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Abstract

The human microbiome has been linked to various host phenotypes, and has been implicated in 

many complex human diseases. Recent genome-wide association studies (GWAS) have used 

microbiome variation as a complex trait, and have uncovered human genetic variants that are 

associated with the microbiome. Here, we summarize results from these studies, and illustrate 

potential regulatory mechanisms by which host genetic variation can interact with microbiome 

composition. We argue that, similar to human GWAS, it is important to use functional genomics 

techniques to gain a mechanistic understanding of causal host-microbiome interactions and its role 

in human disease. We highlight experimental, functional, and computational genomics 

methodologies to study the genomic basis of host-microbiome interaction, and describe how these 

approaches can be utilized to explain how human genetic variation can modulate the effect of the 

microbiome on the host.
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Microbiome composition associated with human genomics

The microbial communities that live in and on the human body, termed “the human 

microbiome”, are composed of thousands of species and trillions of microorganismal cells 

[1]. These communities vary widely across body sites, and their composition is affected by 

many factors, including host diet, age, sex, weight, population, disease status, medication 

use, and interaction with other individuals and the environment, as well as host genetics [2–

12]. Variation in the microbiome has also been associated with many human diseases and 

health conditions, such as inflammatory bowel disease (Crohn’s disease and ulcerative 

colitis), type 2 diabetes, colorectal cancer, in addition to many others [13–17]. Interestingly, 

many of the diseases that are linked to the microbiome are also controlled by host genetic 

factors, as has been characterized by more than a decade of genome wide association studies 

(GWAS). Since both host genetics and the microbiome can affect host traits, understanding 

the interaction between these two factors is the first step in uncovering their respective roles 

in disease.

To address this, recent studies have attempted to characterize host genetic determinants of 

the microbiome. Initial studies to explore this interaction have identified links between the 

microbiota and host genetic variation in candidate human genes, such as FUT2 
(fucosyltransferase 2) and MEFV (mediterranean fever) [18,19]. More recently, researchers 

began considering the microbiome as a complex human trait [20]. As such, quantitative and 

statistical genetics approaches can be used to characterize the genetic architecture 

underlying variation in the microbiome. However, the microbiota is different from 

traditional quantitative traits, and can be considered a high-dimensional array of complex 

traits. A microbiome profile is composed of multiple “features”, usually relative abundances 

of different microbial taxa, pathways, or other functional characteristics of the microbial 

community. The abundances are usually intercorrelated, and may also have a phylogenetic 

relationship. Each of these microbial features may be associated with different host genomic 

loci and through that represent genetic architectures. Moreover, each microbiome feature 

may be affected by different environmental factors, such as diet [21], and these 

environmental effects may be stronger than host genetic effects [22]. In addition, 

microbiome composition may be affected by ecological factors, such as colonization history.

Although it is difficult to control for many of these potential confounders, researchers have 

recently successfully used genome-wide analysis of host genetic variation to identify loci in 

the mouse genome that are associated with abundances of microbial taxa in the mouse gut 

[21,23–25]. Studies in humans have followed, first focusing on examining the heritability of 

microbiome composition [26]. Using gut microbiome data from hundreds of monozygotic 

and dizygotic twin pairs, taxa that are significantly heritable were identified. Further, germ-

free mice were used to show a potential role for one highly heritable taxon, 

Christensenellaceae, in host obesity [27]. Moreover, a recent study identified associations 
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between disease-specific risk alleles and gut microbiome composition in inflammatory 

bowel disease (IBD), and found conserved associations between human genotypes and the 

microbiome in 49 genetic loci, including the JAK-STAT signaling pathway and host innate 

immune response [28]. In addition, host genetic variation was identified in 93 individuals 

using ‘host contamination’ reads in the shotgun metagenomics data generated by the Human 

Microbiome Project (HMP) [1,29], human SNPs associated with variation in the 

microbiome were identified [30]. These SNPs are highly enriched in immunity genes and 

pathways, as well as SNPs that have been associated with microbiome-related complex 

disease [30]. This study also highlighted an association between human genetic variation in 

the region of the LCT gene, and the abundance of bifidobacterium in the gut microbiome. 

