that can be used. For details of the optimization algorithm,
please refer to Liu et al.9,10 The algorithm for robust opti-
mization is shown in Fig. 1 (left). In this treatment-planning
process, no minimum MU constraints are considered. To
make the derived robust plan deliverable, a postprocessing
procedure (discussed below) is needed.

During postprocessing, the system would discard any
beamlets with intensities smaller than half of the minimum
MU and round the intensities of any beamlets with intensities
equal to or larger than half the minimum MU up to the mini-
mum MU. After this procedure, the solution might possibly
deviate from the optimal solution. The extent of the deviation
depends on the magnitude of the minimum MU constraint
and the number of beamlets that are postprocessed.

2.B. Robust optimization with the minimum MU
constraint considered

The minimum MU constraint is a lower boundary con-
straint on the intensity of every beamlet and depends on

the proton scanning beam delivery machine. For example,
the proton scanning beam machine in our clinic has a mini-
mum MU constraint of 0.003 MU. Thus, the deliverable
beamlet intensity is either 0 or ≥ 0.003 MU. The flexibility
to have zero intensity for some beamlets is important
because it allows optimizers to turn off a beamlet if it is
not needed. However, it introduces a discontinuous feasible
region to each beamlet: {0}∪[minimum MU, ∞]. In quad-
ratic programming, no optimizers can work on this feasible
region directly. To be consistent with current practice, it is
important to address this issue in the context of quadratic
programming. L-BFGS is an efficient Quasi-Newton
method to solve an optimization problem with a quadratic
objective function with low memory overhead. The L-
BFGS-B version can apply boundary constraints for its
solution variables. Unfortunately, it cannot handle the dis-
continuous feasible region problem either. To address this
problem, we developed a new robust optimization algo-
rithm to dynamically set up the boundary constraints during
the optimization process by iteratively turning the boundary
constraints on and off. This novel method can effectively
find an optimized solution in this discontinuous feasible
region composed of zero and values no smaller than the
minimum MU constraint.

In our new approach, the form of the objective function
remains the same as the conventional robust method. The
algorithm for deliverable robust optimization is shown in
Fig. 1 (right). More details about the algorithm will be dis-
cussed in Section 2.C.

The optimization is based on the in-house developed
analytical dose engine,9,10 using real CT images and clini-
cal structures. Actually, this in-house developed TPS had
been fully validated and clinically commissioned for our
proton machines. We had successfully used this TPS to
treat five complicated patients, including lung, head and
neck, and central nervous system cancers (the final dose
calculation was done after optimization still using a com-
mercial TPS),49 and regularly used it as secondary MU
check for our commercial TPS. The TPS is parallelized
using MPI and OpenMP and running on the in-house
high-performance computing cluster utilizing 48 CPU
cores. Each core is Intel Xeon E5-4650 v2 CPUs at
2.40 GHz.

2.C. Algorithms and procedures

2.C.1. Algorithms

As shown in Fig. 1, in the conventional robust optimiza-
tion, optimization is performed in one level of loop. When
the maximum loop number or other optimization termination
criterion is reached, the optimization will terminate. In our
deliverable robust optimization, optimization is performed in
two levels of loop: the outer loop and the inner loop. For
every outer loop, two phases of the inner loop are performed.
Phase 1 of the inner loop is performed without boundary con-
straints, and phase 2 of the inner loop is performed with
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boundary constraints. Whether to apply the minimum MU
constraint for each beamlet in phase 2 is determined by the
results of phase 1.

2.C.2. Procedure

Postprocessing procedure: For every beamlet that has
intensity x2

j equal to or larger than half the minimum MU, its
intensity is set to max (x2

j , minimum MU); otherwise, its
intensity is set to zero.

Boundary set procedure: For every beamlet that has
intensity x2

j equal to or larger than half the minimum MU, a
lower boundary constraint with the value of the minimum

MU will be applied; otherwise, this beamlet is turned off in
the following optimization.

Boundary clear procedure: During this step, the bound-
ary constraints for all beamlets, regardless of their intensity,
are cleared for the subsequent optimization. All beamlets will
be available for the subsequent optimization.

