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Central metabolism is a coordinated network that is regulated at multiple levels by resource availability and by environmental
and developmental cues. Its genetic architecture has been investigated by mapping metabolite quantitative trait loci (QTL). A
more direct approach is to identify enzyme activity QTL, which distinguishes between cis-QTL in structural genes encoding
enzymes and regulatory trans-QTL. Using genome-wide association studies, we mapped QTL for 24 enzyme activities, nine
metabolites, three structural components, and biomass in Arabidopsis thaliana. We detected strong cis-QTL for five enzyme
activities. A cis-QTL for UDP-glucose pyrophosphorylase activity in the UGP1 promoter is maintained through balancing
selection. Variation in acid invertase activity reflects multiple evolutionary events in the promoter and coding region of VAC-
INV. cis-QTL were also detected for ADP-glucose pyrophosphorylase, fumarase, and phosphoglucose isomerase activity. We
detected many trans-QTL, including transcription factors, E3 ligases, protein targeting components, and protein kinases, and
validated some by knockout analysis. trans-QTL are more frequent but tend to have smaller individual effects than cis-QTL.
We detected many colocalized QTL, including a multitrait QTL on chromosome 4 that affects six enzyme activities, three
metabolites, protein, and biomass. These traits are coordinately modified by different ACCELERATED CELL DEATH6 alleles,
revealing a trade-off between metabolism and defense against biotic stress.

INTRODUCTION

Primary metabolism underpins plant growth by providing the
building blocks and energy required for cell division, expansion,
and maintenance and for the production of stress and defense
metabolites. Plant growth is regulated by interconnected tran-
scriptional and metabolic networks that integrate information
about resource availability, hormones, the clock, and environ-
mental and developmental cues (Kooke and Keurentjes, 2012;
Chaiwanon et al., 2016). Coordinated andmultilevel studies of the
individual components of central metabolism are required to
disentangle this complex polygenic regulatory mechanism and to

improveourunderstandingofplant growth. This includesadeeper
understanding of the genetic control of enzyme abundance.
Enzymes catalyze the interconversion of metabolites and play
a key role in the control of metabolic flux and, hence, growth. In
particular, it is important to know to what extent enzyme abun-
dance is regulated by polymorphisms in the structural genes that
encode individual enzymes or by regulatory genes that have the
potential to exert coordinated control on large numbers of en-
zymes and to integrate the control of the abundance of cohorts of
enzymes during development or environmental responses.
Genotype-phenotype relationships can be deciphered using

natural genetic variation. Arabidopsis thaliana is an outstanding
model due to its genetic adaptation to different natural habitats
and itsextensivevariation inmorphology,metabolism,andgrowth
(Alonso-Blanco et al., 2009). Natural variation in Arabidopsis for
many traits in primary and secondary metabolism has been re-
ported (Causse et al., 1995a; Mitchell-Olds and Pedersen, 1998;
Sergeeva et al., 2004; Cross et al., 2006; Keurentjes et al., 2006,
2008; Meyer et al., 2007; Sulpice et al., 2009, 2010).
Correlation analyses across Arabidopsis and maize (Zea mays)

populations have uncovered coordinated changes in metabolite
levels and enzyme activities and strong links between the primary
metabolicnetworkandgrowth (Sulpiceetal.,2010;Zhangetal.,2010;
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Toubiana et al., 2016). Multivariate analysis of metabolite profiles
across panels of genotypes provides predictions of biomass
(Meyer et al., 2007; Riedelsheimer et al., 2012) and has delivered
first insights into which features promote rapid growth. For
example, a negative correlation between starch turnover and
biomass formation indicates that fast-growing Arabidopsis
accessionsuse their carbohydratesmore efficiently than slower-
growing lines (Cross et al., 2006; Sulpice et al., 2009, 2013). This
was recently shown to be partly due to fast-growing accessions
having a lower rate of protein turnover (Ishihara et al., 2017).

A mechanistic understanding of genetic regulation requires the
identification of quantitative trait loci (QTL; loci that contribute to
inherited variance of a quantitative trait). Many studies have
mapped QTL for metabolite levels (Causse et al., 1995b, 2002,
2004; Fridman et al., 2002; Baxter et al., 2005; Fu et al., 2009).
These QTL colocalize with biomass QTL more frequently than
expected by chance, pointing again to a close link between
metabolism and growth (Lisec et al., 2008).

A more direct approach to study the genetic regulation of
metabolism would be to determine QTL for enzyme abundance.
Metabolite levels are regulated by interactions between enzymes
at thesinglecell level andaremodulatedby theconcertedactionof
enzymes and transporters in multicellular organisms. Depending
on pathway topology, an increase in pathway flux can lead to an
increase or decrease in the level of a particular metabolite (Fernie
and Stitt, 2012). Enzyme abundance QTL could be located in cis,
i.e., in the structural gene encoding the enzyme, or in trans, i.e., in
regulatory genes affecting transcription, translation, activity, or
stability of the enzyme. Understanding the relative contribution of
cis- and trans-QTL to variation in enzyme activity is of major
importance. For instance, analyses of glucosinolate metabolism
have highlighted the impact of polymorphisms in individual en-
zymesand in regulatorygenes (Kliebensteinetal., 2001b;Wentzell
et al., 2007;Burowet al., 2010). Thecolocalizationof trans-QTL for
different enzymes might explain why metabolic traits vary in
a coordinated manner.

Recent advances in proteomics make it possible to quantify
many proteins in large numbers of samples in model organisms
with small genomes (Picotti et al., 2013; Schubert et al., 2015).
However, these technologies are not yet applicable to plants.
Proxies for enzyme abundance can be obtained by determining
in vitro enzyme activity, using assay conditions that detect
maximum activity (Stitt and Gibon, 2014). While conventional
enzyme assaymethods are slow, robotized platforms have been
established that provideaccuratemeasurementsofmanyenzymes
in a large number of samples (Gibon et al., 2004b; Keurentjes et al.,
2008; Steinhauser et al., 2011; Biais et al., 2014; Toubiana et al.,
2016).

Enzyme activity QTL for individual enzymes and panels of
enzymes have been mapped using inbred populations (Causse
etal., 1995b;Mitchell-OldsandPedersen,1998;Prioul et al., 1999;
Limami et al., 2002; Sergeeva et al., 2004, 2006; Thévenot et al.,
2005;Keurentjeset al., 2008;Zhanget al., 2010;Steinhauser et al.,
2011). However, these studies were limited by the restricted
genetic variation in biparental populations and the relatively low
mapping resolution, which can lead to incorrect calls for coloc-
alization and incorrect assignments of cis-QTL (Zhang et al.,
2010). Genome-wide association studies (GWAS) profit from the

longevolutionaryhistoryofArabidopsis. Throughoutcrossingand
self-fertilization, this species combines a high allelic diversity with
a relatively rapid decay of linkage disequilibrium (LD;;10 kb) over
the entire genome. LD, a key-concept in association studies,
describes the degree to which an allele of one single nucleotide
polymorphism (SNP) co-occurs with an allele of another SNP
within a population. For Arabidopsis, a 250,000 SNP array with
amarker density higher than the extent of LD supports amapping
resolution close to the gene or even nucleotide level (Bergelson
and Roux, 2010; Horton et al., 2012; Korte and Farlow, 2013;
Alonso-Blanco et al., 2016). However, several factors complicate
the selection and validation of candidate genes: the high gene
density in the Arabidopsis genome, the presence of extended
islands of high LD due to either a recent selective sweep or low
recombination, and the occurrence of genetic and/or allelic het-
erogeneity (Brachi et al., 2011). Furthermore, the presence of LD
can reflect two different scenarios if an association is detected
between a SNP and a trait: (1) The SNP influencing the phenotype
hasbeengenotypedand is statistically associatedwith the trait, or
(2) genotyping has not captured the causal SNP but has captured
a tag SNP that is in high LD with the causal SNP and statistically
but indirectly associated to the phenotype (Bush and Moore,
2012).
GWAS have already been employed to detect QTL for primary

and secondary metabolites (Chan et al., 2010a, 2011; Riedelsheimer
et al., 2012; Verslues et al., 2014; Wu et al., 2016). These studies
haveconfirmed the involvement of genespreviously identifiedby
reverse genetics and QTL mapping with biparental populations
and have also revealed novel genes. However, they did not di-
rectly address the genetic regulation of enzyme activity and the
contribution of cis- and trans-QTL. Furthermore, pleiotropy and
QTL colocalization have been poorly analyzed, and it remains
unclear what generates the strongly connected metabolite
networks observed in mapping populations.
We performed GWAS on 349 diverse Arabidopsis accessions

for 24 enzyme activities, nine related metabolites, three structural
components, andplant biomass in two independent experiments,
with three main aims: first, to identify novel genes involved in the
regulatorymechanismsofplantprimarymetabolismandbiomass;
second and more specifically, to provide insights into the genetic
architecture underlying the regulation of enzyme activities; and,
third, to search for regulatory or pleiotropic hubs that generate
coordinated changes in many metabolic traits.

RESULTS

Natural Variation in Primary Metabolism

Using a mapping population of 349 diverse Arabidopsis acces-
sions selected previously from the HapMap Panel (Horton et al.,
2012), we performed two experiments (Exp1 and Exp2) under
slightly different growth conditions. In Exp1, plants were grown in
a 10-h photoperiod and harvested 37 d after sowing (DAS), and in
Exp2, plants were grown in a 12-h photoperiod and harvested
28 DAS. We did this to increase robustness and to break pleio-
tropic correlations between traits, which might lead to false
secondary associations. We investigated 24 enzyme activities,
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nine metabolites, three structural traits, and rosette fresh weight,
with the majority of traits analyzed in both experiments (Table 1;
Supplemental Data Set 1). Enzyme assays were optimized to
measure maximum velocity (Vmax) activity, which should be pro-
portional to protein abundance (Piques et al., 2009).

Most traits exhibited a high level of variation. The variation
usually approximatedanormal-shapeddistribution, althoughonly
13 traits passed the normality test in one (ChlA [chlorophyll A],
ChlB, nitrate [NO3

2], Suc, Fum [fumarate], NRVm, NRVs, GDH,
MDH [malate dehydrogenase], and PEPC [phosphoenolpyruvate
carboxylase])orbothexperiments (Prot [totalprotein],ADP-glucose
pyrophosphorylase [AGP], and UDP-glucose pyrophosphorylase
[UGP]) (Supplemental Figure 1A; P > 0.01,modifiedShapiro-Wilks).
Formost traits, the values arepositively correlatedbetween the two

experiments, and the plasticity parameters follow normal
distributions (Supplemental Figure 1B). For sugars and organic
acids, the plasticity distribution plots are skewed to the left (G6P
[glucose-6-phosphate], Suc, Fum, andMal [malate]) or right (Fru
and Glc), indicating that trait values are higher in the second or first
experiment, respectively.However, themoderate tostrongpositive
correlations (r = 0.26–0.6, PB < 0.01) between the two experiments
for these traits indicate that the genotypes are robust in their re-
sponse to the two experimental conditions. The plasticity distri-
bution plots of FK (fructokinase), GK (glucokinase), G6PDH, FBP,
fumarase, andSPS (sucrose phosphate synthase) are not normally
distributed, which indicates that for these traits a large number of
genotypes are plastic in their response to different conditions. This
is also demonstrated by the very low correlations between the two

Table 1. Primary Metabolic Traits, Experiments Performed, and Heritability

Targeted Metabolic Pathway Trait Acronym Complete Trait Name Exp

Broad-
Sense H2

Marker-
Based h2

Exp1 Exp2 Exp1 Exp2

Biomass FW Fresh weight 1 45.2 – 44.0 –

Structural components ChlA Chlorophyll A 1,2, KO 40.0 50.0 36.0 52.0
ChlB Chlorophyll B 1,2, KO 14.3 21.4 13.2 12.8
Prot Protein 1,2, KO 30.9 39.3 31.6 39.4

AA NO3
2 Nitrate 1,2, KO 46.3 50.4 46.3 50.7

AA Amino acids 1,2, KO 50.6 47.8 49.0 47.9
Sugars Fru Fructose 1,2, KO 14.9 32.8 14.6 32.9

Glc Glucose 1,2, KO 28.7 55.4 27.1 55.5
G6P Glucose-6-phosphate 1,2, KO 19.4 33.4 18.0 34.1
Suc Sucrose 1,2, KO 12. 9 31.2 10.2 31.9
Starch Starch 1,2, KO 39.9 46.1 37.0 46.5

Organic acids Fum Fumarate 1,2, KO 63.7 57.5 63.9 58.0
Mal Malate 1,2, KO 73.8 71.6 74.8 71.0

Sucrose breakdown FK Fructokinase 1,2 8.9 0.0 6.5 0.96
GK Glucokinase 1,2 8.7 3.1 4.2 3.2
aINV Acid invertase 1,2, KO 50.8 54.2 50.4 54.9
nINV Neutral invertase 1,2, KO 26.5 33.0 26.1 31.1