LCT encodes the lactase enzyme, which metabolizes lactose, while bifidobacterium uses 

lactose as a primary carbon source. Studies in the Hutterite population identified loci 

associated with the abundance of eight bacterial taxa in the gut microbiome during two 

seasons, summer and winter [31], as well as 37 loci with evidence of association with the 

abundance of taxa in the airways [32].

More recently, several genome-wide association studies (GWAS) with much larger sample 

sizes have identified additional loci in the human genome that are associated with 

microbiome complex traits [33–35]. Although there was little overlap in the loci identified in 

the three studies, this is not unexpected given the previous difficulty in recovering QTLs in 

mouse studies [21]. In addition to the unique combinations of environmental factors that 

affect the different human populations studied, the studies used different sequencing 

techniques (16S rRNA gene sequencing vs. metagenomics shotgun sequencing), different 

analysis methods (using diversity vs. abundances of individual bacterial taxa as the complex 

traits) and populations with somewhat different genetic backgrounds [33–35]. Considering 

results from all these microbiome GWAS studies, it is evident that (1) the genetic 

architecture is complex and includes many genes; (2) the effect sizes are small, perhaps as 

could be expected; (3) sequencing and analysis techniques can have a large influence on the 

results of these studies; and (4) we do not yet understand how to account for the ecological 

factors that also contribute to microbiome composition. Clearly, we are in the very early 

stages of this new field, but it is already apparent that multiple approaches and different 

types of genetic tools will be necessary to truly understand the genetics of this very complex 

host-microbiome interaction.

Direction of causality

Despite the knowledge gained from the newly found associations between microbiome 

composition and host genetics, a remaining open question is the direction of causality. There 

are several scenarios that can explain these association in the context of human disease 

(Figure 1A, Key Figure). First, it is entirely possible that for many host phenotypes where 

there is a correlation between host genetics and the microbiome, it is only host genetics, and 

not the microbiome, that directly affects the phenotype or disease (Figure 1B). In this 

scenario, changes in the microbiome can be driven by disease-related physiological and 

environmental changes, such as inflammation or medication. For example, it has been shown 

that antidiabetic medication confounds gut microbiome study results [36]. Another potential 

mechanism that can explain the observed pattern is illustrated in Figure 1C. While it is clear 
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that host genetic variation can control disease phenotypes, only recently it has been shown 

that this effect can be achieved through changes in the microbiome. An example for this 

effect is the gene NOD2, in which genetic variants have been strongly associated with 

inflammatory bowel disease (IBD). Mice lacking NOD2 are prone to colitis, and this effect 

can be transmitted to wild-type hosts via the microbiota [37].

A third scenario involves an interaction between host genetic variation and the microbiome 

to affect host gene regulation (Figure 1D). Unlike most other complex traits, microbiome 

“traits” can also influence host physiology, an effect that can occur at multiple levels, 

including microbiome-mediated effects on host gene regulation. Recent studies in germ-free 

and humanized germ-free mice have demonstrated that gene expression in the colon can be 

modified by microbial exposure in a site-specific manner [38,39]. It has been shown that 

genome-wide changes in gene expression occur in the colonic epithelium of germ-free mice 

after colonization with fecal microbiome, including down-regulation of genes involved in 

transport and metabolism of lipids and other nutrients [39]. The authors found that the host 

response to microbial colonization varies depending on intestinal region and time post-

colonization, and that these changes are mediated by transcription factor (TF) binding 

without significant changes in the accessible chromatin regions. In addition, a recent study 

found that microbiome colonization leads to activation or inactivation of hundreds of 

enhancers in the mouse colon [40]. Similarly, it was found that microbiota treatment of 

larval threespine sticklebacks leads to change in expression in genes associated with innate 

immunity [41]. Likewise, an analysis in flies showed that host transcriptional network is 

determined by the presence of microbiota [42]. Moreover, it was found that among human 

SNPs associated with microbiome composition, there is an enrichment in SNPs that were 

identified as expression QTLs (eQTLs; See Glossary) across multiple tissues in the GTEx 

project [30,43]. These results, along with the fact that microbial composition is tissue-

specific [30,44,45] and likely influenced by gene expression in interacting host cells [39], 

highlights the need for studying host regulatory response to microbial communities. Recent 

functional genomics studies thus provide an opportunity for delineating the mechanisms by 

which the microbiome controls host gene regulation.