2.D. Patient data and evaluation

We tested our method using seven patients: one with pros-
tate cancer (prescription dose: 76 Gy[RBE]) (RBE indicates
Relative Biological Effectiveness), three with head–neck can-
cer (prescription dose: 66 Gy[RBE], 66 Gy[RBE], and

FIG. 1. Algorithm diagrams for the conventional robust optimization (left) and the proposed deliverable robust optimization (right). L-BFGS indicates limited
memory Broyden–Fletcher–Goldfarb–Shanno algorithm. [Color figure can be viewed at wileyonlinelibrary.com]
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60 Gy[RBE]), and three with lung cancer (prescription dose:
74 Gy[RBE], 66 Gy[RBE], and 66 Gy[RBE]), as shown in
Table I.

For each patient, we generated three plans based on two
optimization methods: plan A is generated by the conven-
tional robust optimization method without the postprocessing
procedure. It contains intensities of beamlets smaller than the
minimum MU. Plan B is derived from plan A using the post-
processing procedure. It represents the current routine prac-
tice in the clinic. Plan C is generated by the new deliverable
robust optimization method. We compared plan quality and
robustness among these three plans. The proposed method
aims to maintain the plan quality and robustness by taking
into account the minimum MU constraint.

We do the normalization by dividing the doses with the
prescription dose so that different cases with different pre-
scription doses can be compared directly. The following dosi-
metric parameters were used to compare plan quality and
robustness: for any structure, the minimum dose that covers
95% volume of the structure with the highest dose (D95%);
the minimum dose that covers 25% volume of the ROI
(D25%) with the highest dose; the minimum dose that covers
5% volume of the ROI (D5%) with the highest dose; the mini-
mum dose that covers 1% volume of the ROI (D1%) with the
highest dose; and the normalized volume as a percentage of
the ROI that received at least 20 Gy[RBE] or 35 Gy[RBE]
(V20, V35).

2.E. Robustness quantification

To evaluate or compare the robustness of IMPT plans, we
used a robustness quantification technique that displayed the
envelope of all dose–volume histograms in band graphs of
the nine dose distributions associated with the corresponding
range or setup uncertainties. The width of the band is used to
indicate the plan robustness between the competing plans.
This robust quantification technique is effective for deter-
mining an IMPT plan’s sensitivity to setup and range
uncertainties.9,10,50

3. RESULTS

3.A. Comparison of plan qualities

3.A.1. Comparison of nominal scenario plan
qualities

Plan A is the plan without the minimum MU constraint
considered. We performed the optimization with the mini-
mum MU as 0.003 and 0.005 MU for the small and large
spot machines, respectively. Consistent conclusions are
derived from the results of seven patients with different
machines. Results are shown in Table II.

Figure 2 shows the results for three patients (patient #1,
#2, and #5) with two sets of minimum MU settings: realistic

TABLE I. Patient treatment configurations. Energy layers are carefully selected in machine commissioning so that roughly the proton beam range difference
between adjacent energy layers is 2 mm in low energy region and 5 mm in high energy region to minimize the ripples in the dose distribution in the beam
direction.

Pt Cancer Field No. of beamlets No. of energy layers Energy range, MeV Spot spacing, mm Minimum MU