Glycolysis and respiration G6PDH Glucose-6-phosphate-dehydrogenase 1,2 2.3 6.1 0.3 1.3
FBP Fructose-1,6-bisphosphatase 1,2 9.5 0.0 8.9 0.6
Fumarase Fumarate hydratase 1,2, KO 9.2 13.1 10.1 16.7
MDH Malate dehydrogenase (NAD) 2, KO – 15.9 – 18.6
TPI Triose-phosphate isomerase 2, KO – 16.2 – 18.2
PEPC Phosphoenolpyruvate carboxylase 2, KO – 25.7 – 25.7
TK Transketolase 2 – 0.0 6.1

Calvin-Benson cycle iRUB Rubisco (initial) 1,2 2.2 13.8 6.4 13.3
mRUB Rubisco (maximal) 1,2 3.2 23.4 2.3 24.0

Sucrose synthesis SPS Sucrose phosphate synthase 1,2 58.3 8.8 55.7 10.9
UGP UDP-glucose pyrophosphorylase 1,2, KO 36.5 37.4 34.4 37.7
PGM Phosphoglucomutase 1,2 0.0 5.3 2.7 9.4
cPGI Phosphoglucoisomerase (cytosolic) 1,2, KO 9.9 18.2 12.1 19.3
tPGI Phosphoglucoisomerase (total) 1,2, KO 2.8 3.6 7.6 10.9

Starch synthesis pPGI Phosphoglucoisomerase (plastidial) 1,2, KO 0.5 0.0 6.3 1.7
AGP ADP-glucose pyrophosphorylase 1,2, KO 34.6 19.5 33.1 19.8

Nitrogen metabolism NRVm Nitrate reductase (maximal velocity) 1,2, KO 12.7 30.2 14.2 31.1
NRVs Nitrate reductase (selective velocity) 1,2, KO 24.2 34.8 23.5 35.0
GDH Glutamate dehydrogenase 2, KO – 34.4 – 33.7
SKDH Shikimate dehydrogenase 2 – 7.4 – 6.0

Targeted metabolic pathway, complete trait names, trait acronyms, and experiments (Exp) performed for each trait: GWAS (1, 2) and/or with KO lines
(KO). Broad-sense heritability (H2) and marker-based heritability (h2) obtained using replicates for model GAPIT are displayed for each experiment.
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experiments for these six traits (r < 0.1). Overall, these results il-
lustrate that for most traits the genotypes are robust in their re-
sponse to the different environmental conditions of the two
experimentsandthat it isappropriate toperformGWASandanalyze
bothexperiments together.However, for thesix enzymes thatshow
genotypebyenvironment (GxE) interactions,pooroverlap inGWAS
might reflect genuine differences under different conditions.

Trait variation was quantified by calculating the coefficient of
variation (CV; Supplemental Data Set 2). Low CV (<10%) was
observed for structural components (ChlA and ChlB in both ex-
periments and Prot in Exp2) and some enzyme activities in in-
dividual experiments. For the remaining traits, CV was >20% in
both experiments. In general, enzyme activity CVs were between
20 and 60%, with G6PDH displaying the highest CV (50–61%).
Among the metabolites, Glc had the highest CV (43–63%). Pre-
vious but more limited studies in Arabidopsis also detected an
overall normal distribution of trait values, suggesting quantitative
regulation,moderateCVs, and larger variation formetabolites and
enzymes than for structural components.

To identify which factors contribute to trait variation, we cal-
culated both broad-sense heritability (H2) and marker-based
heritability (h2) using individual replicates (Kruijer et al., 2015) and
averages (i.e., line-based heritability) for each trait and experiment
(Table 1; Supplemental Data Set 2 and Supplemental Figure 1C).
For estimates of marker-based heritability, we compared six
modelswithdifferent kinshipmatrices (EMMAX,GAPIT,PK1,PK2,
PK3, and PK4). We chose GAPIT as the default model in the
subsequent analyses because it controls for both population
structure andcryptic relationsbetween individuals (i.e., covariates
andkinshipmatrix). For biomass, structural components, AA (total
amino acids), sugars, starch, and organic acids, H2 ismoderate to
large (13–74%), with good replication between the two experi-
ments (Table 1). In most cases, H2 exceeds h2, suggesting that
phenotypic variation is the result of heritable additive variation (h2)
and nonheritable variation (H2 includes epistasis). However, the
estimated values for h2 are very close to the H2 values, indicating
that epistasis doesnotplay amajor role in thegenetic regulationof
these metabolic traits (Table 1). For enzymes, the estimates of H2

andh2are lowtomoderate (0–58%) (SupplementalDataSet2).For
acid invertase activity (aINV), nINV, UGP, AGP, NRVm, NRVs,
PEPC, GDH, and SPS, H2 is relatively high in one or both ex-
periments but for other enzymes (G6PDH, fumarase, MDH, PGM,
phosphoglucose isomerase [PGI], iRUB,SKDH,TPI, andTK),H2 is
low (<20%) in both experiments and sometimes extremely low.
Low H2 values can reflect low between-line variation and/or high
within-line variation, and indeed, within-line variation is very large
for these enzymes (Supplemental Figure 1D). Nevertheless, the
heritability values detected for the majority of traits suggest that
natural genetic variation is a major causal factor for the observed
phenotypic variation and that GWAS can be employed to identify
candidate genes underlying this variance.

Primary Metabolism Is a Highly Coordinated Network

To identify traits that vary in a concerted manner, we performed
Spearman rank correlation tests (Figure 1; Supplemental Data Set
3). There were many highly significant correlations within a given
experiment (Figures 1A and 1B). Most correlations between the

different enzyme activities were positive, as previously reported
for a smaller accession panel (Sulpice et al., 2010). This included
enzymes involved in theCalvin-Benson cycle, sucrose and starch
synthesis, and nitrogen metabolism (0.32 < r < 0.85, PB < 0.001),
pointing to coordinated regulation of enzyme abundance in these
pathways. Enzyme activities correlated strongly and positively
with major end products of primary metabolism (starch, Suc,
AA, and Prot; Figures 1A and 1B; Supplemental Data Set 3).
Correlations between metabolites were strong in Exp1 but
weaker in Exp2 (Figures 1A and 1B). Biomass was determined
only in Exp1 and correlated negatively with protein and starch
(r =20.64, r =20.49; PB < 0.01), as previously reported (Sulpice
et al., 2009, 2010), and with other metabolites including Suc,
G6P, and AA (all PB < 0.01), and positively with NO3

2 (r = 0.24,
PB < 0.05) and Fum (r = 0.3, PB < 0.01). Biomass correlated
negatively with enzyme activities in contrast to earlier reports
(Sulpice et al., 2010). The strongest negative correlations be-
tween enzyme activities and biomass were for NRVs (r =20.51,
PB < 0.001; NRVm, r = 20.48, PB < 0.001), tPGI (r = 20.5, PB <
0.001), and UGP (r = 20.5, PB < 0.001) activities (Figure 1A).
Interexperiment correlations (Figure 1C; i.e., correlation for

metabolic traits between the two experiments) weremuchweaker
than intraexperiment correlations. Most of the significant corre-
lations in the interexperiment regression were for comparisons of
the same trait, rather than of different traits between the two
experiments. These were again stronger for structural compo-
nents and metabolites than for enzymes (r = 0.2–0.6, PB < 0.01).
Coordinated changes in trait values may be due to indirect

genetic relationships, for example, pleiotropy. However, the ob-
servation thatcorrelationsareweakenedor lostwhenexperiments
performed under slightly different conditions are compared indi-
cates that environmental factors exert a strong influence on the
network structure of primary metabolism.

Genome-Wide Association Analysis of Primary Metabolism

Weperformedgenome-wide association (GWA)mapping using six
models that differed in the approaches used to control for con-
founding effects (seeMethods for a more detailed description). For
most traits,model EMMAXgave the highest LOD scores [logarithm
of the odds,2log10 (P value)] (Supplemental Data Set 4), probably
because it is the only model that does not include cofactors to
control for population structure (i.e., Qmatrix). However, in general,
the six models performed similarly. Subsequent analyses used
GAPIT as the representative model.
We performed GWAS independently for Exp1 and Exp2 and

compared the results to identify associations that are robust
across conditions. The separate analyses of Exp1 and Exp2
detected80and134SNPsat a significance thresholdof LOD=5.5
(false discovery rate [FDR] < 0.05), and 7100 and 8117 SNPs with
LOD$ 3, respectively (Supplemental Data Set 4). Although more
false positive associations are expected at the lower threshold,
earlier studies have often reported large-effect loci that areweakly
but causally associated with quantitative trait variation (Atwell
et al., 2010; Kooke et al., 2016).
We therefore chose LOD$3 as a threshold to search for shared

associations. This threshold was passed in both experiments by
126 SNPs corresponding to 131 SNP-trait associations (SNPt)
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(Supplemental Data Set 5). The LOD values for these SNPt were
strongly correlated between the two experiments (r2 = 0.6, P <
0.001; Supplemental Figure 2). The high correlation was mostly
driven by significant SNPs (LOD > 6.5) associated with UGP and
aINV activities. The cross-validated SNPs were associated with
two structural components (ChlA and Prot), nine metabolites
(NO3

2, AA, G6P, Glc, Fru, Suc, starch, fumarase, and Mal), and
seven enzyme activities (aINV, nINV, GK, Fum, tPGI, UPG, and
NRVs) (Supplemental Figure 2). In 16 cases, we identified multiple
contiguous SNPs for the same trait (Supplemental DataSet 5A). LD
analysis revealed that these SNPs are linked, allowing them to be
assigned to unique genomic regions (i.e., QTL; Supplemental Data
Set 6). This analysis also uncovered four QTL where different
but linked SNPs were associated with the same trait in Exp1 and
Exp2 (Supplemental Data Set 5B). In total, we detected 70 cross-
validated QTL (LOD $ 3 in both experiments; Supplemental Data
Set5).TheirLODscoresweresignificantlycorrelatedbetweenExp1
andExp2 (r2=0.368,P<0.001; Figure2). These included twocases
where different traits were associated with the same QTL.
Fourteen SNPswere retained that did not meet our criteria but

had a high-LOD score in one experiment and colocated with
other cross-validated SNPt. Eight significant SNPs at FDR < 0.1
(LOD > 4.8) for FK, nINV, FBP, fumarase, SPS, pPGI, and AGP
were retained because these traits showed high plasticity be-
tween conditions, and for five of them,wewere unable to identify
cross-validated SNPs when analyzing both experiments to-
gether (Supplemental Data Set 5). We also retained some in-
teresting suggestive associations, including one SNP for AA,
four SNPs for AGP, and two SNPs for GDH. In total, we captured
165 unique SNPs, corresponding to 191 SNPt and 88 QTL
(Supplemental Data Set 5). Six of the resulting QTL support
intervals were large, ranging from 19 to 68.2 kb, and some in-
cluded more than one gene.
We chose candidate genes based on the position of the SNP(s)

with the highest LODscore, complementedbymanual inspection for
obvious functional annotations. This procedure short-listed 116
candidate genes (Supplemental Data Set 5; small selection in Table
2). The candidates were distributed across 21 functional categories
(MapMan v3.5.1R2; Thimm et al., 2004; http://mapman.gabipd.org;
Figure 3A), including metabolic enzymes (13 genes), regulation of
transcription (10 genes), ubiquitin-dependent protein degradation
(11 genes), RNA processing and splicing (6 genes), protein pro-
cessing, secretion and posttranslational modification (8 genes), and
transporters (7 genes).
The number of robust QTL detected for a given metabolic trait

varied greatly. The largest numberwas detected for aINV activity (16)
and Mal (15), followed by Fum (9), Prot (5), NO3

2 (5), and G6P (5)
(SupplementalDataSet7).Theproportionof total amountofvariation
explainedby the summedQTLdependedon the trait. This valuewas
highest for aINV, Mal, and Fum (>30%), between 10 and 30% for
a further 17 traits, and<10%for 10 traits (SupplementalDataSet 7). It
should be noted, however, that summing valuesmight lead to a bias
since, for example, epistatic effects are not taken into account.

Genetic Regulation of Enzyme Activity in cis and in trans

Five enzyme activity QTL were detected in cis (i.e., mapping to
structural genes encoding that enzyme). This represents 12.5%of

Figure 1. Spearman Rank Correlation Matrices for Primary Metabolic
Traits.

