Skip to main content
. Author manuscript; available in PMC: 2018 Aug 1.
Published in final edited form as: Neuroimage. 2017 May 3;156:87–100. doi: 10.1016/j.neuroimage.2017.04.054

Table 3.

Task variability within each parcel averaged across all parcels and all subjects for each of the 15 task pairs. Shown are task variability computed with respect to the Glasser atlas initialization (column 3) and final result using the GPIP algorithm (column 4). Differences between the two are shown in column 5 and p-values for the Wilcoxon rank-sum test in column 6.

Contrast Glasser’s GPIP from Glasser’s Difference
(Glasser – GPIP)
p-value
(ranksum)
EMOTION faces_shapes 2.970 2.220 0.749 3.41E-71
GAMBLING punish_reward 1.804 1.632 0.172 8.07E-27
LANGUAGE math_story 6.394 5.114 1.280 6.10E-91
MOTOR lf_avg 2.340 2.023 0.317 1.67E-44
lh_avg 2.629 2.387 0.242 9.08E-22
rf_avg 2.056 1.797 0.258 7.17E-37
rh_avg 2.444 2.190 0.254 3.75E-26
t_avg 6.072 5.444 0.628 3.30E-16
RELATIONAL match_rel 1.469 1.275 0.194 1.05E-57
SOCIAL random_tom 2.175 1.841 0.333 1.32E-76
WM 0bk_2bk 4.510 3.799 0.711 4.74E-67
face_avg 4.804 3.902 0.903 3.83E-42
place_avg 4.024 3.268 0.756 1.03E-67
tool_avg 3.300 2.874 0.426 1.33E-39
body_avg 3.637 3.079 0.557 3.11E-54