1 Prostate 1 748 19 148.85–190.55 Energy-dependent spacing (1.3r) 0.005

2 750 19 148.85–190.55

2 Head and neck 1 1,216 20 159.55–206.35 Energy-dependent spacing (1.3r) 0.005

2 1,347 29 141.65–206.35

3 1,326 25 146.95–203.75

3 Head and neck 1 967 40 72.55–131.05 Energy-dependent spacing (1.3r) 0.005

2 1,114 42 83.15–144.95

3 1,056 46 72.55–141.65

4 Head and neck 1 7,625 45 78.5–139.1 5 0.003

2 5,133 65 91.7–185.2

3 3,243 37 78.5–129.699

4 5,841 33 80.3–126

5 Lung 1 3,075 49 72.55–122.55 Energy-dependent spacing (1.3r) 0.005

2 3,142 49 72.55–122.55

3 3,600 67 72.55–155.35

4 3,657 53 72.55–129.249

6 Lung 1 14,791 56 71.3–147 5 0.003

2 9,557 69 91.7–191.3

3 15,061 58 80.3–156.7

7 Lung 1 12,294 68 86.9–183.3 5 0.003

2 12,391 73 91.7–200.4

3 16,024 58 71.3–149.2

Pt, patient.
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(0.005 MU) and artificially large (0.05 MU). In the realistic
minimum MU setting, in terms of target coverage, the results
from the conventional robust optimization method after post-
processing (plan B) had a notable deviation from plan A,
except for patient 1, for whom the effect of the minimum MU
was negligible. Thus, compared with the conventional robust
optimization method, our novel deliverable robust optimiza-
tion method can prevent target coverage from degrading due
to the impact of the minimum MU, while having organ pro-
tections comparable to that of plan A. In the artificially large
minimum MU setting, it is more clear that our proposed
method can preserve the target coverage while the postpro-
cessing significantly impaired the target coverage.

3.A.2. Comparison of plan robustness

Our method not only minimized the influence of the mini-
mum MU constraint on nominal plan quality but also main-
tained high plan robustness. A complete comparison of
robustness (width of the band of CTV at D95%) for the seven
patients is shown in Fig. 3. Our method prevented the

nominal plan quality from degrading while also preserved the
plan robustness. This trend was clearer when the method was
applied to settings with larger minimum MU constraint.

3.B. Performance

For a fair comparison of the performance of our new mini-
mum robust optimization method, the time consumed is cal-
culated so that the number of total optimization loops was
normalized to 300 for both the deliverable robust optimiza-
tion and the conventional robust optimization methods. Com-
parison of the computation time between the two methods
showed that the deliverable robust optimization required less
time for most patients (Table III). The unexpected sweetness
of faster calculation per inner iteration may be due to the
newer implementation of L-BFGS-B compared to L-BFGS.

4. DISCUSSION

In this study, we developed a new robust optimization
method using a quadratic objective function to account for

TABLE II. Results for all seven patientsa.

Pt Statistic Plan A Plan B Plan C

1 CTV D95% 0.996 (0.991–0.996) 0.996 (0.990–0.996) 0.996 (0.991–0.996)

CTV D5% 1.009 (1.006–1.010) 1.009 (1.006–1.010) 1.009 (1.006–1.010)

Bladder D25% 0.059 (0.017–0.137) 0.059 (0.017–0.137) 0.059 (0.016–0.137)

Rectum D25% 0.360 (0.170–0.632) 0.360 (0.169–0.634) 0.356 (0.172–0.637)

2 CTV D95% 0.993 (0.961–0.993) 0.986 (0.954–0.987) 0.993 (0.960–0.993)

CTV D5% 1.040 (1.036–1.046) 1.036 (1.030–1.041) 1.039 (1.037–1.046)

Brainstem D1% 0.755 (0.639–0.848) 0.751 (0.634–0.842) 0.761 (0.646–0.851)

Brain D5% 0.446 (0.397–0.506) 0.442 (0.393–0.502) 0.448 (0.399–0.511)

3 CTV D95% 0.992 (0.953–0.992) 0.990 (0.952–0.990) 0.992 (0.949–0.992)

CTV D5% 1.059 (1.056–1.069) 1.058 (1.054–1.067) 1.059 (1.056–1.070)

Brain D5% 0.662 (0.599–0.702) 0.660 (0.597–0.700) 0.661 (0.596–0.701)

Optic chiasm D1% 0.998 (0.976–1.013) 0.995 (0.974–1.010) 1.001 (0.979–1.018)

4 CTV D95% 0.996 (0.989–0.996) 0.992 (0.987–0.992) 0.996 (0.989–0.996)

CTV D5% 1.021 (1.016–1.023) 1.018 (1.014–1.020) 1.023 (1.018–1.028)