Two independent experiments (Exp1 and Exp2) were performed, dif-
fering in photoperiod (10 h versus 12 h) and the age of harvested plants
(37 versus 28 DAS). This was done to increase robustness and to break
pleiotropic correlations between traits, which might lead to false
secondary associations. More traits were investigated in Exp2 than in
Exp1; these traits are omitted here. A correlation scale is included to
the right of (C): positive correlations are shown in shades of blue (1 to 0)
and negative correlations in shades of red (21 to 0). Coefficients are
filtered according to Bonferroni correction (PB < 0.1). Correlations
within the same trait category are highlighted with black frames
(triangles in [A] and [B] and squares in [C]). All traits are expressed on
a FWbasis. The traits are arranged along the sameaxes and in the same
order as they are listed in Supplemental Data Set 3. Names and ab-
breviations can be found in Table 1.
(A) Correlations between traits measured within Exp1.
(B) Correlations between traits measured within Exp2.
(C) Cross-correlations between Exp1 and Exp2.
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all enzyme activity QTL (Table 2; Supplemental Data Set 5). A
strong QTL for UGP activity (LOD1 = 8.6, LOD2 = 12.5) was de-
tectedwith themost significantly associatedSNPs located914bp
(Exp1) and 2877bp (Exp2) downstreamof the start codon ofUDP-
GLUCOSE PYROPHOSPHORYLASE1 (UGP1), one of two genes
encoding UGP in Arabidopsis. aINV activity was significantly
associated (LOD1=7.7, LOD2=6.8)withVACUOLAR INVERTASE
(VAC-INV), with the peak SNP located 1122 bp upstream of the
start codon. AGPactivity (LOD1 = 1.8, LOD2 = 4.3) was associated
with SNPs in the coding region of the starch biosynthesis gene
ADP-GLUCOSE PYROPHOSPHORYLASE LARGE SUBUNIT1
(APL1). A QTL for cPGI activity was robustly associated with the
sugar isomerase gene SIS (LOD1 = 4.5, LOD2 = 3.0), with the
highest-LOD SNPs located 14,988 and 20,188 bp downstream of
the start codon. Fumarase activity associated with FUMARASE1
(FUM1; mitochondrial) with the strongest SNPs (LOD1 = 4.5,
LOD2 = 3.8) located 10 and 14 kb upstream of the coding region
and lower scoring SNPs within the coding region (LOD1 = 3.5,
LOD2 = 3.0). The percentage of variation explained by these cis-
QTL ranged from 4% for fumarase up to 10.2 and 16.7% for aINV
and UGP, respectively (Table 2).

Thirty-five trans-QTL were detected for enzyme activity. In
addition to its cis-QTL, aINV activity associated in trans with
BETA-VPE (LOD1 = 7.2, LOD2 = 4.7). BETA-VPE is a vacuolar-
processing enzyme that is likely involved in protein degradation
and turnover. This trans-QTL explained 9.5% of variation. We
identified two candidate genes for nINV variation, the protein
involved in splicing SRp34a (LOD1 = 6.5, LOD2 = 3.1) and the

vacuole-localized protein VPS2.2 (LOD1 = 3.8, LOD2 = 6.2). These
QTL explained 8.5% and 8% of trait variation, respectively (Table
2). NRVs activity associated with a QTL containing two lectin
receptor protein kinases (LECRKA4.2 and LECRKA4.3, LOD1 =
5.3, LOD2 = 3.3). These have previously been implicated as
negative regulators of abscisic acid responses (Xin et al., 2009).
Total PGI activity associated with a QTL in the coding region of
ATCCR4a (LOD1 = 5.2, LOD2 = 4.4). This gene and its neighbor,
ATCCR4b, are orthologs to yeast CARBON CATABOLITE
REPRESSOR4 (CCR4), which is involved in RNA degradation
(Dupressoir et al., 2001). Recent analyses revealed higher
levels of starch and lower levels of sucrose inArabidopsis ccr4a
andccr4bknockout (KO) linescomparedwithwild-type controls,
although no changes in tPGI nor evidence of posttranscriptional
regulation of genes encoding PGI enzymes were observed
(Suzuki et al., 2015). All of these QTL were significantly asso-
ciated in at least one experiment with an FDR control between
1 and 10% (LOD = 4.8–6.3). (Supplemental Data Set 5).
For enzymes showing great plasticity between conditions, we

often identified significantly associated QTL in only one experi-
ment. For example, in Exp1, nINV associated with a transcription
factor (TAF4B, LOD1 = 4.9), FK associated with an E3 ubiquitin-
protein ligase (LOD1 = 5.1) and a TRAF-like protein involved in
signaling (LOD1 = 4.9), and pPGI associated with a ubiquitin-like
protease (LOD1 = 5.0). In Exp2, FBP associated with an anion
transporter (LOD2=6.1), SPSwith a forkhead-associateddomain-
containing protein (LOD = 5.8), and fumarase activity with the
TRIOSE-PHOSPHATE TRANSLOCATOR (TPT; LOD2 = 5.7).
Altogether, these findings indicate that the genetic regulation of

the activity of enzymes occurs through natural variation in their
structuralgenes (incis) andexcessivemodulationthroughmodifiers
in trans, with the latter being far more numerous but some of the
former showing the largest effect sizes.

Metabolite QTL Mapping to Biosynthesis Pathways and
Growth Metabolism

Two metabolite QTL mapped to structural genes for an enzyme
that uses the metabolite as a substrate (Table 2). We classify
these as “putative cis-QTL.” The first was a QTL for Mal content
(LOD1=4.3, LOD2=4.5) thatmapped to thePLASTIDICMALATE
DEHYDROGENASE (pMDH) (Scheibe, 1987). The most signifi-
cant SNP is located 11,983 bp upstream of the start codon
(Supplemental Data Set 5). This SNP did not show significant LD
with other SNPs in the pMDH genomic region, which might
explain why GWAS did not detect SNP associations closer to or
within pMDH. On average, accessions carrying the major “C”
allele (frequency = 0.80) show significantly higher levels of Mal
than accessions carrying the minor “T” allele. MDH activity was
not significantly different between the two haplotypes, but this
might be explained because MDH activity was assayed using
NAD+ as cofactor, while the plastid form uses NADP.
The second putative cis-QTL was for Fum (LOD1 = 4.1, LOD2 =

3.2) andMal content (LOD1= 2.4, LOD2 =3.6). Itmapped toFUM2,
which encodes the cytosolic fumarase (Pracharoenwattana et al.,
2010). Fumarase catalyzes the reversible hydration/dehydration
of Fum to Mal. The most strongly associated SNPs are located
upstreamof the start codon (21,513 and 9751bp for FumandMal,

Figure 2. QTL Cross-Validation between Exp1 and Exp2.

For the 19 traits where robust QTL were identified (Supplemental Data Set
5), the highest-LODSNP inExp1wasplotted against thehighest-LODSNP
in Exp2. Only QTL with LOD $ 3 in at least one experiment are included.
LOD=3 thresholds (black lines) and10%FDR (LOD=4.8, dashed lines) are
shown. QTL are shown in different colored and shaped symbols according
to trait and class. For cPGI, a cross-validated QTL was identified
considering QTL-ID rather than SNP-ID between experiments. Linear
regression for the validated QTL data set was r2 = 0.368, P < 0.001. The
SNP-to-SNP cross-validation is presented in Supplemental Figure 2.
Names and abbreviations for all traits can be found in Table 1.
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respectively). Both SNPs are polymorphic between Col-0 and
C24, the parental lines of an inbred population in which corre-
sponding metabolite QTL were previously detected (Lisec et al.,
2008). The allelic effect for these SNPs predicts higher fumarase
activity, higher levels of Fum, and lower levels of Mal for ac-
cessions carrying the Col-0 allele. In agreement, the Col-0 hap-
lotype (i.e., AC, allele frequency = 0.11) displayed significantly
different trait values than the C24 haplotype (i.e., GG, allele
frequency = 0.30) in the association mapping population in both
experiments. However, these twohaplotypes are not as abundant
as the intermediate haplotype (i.e., GC, allele frequency = 0.59),
which might explain the relatively low power to detect this QTL in

the associationmappingpopulation comparedwith thebiparental
inbred population. Interestingly, another QTL for Fum content
mapped to a malate transporter gene (LOD1 = 3.9, LOD2 = 4.9),
again pointing to close links betweenMal and Fum (Supplemental
Data Set 5).
Several metabolite QTL mapped to genes involved in signaling

or growth. A QTL for AA mapped in the coding region for a ribo-
somalproteinL18e (RPL18e, LOD1=3.8,LOD2=2.4), aQTL forFru
content mapped to IQ-DOMAIN22 (IQD22; LOD1 = 4.6, LOD2 =
5.7), which belongs to a multigene family of calmodulin binding
proteins (Abel et al., 2005), and aQTL for NO3

2 contentmapped to
LOB DOMAIN-CONTAINING PROTEIN37 (LBD37; LOD1 = 4.1,
LOD2 = 3.2), which is involved in nitrogen signaling and the reg-
ulation of centralmetabolism (Rubin et al., 2009). Finally, aQTL for
G6Pmapped toKAT2 (LOD1 = 5.8, LOD2 = 4.0), a 3-ketoacyl-CoA
thiolase involved in peroxisomal b-oxidation.
Putative cis-QTL and trans-QTL both contribute to variation in

metabolite levels. Although the former represent only 6.7% of
all metabolite QTL, they make a slightly stronger contribution to
metabolite variation (4.7% versus 4.4% of total variation, re-
spectively). A higher number of trans-QTL was detected for me-
tabolite traits than for enzyme activities (4.7 and 1.5 per trait,
respectively), suggesting that many genes have an indirect effect
on metabolite levels. For both metabolite and enzyme activity
QTL, although far fewer cis-QTL (8) were detected than trans-
QTL (80), the individualcis-QTLeffectswereonaveragestronger
than the trans-QTL effects (7.2% and 5.1%, respectively;
Supplemental Data Set 7).

Colocalized QTL Suggest a High Degree of Pleiotropy

The high connectivity between metabolic traits in individual
experiments (Figures 1A and 1B; see also Introduction) led us to
search for colocalizing QTL. Fourteen QTL associated with two or
more metabolic traits (Supplemental Data Set 5; small selection
listed in Table 2). The most abundant colocalizations were be-
tween structural component QTL and metabolite QTL (4) and
between different metabolite QTL (4) (Figure 3B). Starch (LOD1 =
4.5, LOD2 = 2.6), and (although weakly in only one experiment)
Glc (LOD1 = 2.9) and Suc (LOD2 = 2.9) associated with
MECHANOSENSITIVECHANNELOFSMALLCONDUCTANCE-
LIKE10 (MSL10) (Haswell et al., 2008).Mal content (LOD2 = 4.4) and
MDH (LOD2 = 3.9) and GDH (LOD2 = 3.1) activities associated in
Exp2 to FHA2, which encodes a protein involved in protein-
protein interactions (Ahn et al., 2013). In Exp1, a QTL associated
with fresh weight (FW), Prot, AGP, UGP, and tPGI activity
(maximumLOD1=5.2 forAGPactivity)was identifiedwithinXXT2
(Supplemental Data Set 5; Table 2). XXT2 encodes a xyloglucan
xylosyltransferase that is important for xyloglucan synthesis
(Cavalier et al., 2008) and loosening of the cell wall during ex-
pansion growth (Park and Cosgrove, 2012).
Themost strikingmultitrait QTL extended over a 68.2-kb region

on chromosome 4 (Chr4) (Figure 3B; Supplemental Data Set 5;
QTL ID = 56). This QTL associated with FW (LOD1 = 3.9, LOD2 =
NA), Prot (LOD1 = 3.3; not detected in Exp2), AA (LOD1 = 5.0,
LOD2 = 3.5), G6P (LOD1 = 3.8, LOD2 = 2.1), Fum (LOD1 = 4.5,
LOD2 = 4.4), and six enzyme activities: aINV (LOD1 = 7.8, LOD2 =
6.8), nINV (LOD1=4.1, LOD2=3.1), cPGI (LOD1=3.2; not detected

Figure 3. Assignment of Candidate Genes to Functional Categories and
Analysis of QTL Colocalization.

Candidate genes were selected based on the position of the SNP with the
highest LOD score. QTL and QTL colocalization were determined by
assessing LD between contiguous SNPs (within and between traits), with
LOD $ 3.
(A) Number of genes falling in different ontology categories according to
trait classes: structural components (black), metabolites (white), and en-
zyme activities (gray) (MapMan v3.5.1, http://mapman.gabipd.org; Thimm
et al., 2004).
(B) Specific and colocalized QTL obtained for each trait class: structural
components, metabolites, and enzyme activities. Colocalized QTL within
a trait category are specified in smaller circles.
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inExp2), tPGI (LOD1=3.5; notdetected inExp2), fumarase (LOD1=
4.6; not detected in Exp2), andGDH (LOD1 =NA, LOD2 = 5.0). The
trait variation explained by this QTL ranged from moderate (3.7%
for Prot) to high (10.5% for aINV) (Table 2; see below for more
analysis).

These results point to a high degree of pleiotropy in the regu-
lation of centralmetabolism, resource allocation, andgrowth. This
could contribute to the high connectivity in the metabolic traits
observed in this and previous studies (see Discussion).

Analysis of KO Lines for Selected Candidate Genes

We next analyzed the metabolic phenotypes of homozygous
T-DNA insertion lines (KO lines) for 35 of the candidate genes.
AnalysisofKO lines isoftenused toconfirmQTL-trait associations
by identifying thegene-to-phenotype link, although it isonlyuseful
if the causal allele has a similar phenotype to the null allele. We
includedmultiple lines for a given candidate that targeted different
parts of the gene. In total, 74 KO lines were grown in parallel with
Col-0 (wild type) in conditions resembling Exp2 and analyzed for
26 metabolic traits (Supplemental Data Set 8).

Each KO line and metabolic trait was tested for deviation from
the population mean (i.e., the average level of the trait across all
74 KO lines plus thewild-type value). This approach assumes that
for most traits, the KO lines would present wild-type-like values
and that the large number of KOs (74 lines)would dilute the impact
of the few lines with an altered trait value. The wild type displayed
trait levels around the population mean, except for significantly
higher NO3

2 content and TPI activity (Supplemental Figure 3). For
21 of the 26 analyzed traits, we found one to 12 lines that differed
significantly from the population mean (Supplemental Data Set
8 and Supplemental Figure 3).

These analyses supported the choice of candidate genes for
several cis-QTL (Figure 4). A significant decrease (P < 0.05) was
observed in the targeted enzyme activity in KO lines of VAC-INV
(86–50%lower),UGP1 (75–42%lower), andAPL1 (85–82%lower)
compared with the population average (Figure 4; Supplemental
Figure 4 andSupplemental Data Set 8). An earlier coarsemapping
study with a Ler x Cvi recombinant inbred line (RIL) population
provided further validation for the cis-QTL atVAC-INV,UGP1, and
SISbutdidnotdetect theQTL forAGPactivity atAPL1 (Keurentjes
et al., 2008). The impact of a fum2KOonMal and Fumcontent has
also been previously documented (Pracharoenwattana et al.,
2010; Brotman et al., 2011). Attempts to obtain homozygous KO
lines for pMDH/AT3G47520 have failed (Selinski et al., 2014),
possibly due to the essential function of this enzyme.

These analyses also supported candidate genes selected for
several trans-QTL. One was the association between NO3

2

content and LBD37 that, as already mentioned, is involved in the
regulation of nitrate metabolism (Rubin et al., 2009). The QTL
for MDH and GDH activities and Mal content on Chr3 was nar-
rowed down to a SMAD/FHA domain-containing protein (FHA2/
AT3G07220). The most significantly associated SNPwas located
between AT3G07220 and AT3G07230. In an initial experiment
using lineswithT-DNA insertions inAT3G07220andthe intergenic
region, the latter displayed significantly higher values for all three
traits (Figure 4). In the second experiment, the wild type and lines
with T-DNA insertions in the intergenic region and an intron of

AT3G07220 and in the 59UTR (untranslated region) ofAT3G07230
were harvested at dawn (EN) and dusk (ED) to obtain information
for diurnal changes in Mal levels (Supplemental Figure 5A). As
enzymeactivities show little diurnal change (Gibonet al., 2004b),
GDH and MDH activities were evaluated for the combined time
points. Significant changes (P < 0.05) were detected for Mal
levels and MDH activity for the KO line targeting the intron
of AT3G07220, but not for the line targeting the 59UTR of
AT3G07230 (Supplemental Figure 5B). The intergenic T-DNA
insertion line confirmed the higher Mal level detected in the
first experiment but did not show significant changes for MDH
activity, possibly because fewer biological replicates were an-
alyzed. GDH activity was not significantly altered (Supplemental
Figure 5B). Together, these results suggest that Mal levels and
MDH and GDH activities might be direct or indirect targets of
FHA2.
The phenotypes of KO lines targeting IQD22 supported the

contribution of this calmodulin binding familymember to variation
inFru levels. In the initial experiment, oneof twoKO linesdisplayed
a significant increase in Fru and decrease in Suc levels (Figure 4)
and, while starch levels were not changed, the starch:Suc ratio
was higher than in the wild type. In the second experiment, we
analyzed three additional homozygous iqd22 lines together with
thepreviously identified functionalKOand thewild type.Almost all
iqd22 lines displayed a significantly higher starch:Suc ratio and
a trend toward lower Suc than the wild type, although no signif-
icant differences couldbedetected (Supplemental Figures 6Aand
6B). Fru contents were at the limit of detection in this experiment,
preventing testing for line-specific differences. In addition to the
metabolic phenotype, we noted that the leaf initiation rate was
increased and flowering time (expressed as total leaf number) was
significantly earlier in iqd22 lines compared with the wild type
(Supplemental Figures 6C and 6D).
The analyses of KO lines also supported the association of

MSL10 with starch, Suc, and Glc content. In the KO panel,msl10
displayedsignificantly higher levels ofGlcandFruand lower levels
ofSuc (Figure4). To further testwhetherMSL10hasa role in starch
regulation, Col-0, msl10, and an overexpressor line (Pro35S:
MSL10, termed OEX) were grown in a 12-h photoperiod and
harvested every four hours over the 24-h cycle (Supplemental
Figure 7). In thewild type, starch accumulated in a linearmanner in
the light period, degraded in a linear manner at night, and was
almost (but not completely) exhausted at dawn, as typically ob-
served (Stitt and Zeeman, 2012). The OEX line synthesized starch
more quickly thanCol-0, reaching amaximum at ZT = 8 (P < 0.05),
andmsl10 exhibited slower starch degradation at the beginningof
the night (P < 0.05; Supplemental Figure 7).

KO Lines ugp1, vac-inv, and apl1 Exhibit Seed
Abortion Phenotypes

The ugp1, vac-inv, and apl1 KO lines did not exhibit any obvious
change in rosette biomass or morphology during vegetative
growth compared with the wild type (see also Meng et al., 2009;
Leskowetal., 2016).Seedset is known tobeespeciallydependent
on metabolism (Lauxmann et al., 2016), and this trait was previ-
ously reported to be impaired in the double ugp1 ugp2 mutant
(Meng et al., 2009; Park et al., 2010). The ugp1, vac-inv, and apl1
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KO lines displayed shorter and aborted siliques (Figure 5A) and
a significant increase in seed abortion (P < 0.05; Figure 5B) in long-
day conditions (16-h photoperiod) comparedwithwild-type plants.
This phenotype was significant in all three sectors of the stem for
apl1 and ugp1, but only in the rosette leaf branches for vac-inv.

ACCELERATED CELL DEATH6 Modulates Central
Metabolism in a Pleiotropic Manner

As noted, many QTL explained variation in multiple traits. The
most extreme case was amultitrait QTL for six enzyme activities
(aINV, nINV, cPGI, tPGI, fumarase, and GDH), three metabolites
(G6P,AA, andFum), Prot, andFWdetected inChr4 (Table 2). This
locus covered 68.2 kb and contained 24 genes in strong LD
(Figure 6), 10 of which showed associations in GWAS. We as-
sessed seven of these 10 genes using 14 homozygous KO lines
(Figure 4). Significant changes in individual traits were found for
KO lines targeting AT4G14368/SALK_006734, AT4G14420/
SALK_018752, and AT4G14440/SALK_012852 (Figure 4). The
most striking and significant changes in multiple traits were
found for SALK_059132, which targets ACCELERATED CELL
DEATH6 (ACD6)/AT4G14400.

ApreviousQTLmapping study in aCol-0 x Est-1RIL population
identified the Est-1 allele of ACD6 as causal for slower leaf ini-
tiation, necrosis and decreased biomass (Todesco et al., 2010).
Est-1 and Est-1-like accessions carry a “hyperactive” ACD6
allele, while Col-0 and Col-0-like accessions carry a so-called
“reference” allele. These studies also showed that three non-
synonymous changes in the C-terminal transmembrane domain
of ACD6 are responsible for the phenotypic differences between
alleles. The insertion in the SALK_059132 KO line interrupts the
last exon of ACD6, which encodes this transmembrane domain.
Our GWAS detected eight highly associated SNPs nearACD6.

Five of them showed significant LD (r2 > 0.2, P < 0.01) and were
associated with more than one metabolic trait (Figure 6A;
Supplemental Data Set 5). These five SNPs define 13 haplotypes,
only two of which occur at a frequency above the detection
threshold for GWAS (minor allele frequency $0.05). The CTTTT
haplotype is found in Col-0 and occurs more frequently (0.80,
280accessions),while theACGAGhaplotype is found inEst-1and
occurs at a moderate frequency (0.05, 19 accessions). According
to the allelic effect for these SNPs, the metabolic trait values are
predicted tobe lower inaccessionswith theCTTTThaplotype than
in accessionswith theACGAGhaplotype, except for FumandFW,

Figure 4. Analysis of KO Metabolic Profiles for Selected Candidate Genes.

Wild-type plants (Col-0 N6673, six biological replicates, each of three plants) and 74 KO lines (three biological replicates per line, each of three plants) were
grown inacomplete randomizeddesign in thesameconditionsas inExp2.Full rosetteswereharvested28DASat theendof the lightperiod.Trait valueswere
z-score normalized across the values for all genotypes in the KO panel and plotted as a heat map. KOs are ordered vertically according to chromosome
locationandT-DNA insertionposition in thegene.Measured traits areorderedaccording to the threecategories: structural components (black),metabolites
(white), and enzyme activities (gray). The trait(s) for which KO lines were selected and the locus targeted are stated at the left and right side of the heat map,
respectively. EachKO linewas comparedwith the average behavior of wild-type and all 74 KO lines, and significant differences (P < 0.05) are indicatedwith
an asterisk. This figure shows selected KO lines. A complete overview of all KO lines is provided in Supplemental Figure 3, and all data are provided in
Supplemental Data Set 8. Further experiments to validate cis-QTL for enzyme activities are provided in Supplemental Figure 4, for the colocalized QTL for
MDH,GDH, andMal levels atFHA2 in Supplemental Figure 5, for theQTL for Fru at IQD22 in Supplemental Figure 6, and for theQTL for starch and sugars at
MSL10 in Supplemental Figure 7.
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whichshouldbehigher. Inagreementwith thesepredictions,across
our panel of 349 accessions, the mean trait values for accessions
with theCTTTTandaccessionswith theACGAGhaplotypediffered
significantly in the expected direction (Supplemental Figure 8A).

Published sequence information (Todesco et al., 2010) for 46 of
the accessions in our panel allowed us to classify 15 of them as
Est-1-like and 31 as Col-0-like accessions. The mean trait values
for these sequence-verified classes showed similar directional

variation to that found when the complete population was clas-
sifiedbasedon theCTTTTandACGAGhaplotypes (Supplemental
Figure 8B). The only exception was fumarase activity, which
showed a similar trait mean in both groups of accessions. While
thismight indicate that fumarase activity is regulated by adifferent
gene in thesupport region, it is alsopossible that in this small setof
accessions, the effect of ACD6 on Fum activity is masked by the
strong cis-QTL at FUM1/AT2G47510.

Figure 5. Importance of cis-QTL in Reproductive Growth.

(A) Silique abortion phenotype observed for apl1, ugp1, and vac-inv grown in a 16-h photoperiod. Silique abortion was scored in main stem (red arrow),
cauline-leaf branches (yellow arrows), and rosette branches (blue arrows) separately. Bar = 1 cm.
(B)Numberofnonaborted (black)andaborted (gray) siliqueson themainstem,cauline-leafbranches,and rosettebranches (mean6SD,n=3plants).ANOVA
analysis was performed separately for nonaborted (lowercase letters) and aborted (capital letters) siliques.Meanswith a common letter are not significantly
different (P < 0.05).
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As the hyperactive ACD6 allele is carried by Est-1, we in-
vestigated the metabolic phenotypes of two knockdown lines in
the Est-1 background (Est-1amiR.19 and Est-1amiR.20). At both
dusk (ED) and dawn (EN), these lines showed a significant de-
crease in all six enzyme activities (aINV, nINV, cPGI, tPGI, fu-
marase, andGDH),AA,G6P, andProt, andasignificant increase in
Fum and biomass (FW and dry weight) compared with the Est-1
wild type (Supplemental Figure 9). We also examined a dominant
gain-of-functionmutant forACD6 in theCol-0 background (acd6-1).
This mutant was obtained by EMSmutagenesis (Rate et al., 1999)
and exhibits elevated defense responses, patches of dead cells,
and reduced growth, resembling, although stronger, the pheno-
type of the Est-1ACD6 allele. Themetabolic phenotype of acd6-1
showed many similarities to accessions with the ACD6 Est-1 like
allele, including significantly higher enzyme activities (nINV, cPGI,
tPGI, and GDH) at ED and a significant decrease in biomass (FW
anddryweight) (Supplemental Figure 10). In contrast, AA andProt
did not change consistently, and Fum increased rather than de-
creased.
In summary, the allelic effect of the minor Chr4 haplotype

(ACGAG)matches the effect of the Est-1ACD6 hyperactive allele.
Furthermore, the metabolic phenotype of Est-1 knockdown lines
andof theacd6-1mutantare in linewith the idea that theChr4-QTL
is driven by a change from an ACGAG to a CTTTT haplotype.
These observations support the hypothesis that genetic variation
at ACD6 is the causal factor underlying the pleiotropic metabolic
QTL onChr4 and indicate thatACD6 is amajor modulator of plant
growth, central metabolism, and plant defense.