Spinal cord D1% 0.311 (0.269–0.364) 0.309 (0.266–0.361) 0.316 (0.271–0.368)

Brain D5% 0.093 (0.062–0.118) 0.092 (0.061–0.116) 0.096 (0.063–0.127)

5 CTV D95% 0.994 (0.974–0.994) 0.988 (0.971–0.988) 0.994 (0.974–0.994)

CTV D5% 1.044 (1.035–1.051) 1.041 (1.032–1.048) 1.045 (1.036–1.051)

Right lung V20 0.289 (0.266–0.315) 0.288 (0.265–0.313) 0.298 (0.274–0.324)

Spinal cord D1% 0.029 (0.023–0.065) 0.029 (0.023–0.065) 0.030 (0.024–0.065)

6 CTV D95% 0.994 (0.981–0.994) 0.992 (0.981–0.992) 0.994 (0.979–0.994)

CTV D5% 1.050 (1.024–1.060) 1.049 (1.023–1.058) 1.054 (1.027–1.057)

Lung V20 0.341 (0.321–0.362) 0.342 (0.322–0.362) 0.341 (0.322–0.362)

Heart V35 0.121 (0.101–0.144) 0.121 (0.101–0.144) 0.121 (0.101–0.144)

7 CTV D95% 0.996 (0.991–0.996) 0.996 (0.991–0.996) 0.996 (0.989–0.996)

CTV D5% 1.012 (1.005–1.012) 1.012 (1.006–1.013) 1.017 (1.007–1.017)

Total lung V20 0.281 (0.270–0.290) 0.281 (0.270–0.290) 0.285 (0.275–0.292)

Spinal cord D1% 0.258 (0.227–0.348) 0.259 (0.224–0.350) 0.240 (0.219–0.351)

CTV, clinical target volume; DX%, the minimum normalized dose that covers X% of the region of interest with the highest dose; MU, monitor unit; Pt, patient; VX, the nor-
malized volume as a percentage of the region of interest that received at least X Gy[RBE].
aValues are norminal (min–max values of uncertainty scenarios).
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the minimum MU constraint in IMPT. By dynamically turn-
ing on and off the boundary constraints of the solution vari-
ables directly in the optimization, our new method derived
the optimized solution in the discontinuous feasible region
and generated deliverable robust plans without the conven-
tional postprocessing procedure.

It is important for the developed methods to be compatible
with the current commercial TPS for rapid translation to clin-
ical practice. All the commercial TPS are using nonlinear
programming in optimization. Nonlinear programming based
on quadratic objective functions (i.e., quadratic optimization)
has been used in radiation therapy treatment planning for

Patient 1 Patient 2 Patient 5(a)

(b)

FIG. 2. Dose–volume histograms (DVHs) for all three methods in patient 1 with prostate cancer (first column), patient 2 with head–neck cancer (second column),
and patient 5 with lung cancer (third column). The first row indicates DVHs for CTVs; the second row indicates DVHs for organ at risk. Part (a) is the test with
realistic minimum MU constraint and part (b) is with artificially large (10 times larger than that in part (a)) minimum MU constraint. Please note that figures in
the top row are zoomed in. [Color figure can be viewed at wileyonlinelibrary.com]
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decades. Compared with linear programming, quadratic opti-
mization usually generates plans with smoother dose–volume
histogram curves.51 Furthermore, because of its simplistic
formulations and the capability to use Quasi-Newton opti-
mization methods, it can achieve clinically acceptable plans
much more quickly than linear programming.51 Therefore,
we believe that it is still valuable to develop a method which
can integrate the minimum MU constraint into robust opti-
mization for IMPT treatment planning using an optimization
algorithm similar to PCS. Therefore, it can be more readily
incorporated into the current IMPT treatment planning work-
flow (such as the most popular version of the optimization
algorithm, PCS, in Eclipse

TM).