Dissection of the cis-QTL at UGP1

We analyzed the strong cis-QTL at UGP1 to gain insights into
gene evolution. UGP1 accounts for ;75% of total UGP activity
(Supplemental Figure 4). Earlier studies using the Ler x Cvi RIL
population detected a UGP activity QTL in a genomic region
containing UGP1 and an expression QTL (eQTL) for UGP1
(Keurentjes et al., 2008). In our GWAS, the most strongly as-
sociated SNPs were located ;1 kb (m81737, TAIR10 position
748476, LOD1 = 8.6) and 3 kb (m81730, TAIR10 position 746513,
LOD2 = 12.5) downstream of the UGP1/AT3G03250 coding
sequence. LD analysis over a 26.8-kb region surrounding the
UGP1 gene revealed an 11-kb LD block containing three genes,
AT3G03240, AT3G03250/UGP1, and AT3G03260 (Figure 7A),
and revealed that m81737 andm81730 are in strong LDwith two
SNPs located 206 and 1272 bp upstream of the ATG start codon
ofUGP1 (m81749, m81750; r2 > 0.8, P < 0.001; Figure 7A). Using
these four SNPs, we defined 11 haplotypes (Figure 7B).
Most of the trait variation was accounted for by a major high-

activity haplotype (CTCG, frequency = 0.66, carried by Cvi) and
amajor low-activity haplotype (ACAA, frequency=0.28, carriedby
Ler). Twominor haplotypes (CTCA andCTAA, frequency = 0.006–
0.023) showed slightly but not significantly higher UGP activity

Figure 6. Analysis of the Multitrait QTL on Chr4.

(A) Haplotypes for Col-0 and Est-1 obtained with the five SNPs in high LD
on Chr4 (QTL 56; Table 2; Supplemental Data Set 5). The eight SNPs
significantly associated (FDR < 0.1) with QTL 56 are shown. SNPs close to
ACD6 are highlighted in red andmarked along the figurewith vertical black
dashed lines.
(B) Manhattan plot for the 68.2 kb where the QTL 56 was detected for
11 traits. LOD $ 3 for different traits and different experiments are color-
and symbol-coded (legend at right). The horizontal line shows FDR= 0.1 at
LOD = 4.8.
(C)Genomicstructure in the regioncoveredbyChr4-QTL.Genesarescale-
depictedwithgrayarrows indicating theorientation.AGIcodes for candidate

genesselected for validation are shown in black andACD6 =AT4G14400
is shown in red.
(D) Heat map of LD between the eight SNPs called in (A)measured as the
partial coefficient of correlation (R2, scale included in the panel).
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Figure 7. cis-QTL for UGP Activity on Chr3.

(A)Manhattan plot for cis-QTL detected for UGP activity on Chr3. LOD for Exp1 (red) and Exp2 (black) are shown against the genome position of the SNP.
FDR= 0.1 threshold (LOD=4.8) is indicatedwith a horizontal dashed line. LD is depicted as a heatmap of the coefficient of correlation (R2, scale included in
the panel). An LDblock (0.8 >R2 > 0.2, P < 0.001)was identified including the highest LODSNPs (m81737 andm81730 for Exp1 andExp2, respectively) and
extending over three genes (AT3G03240,UGP1/AT3G03250, and AT3G03260). Two SNPs (m81749 and 81750) upstream of the ATG ofUGP1 are in high
LD with m81730 and m81737. Main haplotypes for the four polymorphisms are depicted at the top of the panel.
(B)UGPaverage activity fromExp1 andExp2 plotted against the haplotypes defined by the four SNPsmentioned in (A). The frequency of each haplotype is
indicatedbelow thepanel. Themajor haplotypesACAA (lowactivity, red) andCTCG (highactivity, gray) are significantlydifferent (***P<0.001) andaremainly
responsible for the trait variation observed inGWAand in Ler xCvi RIL population (Keurentjes et al., 2008). Fourminor haplotypes defined bymore than two
accessions were also identified.
(C)PhylogeneticanalysisofUGP1LDblockusing164sequencedaccessions.Themajor haplotypesdefined in (B)areseparated in theneighbor-joining tree
using a shared allele distancematrix. Every accession is depicted as a small colored circle according to the haplotype; accessionswith four different unique
haplotypes are in black. Themost common accessions are listed: Col-0, Cvi, Ler, and C24. Percentages for bootstrap values (1000 pseudo-replicates) are
shown only for the groups discussed in the text.
(D) Tajima’sD value in slidingwindows for theUGP1 LD block. TheUGP1 gene location and orientation is depicted. Significantly high Tajima’sD values are
marked with asterisks (*P < 0.05).
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than the major high-activity haplotype, and twominor haplotypes
(ACAGandCCCG, frequency=0.020–0.006) showed lowactivity,
although still higher than the major low-activity haplotype (Figure
7B). Five other haplotypes were restricted to single accessions.
Full sequence information for 164 accessions (http://signal.salk.
edu/atg1001/3.0/gebrowser.php) was used to investigate if lines
carrying the minor high-activity haplotypes (CTCA and CTAA) are
moresimilar to themajorhigh-or themajor low-activityhaplotypes
(Supplemental File 1). A neighbor-joining tree obtained from
shared allele distance was generated using all polymorphic in-
formation (i.e., all SNPsand indels; Figure7C).All linescarrying the
major high-activity CTCG haplotype grouped in a unique branch
(I; Figure 7C). The major low-activity ACAA haplotype was dis-
tributedbetween twodistinct andwell supportedgroups (II and III).
Group II also contained members of a very similar minor low-
activity haplotype (ACAG).Asub-branchofGroup III contained the
minor high-activity haplotypes CTCA and CTAA. This analysis
indicates that the minor high-activity haplotypes derive from the
major low-activity haplotype.

We computed Tajima’s D (Tajima, 1989) in sliding windows
for the 164 sequenced accessions to assess the neutrality of
mutations along the LD block (Figure 7D). A high Tajima’s D in-
dicates that polymorphisms are evolving in a non-neutral manner.
Tajima’s D was significantly positive (D = 2.06, P < 0.05) in two
regions: 1000 to 1500 bp upstream of the start codon and down-
streamofAT3G03250, aroundm81730andm81737.Thissuggests
coevolution of the upstream and downstream regions, with
a probable hitchhiking effect on the entire AT3G03250 gene.

Dissection of the cis-QTL at VAC-INV

VAC-INV accounts for up to 86%of total aINVactivity (Supplemental
Figure4).ThemostsignificantlyassociatedSNP(m7011)waslocated
1122 bp upstream of the start codon (Figure 8A). The two alleles
present at m7011 are evenly distributed in the population (C fre-
quency=0.51,T frequency=0.49),andCdisplayshigheractivity than
T (P < 0.001; Figure 8B). Curiously, aINV activity coarse-mapped to
VAC-INV in the Ler x Cvi biparental RIL population (Keurentjes et al.,
2008), even though these two accessions are not polymorphic for
m7011. This led us to search for further causal polymorphisms.
Another SNP in the promoter region, m7010, showed moderate to
highassociationwith aINVand is in significant LDwithm7011 (Figure
8A). ThisSNP ispolymorphicbetweenCvi (A) andLer (G)withAallele
in higher frequency (0.65) and having higher aINV activity (Figure 8C).
Three additional SNPs in exon 3 (m7017, m7018, and m7019) and
a SNP in intron 3 (m7020) showedmoderate to high associationwith
aINV activity. SNPsm7017-20 are in extreme LD to each other (LD >
0.8, P < 0.001). Only two haplotypes are represented by more than
three accessions, with the TCTT haplotype (frequency = 0.64, Cvi)
showing higher activity than the CTCG haplotype (frequency = 0.34,
Ler) (Figure 8D). Based on SNP data alone, there was no strong LD
betweenm7011 orm7010 and them7017-20 block. However, when
LD analysis was repeated using full-genome sequence data from
164 accessions, we uncovered LD between m7010, the m7017-20
block, and another three nonsynonymousSNPs (C/G, C/A, andA/C)
in the fourth and the fifth exons of VAC-INV (Figure 8E). Using these
nine SNPs, we defined 18 haplotypes, including six that occur at
a frequencybetween0.06and0.29, threethatareveryrare (frequency

0.01–0.03), and nine that are unique. When we inspected the hap-
lotypes with frequency $0.05 (Figure 8F), haplotypes carrying op-
posite alleles for all nine SNPs (ACTCTTCCA versus GTCTCGGAC)
showed aINV activity differing significantly for Exp1 (P < 0.001) and
marginally forExp2 (P=0.06), suggesting that thesehaplotypesdrive
GWAS. The other haplotypes with mixed effect alleles showed, as
expected, intermediate values. The observation that the SNPs in the
haplotype block are not homogeneously linked indicates that vari-
ation in VAC-INV might be a result of multiple evolutionary events,
each associated to one or a few SNPs.

DISCUSSION

GWAS has become a standard procedure for dissecting complex
genetic traits, with proven success in plants (Meijón et al., 2014;
Dubin et al., 2015), but it has only occasionally been applied to
plant primary metabolism (Zhang et al., 2015; Wu et al., 2016).
Here, we produced a comprehensive, highly definedQTL data set
for plant central metabolism. We used this data set to explore
the importanceofcis-and trans-regulationof enzymeactivity, to
investigate whether genetic regulation contributes to the highly
coordinated network structure of primary metabolism and to
dissect genetic factors that underlie trait variation at the major
pleiotropic locus ACD6 and the structural genes UGP1 and
VAC-INV.
The heritability values obtained in our analysis resemble those

in previous studies of metabolic traits in Arabidopsis, tomato
(Solanum lycopersicum), andwheat (Triticumaestivum) (Kliebenstein
et al., 2001a; Keurentjes et al., 2006; Toubiana et al., 2012;
Alseekhet al., 2015;Matros et al., 2017). Broad-senseheritability
(H2) for biomass, structural components, metabolites, and
several enzyme activities (aINV, nINV, PEPC, AGP, UGP, NRVs,
andGDH)wasmoderate to high (20–74%),withmarker-basedh2

(Kruijer et al., 2015) very close to H2 values. This indicates that
additive genetic variation is the main source of phenotypic
variation and that epistasis does not play a substantial role in the
variation of these traits. The other enzyme activities showed low
(<20%) or very low (;0%) H2. Low heritability can be due to
complexity of the trait, environmental variation, experimental
error, and/or substantial GxE (Flint-Garcia et al., 2005). For
enzymes with low to very low H2, within-line variation was very
high in one or both experiments (Supplemental Figure 1D). For
some enzymes, like FBP, GK, fumarase, and G6PDH, this was
partly due to technical noise, but for others (e.g., FK, nINV,
mRUB, and TK), it may reflect between-plant variation. Although
QTLdetection for theseenzymesmightbe improvedby including
more biological replicates, this would substantially increase the
requirements for growth space and analytic time.
The proportion of traits for whichQTLwere detected resembles

those of previous studies. In two independent experiments,
12 (37%) and 24 (67%) of the 36 scored traits showed statistically
significant associations (LOD$ 5.5, FDR control of 5%), while in
earlierGWASonprimarymetabolism, associationswere detected
for 38% of all annotated metabolites (Wu et al., 2016).
Environmental variation can be controlled in GWAS by phe-

notyping the population in multiple trials, as has been done in
metabolite-GWASformaize (Riedelsheimeretal., 2012;Wenetal.,
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2014; Liu et al., 2016) andArabidopsis (Chan et al., 2010a, 2010b).
Weperformed twoexperimentswith plants at different ages under
slightlydifferentphotoperiods.Plantmetabolism issubject toage-
or plant-size-dependent effects (Geronimo and Beevers, 1964;
Meyer et al., 2007) and is modified in response to environmental
changes such as photoperiod (Graf et al., 2010; Sulpice et al.,
2014; Yang et al., 2016). These factors modified the metabolic
network, as shown by the differing correlation networks in the

two experiments (Figure 1; see also Sulpice et al., 2013) and
a weakening of correlations in the cross-experiment comparison.
Furthermore, the activities of some enzymes, such as FK, GK,
G6PDH, FBP, fumarase, and SPS, showed high plasticity. These
results indicate that the coordinated response of metabolic trait
values across accessions is partly driven by coordinated re-
sponses to environmental or developmental cues (see below
for further discussion). Nevertheless, we were able to identify

Figure 8. cis-QTL for aINV Activity on Chr1.

(A)Manhattan plot for the genomic region onChr1where the cis-QTLwas detected for aINV activity. LOD for Exp1 (red) and Exp2 (black) are shown against
the genome position of the SNP. FDR = 0.1 at LOD = 4.8 is shown with a horizontal dashed line. High-LOD SNPs discussed in the text are indicated. Gene
arrangements including VAC-INV are depicted with arrows. LD is shown as a heat map of the coefficient of correlation (R2, scale included in the panel).
(B) to (D)Average aINV activity fromExp1 and Exp2 plotted against the alleles at SNPsm7011 (B), m7010 (C), andm7017-20 (D). Significant differences in
aINV activity were checked using t test (***P < 0.001).
(E) VAC-INV gene structure and LD heat map for the LD block marked in (A), using the complete sequence information for 164 accessions. Three
nonsynonymous SNPs in VAC-INV coding sequence that are in LD with the associated SNPs highlighted in (A) are displayed. Significant values of LD are
shown, and values between the nine SNPs of interest are given in red.
(F) The nine SNPs displayed in (E) generate sixmajor haplotypes (frequency > 0.05). The average aINV activity from Exp1 and Exp2 for a given haplotype is
plotted, showing opposing haplotypes from left to right.
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70 QTL shared between the two experiments. These QTL pre-
sumably reflect genotype-phenotype relationships that are rela-
tively robust against small changes in photoperiod or plant age.

We identified these QTL using a threshold of LOD $ 3 in both
experiments. Even though the incidence of false positives may
increaseat this low threshold, previousfindings indicate thatmany
causal loci are excluded by the stringent Bonferroni-corrected
thresholds (Kooke et al., 2016). We detected robust QTL for
19 (63%) of the 30 scored traits. Our failure to detect QTL for the
remaining traits is in line with earlier studies, which have shown
that proven causal allelic variation sometimes associates only
weakly with variation in quantitative traits. The FLOWERING
LOCUS C (FLC) illustrates this scenario. Although this locus is
strongly involved in the regulation of flowering time, Atwell et al.
(2010) found only weak associations to a few of the surrounding
SNPs,andnosignificantlyassociatedSNPswithin theFLCcoding
region.

The individual cis-QTL explained on average 7.2% of the total
inherited variation for the linked trait, with the highest value for the
cis-QTLatUGP1 (16.7%). These values are lower than in an earlier
QTL analysis in a biparental Ler x Cvi population (Keurentjes et al.,
2008), in which a putative cis-QTL for UDPG content explained
65%, and tentative cis-QTLat aPGMstructural geneandatUGP1
explained 56% and 37% of total variation, respectively. This
difference may partly reflect the increased genetic diversity in
a GWA panel, which dilutes the effect of any one single poly-
morphism. In our GWAS, individual trans-QTL explained 5.1% of
total variation and, although individually low, the summed trans-
QTL for Fum, Mal, and aINV activity explained more than 30% of
the total variation in these traits (Supplemental Data Set 7). The
failure todetectQTL for some traits and the lowexplanatorypower
of individual QTL may be due to additional factors such as plei-
otropy, epistatic interactions, trait complexity, and the quality of
the phenotypic data (Oraguzie, 2007). In addition, some of the
missing heritability may be due to allelic heterogeneity (i.e., the
presence of multiple alleles at one locus influencing a trait) (Wood
et al., 2011).

cis-QTL in Structural Genes Encoding for Enzymes

We applied GWAS to a large set of enzymes involved in central
metabolism, extending earlier studies that used biparental pop-
ulations or addressed single individuals or a small number of
enzymes (Keurentjes et al., 2008; Brotman et al., 2011). Our
analysis provides strong evidence that natural variation in central
metabolism is partly due to cis-variation in enzyme structural
genes. These represented the strongest individual QTL detected
in our diverse panel (see above).

Themodeof regulation varies fromgene togene. For instance, it
is likely that the strong cis-QTL at UGP1 (LOD = 12.5, effect size
16.7%; Figure 7) is the result of variation in UGP1 expression,
driven by different UGP1 alleles. This conclusion is supported by
the following: the identification of SNPs in the UGP1 promoter
(m81749 and m81750) associated with high and low activity, the
strong correlation between the two major haplotypes and UGP
activity, and the results of a previous study in a biparental pop-
ulation that indicated that a cis-eQTL for UGP1 affects UGP ac-
tivity (Keurentjes et al., 2008).

We detected a strong cis-QTL for aINV activity at VAC-INV
(LOD = 7.7, effect size 10.2%; Figure 8). Earlier studies using
a Ler x Cvi population coarse-mapped an INV activity QTL
(Sergeeva et al., 2006) and a weak cis-eQTL to this genomic
region (Keurentjes et al., 2008). However, subsequent studies on
isogenic lines derived from a Ler x Cvi cross did not detect
differences in expression between the two putatively causal
alleles, and theauthorsproposed thatdifferences in theVAC-INV
coding region are responsible for the activity QTL (Leskow et al.,
2016). Our analyses show that aINV activity variation is not only
due to Ler and Cvi alleles, but also to other polymorphisms in
the promoter and the coding region. These findings point to
a combined contribution of multiple evolutionary events, with up
to nine SNP haplotypes explaining the allelic effects in our GWA
population (Figure 8).
The cis-QTL for AGP activity is probably the result of non-

synonymous SNPs in the gene encoding the catalytic APL1
subunit. APL1 is the most highly expressed member of a small
gene family that encodes the regulatory subunit of AGP (Ballicora
et al., 2004).
Plastid and cytosolic PGI activity are controlled by different

genes (Kunz et al., 2014). We detected a cis-QTL for cPGI activity
at SIS/AT5G42740. A QTL for PGI activity and a weak eQTL were
previously coarse-mapped to this genomic region in a Ler x Cvi
population (Keurentjes et al., 2008). Although not validated across
experiments, pPGIactivitywasassociatedveryweaklywithaSNP
located in the genomic region of PGI1/AT4G24620.
Acis-QTLfor fumaraseactivityassociatedwithFUM1/AT2G47510,

which encodes mitochondrial fumarase (Pracharoenwattana et al.,
2010). While the strongest SNPs were located upstream of the
coding region, SNPs were also detected in the coding region.
The Arabidopsis genome also contains a gene encoding a cy-
tosolic fumarase (FUM2). FUM2 is associated with Fum andMal
content. This finding is in agreementwith earlier coarse-mapping
in a biparental population (Lisec et al., 2008) and analyses of
metabolite levels in fum2 mutants (Pracharoenwattana et al.,
2010; Brotmanet al., 2011). Recently, aQTL forFUM2was linked
to a large insertion in the promoter of this gene in C24-like ac-
cessions (Riewe et al., 2016). TheSNPs associatedwithFUM2 in
our GWA population are in high LD with the indel (insertion/
deletion) identified by Riewe et al. (2016). We did not detect
fumarase activity QTL at FUM2. This might be masked by the
cis-QTL at FUM1, which encodes the majority of the fumarase
activity in Arabidopsis (Pracharoenwattana et al., 2010). Al-
ternatively, fumarase activity might be modified in a manner
that our standardized assays do not detect (e.g., via a change in
substrate affinity). The vast majority of theMal and Fum in plant
cells is located in the vacuole (Krueger et al., 2011; Arrivault
et al., 2014). The lack of effect of the FUM1 enzyme activity QTL
on the levels of these metabolites, and the association of Mal
and Fum metabolite QTL with FUM2, indicate that cytosolic
fumarase determines the vacuolar levels of Mal and Fum.

Evolutionary Implications of Variations in Structural Genes
for Enzymes

Some enzymes are encoded by single genes and others by small
gene families. Some of the cis-QTL detected in our studymapped
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to single genes, for example, mitochondrial fumarase, cytosolic
fumarase, and cytosolic PGI (FUM1,FUM2, andSIS). On the other
hand, UGP is encoded by two genes (UGP1 and UGP2) (Meng
et al., 2008), APL1 is one of four members of a gene family for the
regulatory subunit of AGP (Ballicora et al., 2004), and VAC-INV is
one of four annotated acid invertases (Tymowska-Lalanne and
Kreis, 1998). This raises the question of why multiple genes are
retained; do they confer an advantage or are they just remnants of
earlier whole-genome or local duplications?Moderate changes in
enzyme abundance usually have little effect on pathway flux
(Kacser and Burns, 1973; Fell and Thomas, 1995; Schuster et al.,
1999), includingflux inplantcentralmetabolism(StittandSonnewald,
1995; Stitt et al., 2010). This indicates that multiple gene copies are
sometimes superfluous, at least under the conditions used in
laboratory experiments. On the other hand, in some cases, mu-
tations in individualmembersofenzymegene families result inclear
phenotypes, including VAC-INV in Arabidopsis (Sergeeva et al.,
2006). We therefore combined information about enzyme activity
variation in our large association panel with public domain infor-
mationonwhole-genomesequences to explore recent evolution at
two loci where we detected strong cis-QTL.

The variation in UGP activity is mainly due to the presence of
a high activity (CTCG) and a low activity (ACAA) haplotype (Figure
7). One explanation for themaintenance of the latter at a quite high
frequency would be that overall UGP activity is in excess. How-
ever, our analyses indicate that balancing selection is acting to
maintainboth thehighand lowactivityhaplotypes (Figure7D).This
effectmight be partly a consequence of selection onUGP2, which
also contributes to total UGP activity (Meng et al., 2009). In the Ler
x Cvi population, an UGP2 eQTL with an opposite effect toUGP1
was identified, suggesting thatUGP2 is upregulated inaccessions
in which UGP1 expression is reduced. Our GWAS did not detect
a QTL at UGP2, probably because the effect was much smaller
than the QTL at UGP1. Earlier studies in a biparental population
indicated that theeffectofaQTLofUGP2 isonly20%thatofUGP1
(Keurentjes et al., 2008). The idea of balancing selection is also
supported by the detection of two very low frequency haplotypes
(<<0.05,CTCAandCTAA) thathaveslightlyhigheractivity than the
major high-activity haplotype (CTCG) but are phylogenetically
more similar to the major low-activity haplotype (ACAA). The rare
high activity haplotypes presumably result from allele variation
that compensates for the low activity in accessions carrying
ACAA. Interestingly, these haplotypes are present in geo-
graphically distant accessions and did not propagate further in
the population, supporting the idea that evolutionary forces are
maintaining UGP activity within a certain range.

Invertase plays a key role in sucrose import and allocation.
Although there are several acid invertase genes, two biparental
studies (Sergeeva et al., 2006; Keurentjes et al., 2008) and our
GWASdetectedonlyonecis-QTLforaINVactivity,which isalways
associated with VAC-INV. We might have missed other cis-QTL
because VAC-INV encodes much of the total aINV activity and
because some aINV genes are expressed in specific tissues or
developmental stages (Tymowska-Lalanne and Kreis, 1998).
Nevertheless, thestrongcis-QTL, togetherwith thefinding that the
variance in aINV activity is probably due to many independent
events, point to the importance of the genetic regulation of VAC-
INV. Furthermore, we detected many trans-QTL for aINV activity.

Irrespective of whether they act on VAC-INV or on other members
of the family, their frequency further underlines the importance of
the genetic regulation of acid invertase.
Sergeeva et al. (2006) reported a root extension phenotype in

vac-inv, and Leskow et al. (2016) reported reduced inflorescence
biomass for several VAC-INV alleles, pointing to its general role in
vegetative and reproductive growth. Nomarkedphenotypes have
been reported for ugp1 or for apl1 in long days. This raised the
question of whether these cis-QTL carry any disadvantages. A
short period of darkness leads to a shortfall in carbon supply, seed
abortion, and shorter siliques in Arabidopsis (Lauxmann et al.,
2016), indicating that seed set is sensitive to perturbations in
central metabolism.We found seed abortion phenotypes not only
for vac-inv but also for ugp1 and apl1 (Figure 5). Defective seed
development was also reported in Arabidopsis pMDH/pmdh
heterozygotes (Selinski et al., 2014), which in our GWAS asso-
ciated with Mal content. Mal content and MDH and GDH activity
associated with FHA2, and fha2mutants exhibit an altered silique
phenotype (Ahn et al., 2013). These various studies all point to
seed set being especially sensitive tominor lesions inmetabolism
that have little effect at other stages in the plant’s life history.

Metabolic Regulation by trans-Regulation

Our GWAS detected many more trans-QTL (80) than cis-QTL (8).
This resembles earlier findings from studies using biparental
populations (Keurentjes et al., 2008). Enzymes, like other proteins,
are subject to transcription, translation, processing, transport,
posttranslationalmodification,anddegradation.Theseprocesses
were well represented in the detected trans-QTL (Figure 3),
supporting the idea that many processes in addition to tran-
scriptional regulation contribute to the regulation of protein level.
The high number of trans-QTL and large range of functional
categories was even more striking for metabolite QTL. Only a low
number of metabolite-level QTL mapped to structural genes for
related enzymes (Table 2). This may reflect the finding that
moderate changes in individual enzyme abundance usually have
little effect on metabolic flux (see above). Interestingly, some
metabolite QTL associated with genes for transporters, high-
lighting their importance in determining metabolite levels. The
rather high proportion of trans-QTL compared with cis-QTL in our
study of enzyme activity QTL contrasts with a recent GWAS of
eQTL inpoplar (Mähler et al., 2017) inwhich thenumber ofcis-QTL
exceeded trans-QTL by a factor of four. This difference might
reflect a difference in detection thresholds, affecting the cis/trans
ratio due to dissimilarity in effect sizes of the two classes, or al-
ternatively, thestrongcontributionofposttranscriptional events to
the regulation of protein abundance.
In addition to confirming known links (e.g., LBD37 for NO3

2

levels; Rubin et al., 2009), we validated several novel trans-QTL.
We assigned aQTL inMDHandGDHactivities andMal content to
a SMAD/FHA domain-containing protein (FHA2). Members of this
family recognize a phosphothreonine epitope and are involved in
protein-protein interactions (Ahn et al., 2013). We detected a QTL
for Fru at IQD22, and experiments using KO mutants demon-
strated that IQD22 also affects Suc and the starch:Suc ratio
(Figure 4; Supplemental Figures 6A and 6B). IQD22 belongs to
a large family of IQ67-Domain (IQD) proteins, which are targets of
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plant-specific CaM/CaML (calmodulin/calmodulin-like) proteins
(Abel et al., 2005). IQD22 is repressed by gibberellic acid (GA) and
induced by the DELLA protein RGA (Zentella et al., 2007), which
inhibits GA signaling and restricts plant growth (Silverstone et al.,
1998). Our results indicate that IQD22 regulates carbohydrate
allocation during GA-induced expansion growth, possibly to
provide osmolytes or energy to support growth.