Proton dose distribution is highly sensitive to patient setup
and range uncertainties. Therefore, it is important to consider
plan robustness in IMPT treatment planning. Recently, many
groups have proposed different robust optimization methods
that have achieved robust plans while preserving the nominal
plan quality compared with the margin-based method. In this
study, we based on the voxel-wise worst-case robust opti-
mization which operates on a given set of uncertainty scenar-
ios. Fredriksson et al. have introduced a new robust
optimization method which maximizes the possibility of the
clinical acceptance with the variable extent of uncertainties

that can be incorporated.52 This method explored more possi-
bilities in terms of plan quality and demonstrated the relation-
ship between the extent of uncertainties considered and the
nominal plan quality. This provides users more control in the
tradeoff between nominal plan quality and plan robustness.
In our future work, we plan to provide the same control with
a different approach.

It is worth noting that, in spite of the fact that our deliver-
able robust optimization was currently implemented on the
basis of the voxel-wise worst-case robust optimization
method, it is essentially independent of the choice of the opti-
mization model. Therefore, it can be applied to a broad range
of optimization models: either robust or nonrobust and either
proton or photon therapy. It can also be used in beam angle
optimization, optimization in the reduction in energy layers,
and spot position optimization since these optimizations all
potentially could lead to a substantial number of spots with
small intensities. Therefore, integration of the minimum MU
constraint into plan optimization could be important for these
problems.

Preservation of target coverage while accounting for the
minimum MU constraint is important in clinic practice.
Degradation of the target coverage, although small, could
substantially increase local recurrence. Local recurrence is
one of the major causes of patient mortality in many disease
sites. In the current clinical practice, the treatment planner
sometimes has to adjust the spot spacing and reoptimize the
plan by trial-and-error if the impact of the minimum MU con-
straint turns out to be significant (decreasing the target cover-
age a lot). Our method would relieve the treatment planner
from the burden of selecting appropriate spot spacing by
trial-and-error to minimize the impact of the minimum MU
constraint. More importantly, since the minimum MU con-
straint are directly incorporated into the treatment planning; a
postprocessing is not needed as in the current clinical prac-
tice; and no dose distribution degradation would take place
due to the minimum MU constraint.

FIG. 3. Comparison of CTV D95% (CTV, clinical target volume; D95%, the minimum normalized dose that covers 95% of the region of interest with the highest
dose of plans A, B, and C with realistic (small) minimum MU constraint and artificially 10 times larger (large) minimum MU constraint, in all seven patients.
Error bars indicate the DVH family bandwidth at D95%, which indicates plan robustness. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE III. Total CPU time normalized to 300 loops.

Patient Conventional robust optimization Deliverable robust optimization

1 2 min, 38 s 2 min, 16 s

2 8 min, 9 s 7 min, 38 s

3 13 min, 43 s 13 min, 15 s

4 500 min, 15 s 438 min, 9 s

5 71 min, 48 s 71 min, 25 s

6 40 min, 21 s 44 min, 0 s

7 66 min, 5 s 62 min, 50 s

Medical Physics, 45 (1), January 2018

467 Shan et al.: Deliverable robust IMPT optimization 467



The parameters of our proton machines such as spot spac-
ing and discrete energy layers are tuned with great efforts so
that the impact of the minimum MU is minimized during the
machine commissioning. Therefore, the benefit of deliverable
robust optimization is diluted here. We also evaluated our
method with larger minimum MU constraint (up to ten times
larger). Results showed that our method can still mitigate the
effect of the much larger minimum MU constraint (Fig. 3). It
suggests that our method is valuable for systems with larger
minimum MU constraint and for proton centers, in which the
technical support of the careful adjustment of the related con-
figurations to minimize the influence of the minimum MU is
not available.

Our method has some limitations. Because of practical
considerations, only nine uncertainty scenarios, composed of
rigid isocenter shifts due to patient setup uncertainty and
minimum–maximum range uncertainty, were considered in
the optimization. This could either underestimate or overesti-
mate the effect of uncertainties.53 Also, a study including a
larger patient cohort is needed to get statistically significant
results.

In summary, compared with the conventional postprocess-
ing methods, our new method of incorporating the minimum
MU constraint directly into robust optimization can produce
machine-deliverable plans with better tumor coverage while
maintaining high plan robustness.
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