We detected and validated a QTL colocalized for starch, Suc,
andGlc content atMSL10 (Figure 4; Supplemental Figure 7). MSL
familymembers act as osmotic safety valves to release osmolytes
under increasedmembrane tension (MaksaevandHaswell, 2012).
These proteins have been implicated in pollen development
(Hamilton et al., 2015), osmotic regulation in plastids (Wilson et al.,
2016), redox homeostasis in mitochondria (Lee et al., 2016), and
cell death (Veley et al., 2014). The link between MSL10, sugars,
and starch metabolism might be related to osmotic and turgor
regulation.

Pleiotropic Regulation of Primary Metabolism

Metabolic traits show strong connectivity in biparental mapping
lines and GWA panels (see Introduction). As mentioned above,
network structure is altered by relatively small changes in growth
conditions (Figure 1; see also Sulpice et al., 2013), indicating that
connectivity is partly due to the coordinated regulation of me-
tabolism bymetabolic, environmental, or developmental cues. To
determine if genetic regulation alsocontributes to theconnectivity
in central metabolism, we searched for pleiotropic loci at which
several metabolic QTL colocalize.

We detected 14 genomic regions with colocalized QTL for
enzyme activities, metabolite levels, structural components, or
biomass. This result supports the hypothesis that coordinated
genetic regulation contributes to the strong correlation network
revealed by cross-genotype comparisons of primary metabolic
trait values (Figure 1). Colocalization of metabolic QTL is a wide-
spread phenomenonwithin both biparental populations andGWA
panels. In a biparental Col-0 x C24 population, more metabolic
QTL colocatedwith biomassQTL than expected by chance (Lisec
et al., 2008). Transcript, protein,metabolite, andplant phenotype
variation in aLer xCviRILpopulation couldbe reduced to sixQTL
hot spots that collectivelyexplainedmuchof thevariationat each
phenotypic level (Fu et al., 2009), and two of these hot spots
(VAC-INV andMAM ) were related to plant metabolism, pointing
to an important role for metabolism in defining the overall plant
phenotype.

Nonetheless, many metabolic traits did not share a QTL with
other traits. This might indicate that they are regulated in a less
concerted manner. For example, it is possible that some traits
escape integrated regulation when large-effect factors segre-
gate. However, this may also reflect the low detection power of
GWAS, as illustrated by the irregular detection of QTL in the two
replicate experiments. The colocalized QTL identified in our
GWAS also differed from those reported in a biparental pop-
ulation (Keurentjes et al., 2008). Such discrepancies may reflect
differences in allele balance between GWA and biparental
populations as well as their differing power to detect QTL. It is
also possible that some colocations reported using biparental
mapping are spurious because they are definedby large genome

intervals in which independent QTL may colocalize by chance
(Zhang et al., 2010). Specific analyses that are beyond the
scope of this study might help to improve the statistical power
to detect pleiotropic variants (Tyler et al., 2013; Tyler and
Carter, 2017).
Wevalidated threeQTLatwhichseveral traitscolocalized (Table

2): FHA2, MSL10 (see above), and a large genomic interval of
68.2 kb on Chr4 that contains 24 genes in strong LD and asso-
ciates with six enzyme activities (aINV, nINV, cPGI, tPGI, fuma-
rase, and GDH), three metabolites (G6P, AA, and Fum), Prot, and
FW.Analysesof haplotypeeffects andKO lines showed thatmany
of these associations are due to the presence of different ACD6
alleles (Supplemental Figures 8 and 9).
ACD6haspreviouslybeen linked toplantdefense,spontaneous

necrosis, and plant biomass (Rate et al., 1999; Lu et al., 2005;
Atwell et al., 2010; Todesco et al., 2010). Arabidopsis accessions
with the hyperactive Est-1-like allele of ACD6 show preactivated
defense pathways, higher pathogen resistance, and reduced
biomass compared with Col-0-like accessions (Todesco et al.,
2010). ACD6 was not previously implicated in the regulation of
central metabolism, and analyses of two biparental populations
did not identify any metabolic QTL at ACD6 (Keurentjes et al.,
2008; Lisec et al., 2008). This is probably because accessions
Ler, Cvi, C24, and Col-0 all carry the reference Col-0-like allele
(Todescoetal., 2010). ThemultitraitmetabolicQTLdetected inour
study correlated stronglywith the presenceof theEst-1-like allele.
Investment indefensemight requiremodificationofmetabolismat
the expense of rapid growth. Alternatively, higher enzyme activ-
ities might be maintained in smaller plants to sustain higher levels
of sugars, proteins, and amino acids and provide robustness
against a fluctuating or adverse environment. The reduced Fum
levels might be a result of the higher levels of AA and proteins in
accessions carrying an ACD6 hyperactive allele; cytosolic fu-
marase has been shown to play a key role in amino acid synthesis
(Pracharoenwattana et al., 2010).
The effect of the ACD6 hyperactive allele reflects the correlation

network seen for metabolic traits, with most enzyme activities,
protein, G6P, and AA being negatively correlated with biomass,
while Fum is positively correlated with biomass. This indicates that
themajormultitraitQTLatACD6makesasubstantial contributionto
natural genetic variation in central metabolism in Arabidopsis. In-
terestingly, of the accessions that have the highest protein levels
and lowest biomass in our study, many derive from locations with
strong seasonal differences (Sweden andFinland), where theymay
experience stressful situations inwhich slow growth and increased
defense might be preferred, hinting at a trade-off between plant
defense and central metabolism and growth.
In conclusion, first, we identified large numbers of enzyme

activity and metabolite QTL, cross-validated them in two in-
dependent experiments, and validated many using a large KO
panel. The strongest enzyme activity QTL mapped to structural
genes for the enzymes, but we also found many trans-QTL that
cumulatively had a larger effect than the cis-QTL andmapped to
a wide range of gene categories. Second, analysis of the vari-
ation in structural genes for enzymes uncovered complex and
dynamic evolution at these loci. Third, we found many colo-
calized QTL for different traits, pointing to coordinated genetic
regulation of central metabolism. TheQTLwith themostmarked
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effect was located at ACD6, pointing to a trade-off between de-
fense and central metabolism. Finally, the coordinated changes in
metabolic traits across mapping populations observed in this and
previous studies are partly due to coordinated genetic regulation
and partly due to coordinated responses of central metabolism to
environmental and developmental cues.

METHODS

Mapping Population

TheGWAmapping population comprised 349Arabidopsis thaliana natural
accessionsbelonging to theHapMappanel (Horton et al., 2012). This panel
was selected because the accessions maximize diversity and minimize
redundancy and close family relatedness (Baxter et al., 2010).

Plant Growth Conditions and Experimental Design for GWAS

For GWAS, two independent experiments (Exp1 and Exp2) were designed
and performed at an interval of 12 months to ensure replication and the
robustness of QTL identification. For each experiment, seeds were sown
on filter paper with demineralized water, stratified at 4°C in dark conditions
for5d,and transferred toaculture room (16-hphotoperiod,24°C) for 42h to
induce seed germination. Six plants per accession were transplanted
towet434-cmRockwoolblocks inaclimatechamber. Theyservedas two
biological replicates (three pooled plants each). Plants from the same
biological replicate were planted in consecutive (Exp1) or random (Exp2)
order, andbiological replicateswere located indifferent sidesof thegrowth
chamber. Chamber climate conditions were as follows: 10-h photoperiod
for Exp1 and 12-h photoperiod for Exp2, fluorescent light intensity
125 mmol m22 s21 with a wavelength from 380 to 800 nm (Master TL5;
Philips), temperature 20°C day/18°C night, and relative humidity 70%. All
plants were watered daily for 5 min with 1/1000 Hyponex solution. Full
rosettes were harvested after 37 DAS for Exp1 and 28 DAS for Exp2. The
harvest time was set to the end of the light period.

KO Lines and Mutants

Homozygous T-DNA insertion lines from public collections (SALK, SAIL,
GABI-KAT, and JIC) for 45 candidate genes were obtained from the
NASC (European Arabidopsis Stock Centre). In total, 102 KO lines were
ordered. Of these, three KO lines did not germinate, and other lines were
discarded because they were heterozygous (20) or could not be con-
firmed by PCR amplification (5). Seed of MSL10 OEX (Pro35S:MSL10)
were kindly provided by Elizabeth Haswell (Washington University in St.
Louis). Knockdown lines forACD6 in the Est-1 background (Est.amiR.19
and Est.amiR.20) were kindly provided by Detlef Weigel (Max Planck
Institute for Developmental Biology), and the gain-of-function mutant
acd6-1 was kindly provided in-house by Roosa Laitinen (Max Planck
Institute ofMolecular Plant Physiology). Additional homozygousKO lines
for IQD22 analyses were obtained in-house from heterozygous KO lines
ordered from NASC.

Plant Growth Conditions and Experimental Design for KO
Panel Validation

ForKOanalysis, acomplete randomizeddesign inachamberwith thesame
conditions as described for Exp2was used. Seeds andplantswere treated
as stated above. Nine plants were collected in three biological replicates
for KO lines and 18 plants in six biological replicates for wild-type plants.
Col-0 (N6673 and N1093, two different seed stocks) and Col-8 (N60000,
formerly background of SALK lines) were included as wild-type controls.
Full rosettes were harvested 28 DAS at the end of the light period.

For further experiments with the fha2, iqd22,msl10, and acd6mutants,
seedswere germinated and grown for the first week in a 16-h photoperiod,
a temperature of 20°C day/6°C night, humidity of 75%, and a light intensity
of 145 mmol m22 s21. The seedlings were transferred to a Phytotron
where the growth was continued in an 8-h photoperiod with temper-
ature 20°C day/16°C night, humidity of 75%, and light intensity of
145mmolm22 s21. After the secondweek, plants of average sizes were
transferred to 10-cm-diameter pots (five plants per pot) filled with the
same soil as for germination and grown for 4 weeks in a controlled
environment chamber (Percival Scientific) with a relative humidity 70%
and a fluorescent light intensity of 125 mmol m22 s-1with a light
spectrum as described by Annunziata et al. (2017). The temperature for
fha2, iqd22, andmsl10was set to 20°C day/18°C night and for the acd6
mutant to a constant temperature of 22°C, since acd6-1 growth is
extremely impaired at lower temperatures (Todesco et al., 2010). Three
to five pots were grown per mutant/wild type and time point. All full
rosettes from each pot were harvested and pooled together as one
biological replicate. For the msl10 experiment, plants were harvested
every 4 h starting at the end of the previous night (ZT = 0). For the fha2
and acd6 experiments, plants were harvested at dawn (ZT = 0, end of
the previous night) and dusk (ZT = 12, end of the light period). For iqd22,
harvest was only done at dawn (ZT = 0, end of the previous night).

For silique abortion and flowering time experiments with the apl1,
vac-inv,ugp1, and iqd22mutants, seedsweregerminated andgrown for
the first 2weeks as described above. After the secondweek, plantswere
transferred to 5-cm-diameter pots (oneplant per pot) filledwith the same
soil as for germination and grown in a 16 h-photoperiod in a greenhouse
with temperature between 20°C and 18°C and 60 to 80% humidity. For
each line and wild type, 25 to 35 pots of plants were grown. Flowering
time was scored as the total leaf number on the day of bolting (flower
bud ;0.5 cm) and as the leaf initiation rate (days to flower/total leaf
number). Days to flower was counted from sowing until the day of
bolting. Silique formation was followed until maturation on at least
10 plants, and the number of siliques was quantified on three plants.

Phenotyping

The traits analyzed in Exp1 and Exp2 included ChlA andChlB, total protein
(Prot), total amino acids (AA), nitrate (NO3

2), Glc, Fru, Suc, starch, G6P,
Mal, Fum, and 24 enzyme activities targeting sucrose synthesis and
degradation, starch synthesis, glycolysis, the tricarboxylic acid cycle,
Calvin-Benson cycle, pentose phosphate pathway, and NO3

2 conversion
pathway.Accessionswereweighedbefore freezingonly for Exp1 (FW), and
six enzymes were further included for Exp2 to cover nitrogen metabolism
and the Calvin-Benson cycle in more detail. In the KO panel and in further
experiments with the fha2, iqd22, msl10, acd6, apl1, vac-inv, and ugp1
mutants, only 26 traits were measured: all structural components and
metabolites but only 14 enzyme activities. For a full description of the traits
measured in each experiment, see Table 1.

Enzyme and Metabolite Assays

Biological replicates (three to six Arabidopsis rosettes each) were used for
metabolic and enzymatic assays. For each biological replicate or sample,
a technical replicate (two aliquots from the same sample extract) was
analyzed. Samples from the same experiment were measured within
2 weeks in batches of 80 or 40 per plate for metabolites and enzymes,
respectively. They were randomized within and between plates, and ref-
erence material was included in each plate to control for plate differences.
However, FBP, GK, fumarase, and G6PDH activity measurements pre-
sented high technical noise. Chemicals and enzymes for metabolite and
enzymatic assays were purchased as described by Gibon et al. (2004a).
Metabolites were extracted from 20 mg of ground frozen material. Total
protein was assayed using the Bradford method (Bradford, 1976). ChlA,
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ChlB, starch, Glc, Fru, Suc, and AA were determined by enzymatic assays
inethanolicextractsof20mgof frozenplantmaterial asdescribedbyCross
et al. (2006).Mal andFumweremeasuredasdescribedbyNunes-Nesi etal.
(2007). Assays were performed in 96-well microplates using a Janus pi-
petting robot (Perkin-Elmer). Absorbance was determined using a Synergy or
ELX-800-UV microplate reader (Bio-Tek Friedrichshall). For enzyme meas-
urements, 20 mg of powdered frozen material was extracted as described by
Gibon et al. (2004b) with the modifications introduced by Nunes-Nesi et al.
(2007).AGP,SPS, fumarase, acidicandneutral INV,GK,FK,FBP,G6PDH,and
NR were determined as described by Gibon et al. (2004b). NR activity was
measured in twoassayconditions,one (Vm) todetect total activity andone (Vs)
that contained Mg2+ to allow binding of an inhibitory 14-3-3 protein to the
phosphorylated form, allowing detection of the active dephosphorylated NR.
Rubisco was measured according to Sulpice et al. (2007). Cytosolic and
plastidic PGIwere quantified followingWeeden andGottlieb (1982). PGMwas
assayed as published by Manjunath et al. (1998) and UGP as stated by
Keurentjes et al. (2008). Enzyme activities were expressed on a fresh weight
basis (nmolg21FWmin21). Assayswereprepared in96-wellmicroplatesusing
a Multiprobe II pipetting robot equipped with a cooling block, an incubation
block set to 25°C, a shaker, and a gripper (Perkin-Elmer).

Descriptive Statistics

For GWAS, the technical replicates were used to obtain the biological rep-
licate values for each trait. Traitmeans for each accession ð�XÞwere obtained
by averaging the two biological replicates. No additional transformation was
applied. Histograms for trait values and Spearman’s rho correlation co-
efficientsweredeterminedusingInfostat (DiRienzoetal.,2011).Coefficientof
variation (CV) was calculated as SD

�X
� 100%. The phenotypic plasticity index

was calculated as (maximum 2 minimum)/maximum for each averaged
genotype in the two environments; if the genotypic value of Exp2 was larger
than Exp1, the phenotypic plasticity index was multiplied by 21.

ForKOanalysis, traitmeansforeachKOlineandthewildtypewereobtained
by averaging between two to six biological replicates. KO/wild-type com-
parisons were made using one-way ANOVA after correcting for batch noise
(Lisec et al., 2008). For all traits, Col-8 and Col-0 N1093 always showed
a skewed behavior compared with the entire population. Thus, only Col-0
N6673 was used as a wild-type control. To increase robustness, significant
differences were determined by comparing each individual line with the
populationmean (all KO linesplusCol-0N6673wild type) as a reference value.
This approach was based on the assumption that for most traits, the KO lines
wouldpresentwild-type-likevaluesandthat the largesizeof thepanel (74 lines)
would dilute the impact of the very small number of lines inwhich the trait value
was altered. Correction formultiple comparisonswas done using a procedure
based on clustering (DGC) implemented in Infostat. This test well controlled
the type I error rate by maintaining an acceptable power in well-conducted
experiments (low CV for the mean difference) and improves its general per-
formance when increasing the number of means to compare.

For additional experiments using fha2, iqd22, msl10, acd6, apl1, vac-
inv, and ugp1mutants, Col-0 N6673 and an in-house Col-0 were included
as the wild type. Both wild-type seed stocks showed similar values for all
traits andwere used as onewild-type control. ANOVA followed bymultiple
test correction (DGC) was applied to detect significant differences in fha2,
iqd22,msl10, apl1, vac-inv, and ugp1 experiments. For acd6 experiments,
a t test comparing the natural accession (Col-0 or Est-1) to the gain-of-
function or knockdown mutants was performed.

GWA Mapping

All phenotyped accessions were genotyped for 214,051 SNPs previously
(Horton et al., 2012). Two statistical packages were used in R to perform
GWAanalysis: EMMAX (EfficientMixed-Model Association eXpedited) and
GAPIT (Genomic Association and Prediction Integrated Tool) (Kang et al.,
2010; Lipka et al., 2012).

Both packages use a mixed linear model (MLM) containing fixed and
random effects. Including individuals as random effects gives MLM the
ability to incorporate information about relationships among individuals.
This information about relationships is conveyed through the kinship (K)
matrix and the population structure or the so-called Q matrix. The Q+K
approach improves statistical power compared with Q only, and K and Q
matrixes can be obtained using different approaches. Thus, we evaluate
the performance of GWA including K and/or Q factors obtained using
differentapproaches: (1)Kwasobtainedaccording toKangetal. (2008)and
Qwasomitted (Model EMMAX); (2) Kwasobtained according toVanRaden
(2008) and Q was accounted for by including the first three principal
components from principal component analysis (Model GAPIT); and (3) K
was obtained by SPAGeDi (Hardy and Vekemans, 2002) according to
Loiselle et al. (1995) and Q was calculated using Discriminant Analysis of
Principal Components (Jombart et al., 2010). For the last approach, four
groups of SNPs were used for K+Q calculation with the aim of testing the
effect of different set of markers on the control of confounding effects
(Models PK1 to PK4). Each group of SNPs consisted of ;1300 markers
selected from groups of 5000 SNPs and discarding the ones showing
linkage disequilibrium, to ensure a set of independent markers. In total, six
different GWA models were run for Exp1 and Exp2.

The MLM can be described as:

Y ¼ Xbþ Zuþ e ð1Þ

where Y is the vector of observed phenotypes; b is an unknown vector
containing fixed effects, including the geneticmarker, population structure
(Q), and the intercept; u is an unknown vector of random additive genetic
effects frommultiple background QTL for individuals/lines; X and Z are the
knowndesignmatrices; ande is theunobserved vector of random residual.
Theuande vectorsareassumed tobenormally distributedwithanullmean
and a variance of:

Var
�
u
e

�
¼

�
G 0
0 R

�
ð2Þ

where G ¼ s2
a K; with s2

a as the additive genetic variance and K as the
kinship matrix. Homogeneous variance is assumed for the residual effect;
i.e., R ¼ s2

eI, where s2
e is the residual variance. The proportion of the total

variance explained by the genetic variance is defined as heritability (h2).

h2 ¼ s2
a

s2
a þ s2

e
ð3Þ

In GWA, marker-based h2 is obtained by fitting a mixed model with
randomgeneticeffects. Thecovariancesbetween theseeffects aremodeled
by the kinship matrix estimated from DNA markers. Moreover, h2 can be
obtained using either one-step procedure including phenotypic repetitions
for the same individual in the calculation (Kruijer et al., 2015), or two-step
procedure,where thephenotypicmean isfirst estimatedandthen included in
the mixed model to obtain the genetic variance (also called line-based h2)
(Lipka et al., 2012). The h2 calculations according to Kruijer et al. (2015) and
using the two-step procedure are stated in Supplemental Data Set 2.

REML-based estimations of broad-sense heritability (H2) were done
using lme4 package in R, the following model was adjusted to the phe-
notypic traits per experiment:

Yi ¼ mþ gi þ ei ð4Þ

wherem is the commonmean, g is the randomeffect of the genotype ith and
e is the typical residual error with normal distribution.

GWA Analysis, Candidate Gene Selection, and Validation

GWAwas run using the R packages EMMA for Model EMMAX and GAPITfor
the remaining models (Kang et al., 2008; Lipka et al., 2012). P values of
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association were log-transformed to LOD values [–log10(P value)] and
regarded as significant after FDR correction (Benjamini and Hochberg,
1995) if #0.1;LOD = 4.8, #0.05;LOD = 5.5, and #0.01;LOD = 6.3 for
a 10, 5, or 1% control of false discovery. However, the initial threshold of
comparison was set to LOD $ 3. First, we preselected those SNPs with
LOD $ 3 in all models for each experiment. Then, these SNPs were
compared between experiments and those with LOD $ 3 in both ex-
periments were retained as cross-validated SNPs. The cross-validated
SNPs showed robustness across conditions. For traits showing high
plasticity between experiments (i.e., FK, nINV, FBP, fumarase, SPS,
pPGI, and AGP), SNPswith LOD$ 4.8 in either experiment were retained
as plastic associations. We also selected all SNPs that colocalized for
several traits despite cross-validation between experiments. To de-
termine the genes involved in the association, a general examination of
the region with the candidate SNP was done looking for gene functional
annotations that would further support a selection. When not possible,
the gene or geneswhere the high-LODSNPswere located were selected
as putative candidates.When the SNPswere placedbetween twogenes,
both genes, upstream and downstream of the SNP, were selected. To
determine QTL size and trait colocalization, LD analysis was performed
oncontiguousSNPswithLOD$3 ineither experiment or trait. SNPswere
considered linked and belonging to the same QTL when the squared
coefficient of correlation (R2) was $0.2.

Nucleotide Diversity Analysis and Genetic Distances

Sequences for UGP1 and VAC-INV analyses were obtained from the
Arabidopsis 1001 genome project (http://signal.salk.edu/atg1001/3.0/
gebrowser.php; 164 accessions). For deviation from neutrality, Tajima’s D
statistic (Tajima, 1989) was computed in slidingwindows (window length =
100 sites, step size = 25 sites) usingDnaSP version 4.0 (Rozas et al., 2003).
Linkage disequilibrium analysis was performed with DnaSP version 4.0
(Rozas et al., 2003) for complete sequence data. For SNP data and LD
figures, the LDheatmap package (Shin et al., 2006) was used in R (R Core
Team, 2016). UGP1 sequences were aligned with MAFFT software using
theG-INS-1method (Katoh et al., 2002). Sequencealignment for theUGP1
LD-block is provided in Supplemental File 1. The neighbor joining tree was
obtained by calculating shared allele distance (Jin and Chakraborty, 1994)
from the sequence alignment using PowerMarker (Liu and Muse, 2005).
Branch support was obtained by bootstrap method (1000 pseudo-
replicates) implemented in the same software. Only bootstrap values
(>50%) supporting the large groups discussed in the text are shown.

Accession Numbers

Sequence data from this article can be found in the GenBank/EMBL
libraries under the following accession numbers: AT3G03250 (UGP1),
AT1G12240 (VAC-INV), AT5G19220 (APL1), AT5G42740 (SIS), AT2G47510
(FUM1), AT1G62710 (BETA-VPE ), AT3G49430 (SRp34a), AT5G44560
(VPS2.2), AT5G01550 (LECRKA4.2), AT5G01560 (LECRKA4.3), AT3G58560
(ATCCR4a), AT3G58580 (ATCCR4b), AT1G27720 (TAF4B), AT1G49210,
AT2G15710, AT1G10570, AT5G44370, AT3G54350, AT5G46110 (TPT),
AT3G47520 (pMDH), AT5G50950 (FUM2), AT1G68600, AT2G47570
(RPL18e), AT4G23060 (IQD22), AT5G67420 (LBD37), AT2G33150
(KAT2), AT5G12080 (MSL10), AT3G07220 (FHA2), AT4G02500 (XXT2),
and AT5G10140 (FLC ).

Supplemental Data

Supplemental Figure 1. Phenotypic variation, phenotypic plasticity,
and heritability for metabolic traits.

Supplemental Figure 2. SNP-to-SNP cross-validation between Exp1
and Exp2.

Supplemental Figure 3. Metabolic profiles for the KO panel.

Supplemental Figure 4. Validation of cis-QTL identified for enzyme
activity variation.

Supplemental Figure 5. Further experiments to confirm the QTL
associated with Mal, MDH, and GDH activity.

Supplemental Figure 6. Metabolic profiles and developmental pa-
rameters of iqd22 KO lines.

Supplemental Figure 7. Diurnal changes in starch for msl10 mutants.

Supplemental Figure 8. Trait means for the major haplotypes defined
by the high-LOD SNPs associated in Chr4-QTL and trait means for
accessions carrying Col-0 and Est-1 ACD6 alleles.

Supplemental Figure 9. Metabolic effect of knocking down the ACD6
hyperactive allele.

Supplemental Figure 10. Metabolic profile for the gain-of-function
acd6 mutant in the Col-0 background.

Supplemental Data Set 1. Phenotypic values for the 349 accessions
used in GWAS.

Supplemental Data Set 2. Descriptive statistics.

Supplemental Data Set 3. Spearman rank correlation matrix between
traits for the two different experiments.

Supplemental Data Set 4. Numbers of SNPs detected for the six
models tested.

Supplemental Data Set 5. Candidate SNPs identified in the regulation
of 30 out of 37 traits analyzed by GWA in two independent experiments.

Supplemental Data Set 6. LD analysis between contiguous SNPs
with LOD $ 3.

Supplemental Data Set 7. Summarized information for GWA results.

Supplemental Data Set 8. Metabolic phenotype for the KO panel.

Supplemental File 1. Alignment used to produce the phylogenetic
tree in Figure 7.
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