Host-microbiome interaction through effects on host gene regulation

As the microbiome is associated with both host genetic variation and host gene expression, it 

is important to consider how host genetic variation can influence gene regulation. In recent 

years, eQTL mapping studies have identified genetic variants associated with inter-

individual differences in gene expression in colon in healthy and disease states [46–54]. 

Additionally, the GTEx project includes transverse and sigmoid colon samples from 169 and 

124 individuals, respectively, which have been used to identify eQTLs [43]. A subset of 

these eQTLs could potentially also modulate the changes in gene regulation induced by 

host-microbiome interactions. These changes can be effectively identified through response 

eQTL studies, which aim to assess how genetic variation affects response to environmental 

variables. Response eQTL and allele specific expression studies (see Box 1) have identified 

hundreds of genes whose response to specific environmental perturbations (including 

pathogens, hormones and pharmacological drugs) is modulated by cis-regulatory 
polymorphisms. The studies conducted so far have considered only a limited subset of all 
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possible environmental exposures that may be relevant for human health. For example, 

several human eQTL studies have identified genetic variants that modulate the response to 

pathogens in immune cells, such as macrophages and dendritic cells [55–58]. These variants 

may provide a mechanism for immune-related diseases, as they are enriched in risk loci for 

these traits. The major underlying mechanism for these functional non-coding variants is 

probably disruption of binding sites for transcription factors activated in response to 

immunological stimulants. For example, response eQTLs in macrophages treated with live 

bacterial pathogens are strongly enriched in binding sites for AP1, NFkappaB and IRFs [57]. 

The success of these studies suggests that similar approaches could potentially shed light on 

the host regulatory genetics underlying interaction between host genetic variation and 

commensal microbiomes.

Considering these studies, it is compelling to consider the microbiome as an environmental 

exposure for the host. In this case, the microbiome can elicit a host regulatory response in a 

manner similar to response eQTL studies, which is illustrated in Figure 2. For many host 

genes, the exposure to the microbiome will not affect gene regulation (Figure 2A). 

Conversely, some genes will change their expression in response to interaction with the 

microbiome, in a manner that does not depend on regulatory genetic variation (Figure 2B). 

However, for a subset of genes, the response can be modulated by genetic variants that are 

located in the regulatory regions controlling these genes (Figure 2C), or in other words, a 

microbiome response eQTL. Similar to response eQTL of other environmental stimuli, 

identifying microbiome response eQTLs would require a large number of samples. However, 

as described above, the microbiome is a complex community that is highly variable in its 

taxonomic and genic composition across individuals and health conditions [1]. It is likely 

that taxonomic and functional variation in the microbiome will affect the function of an 

eQTL in host cells. For example, the effect size of a given response eQTL can depend on the 

specific configuration of the microbiota, as illustrated in Figure 3. In this simplified 

example, the abundance of a given microbe within the microbiome determines the effect, 

whereby at low abundance there is no change in gene expression and thus no response 

eQTL. However, increasing abundance of this microbe increases gene expression, but in a 

manner that is dependent on the host genotype at the eQTL locus. This type of genotype X 

microbiome effect adds a layer of complexity to functional genomics studies of host-

microbiome interactions, because in addition to variation in host genetics, variation in the 

microbiome also has to be considered and incorporated in the study design. This highlights 

the need for high-throughput experimental models that can incorporate these two sources of 

variation.

Experimental models for functional genomics of host-microbiome 

interactions

Animal models offer distinct advantages as experimental systems for the study of host-

microbiome interactions. Studies in inbred and outbred mouse strains showed distinct host 

genotype effects on microbial composition underscoring the importance of host genetic 

factors on shaping the intestinal microbiome [23,25,59]. However, it is challenging to use 

animal models to study specific variants identified in human studies of host-microbiome 
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interactions, and animal studies further limited by expense and labor intensity. In humans, 

few studies have analyzed gene expression changes in colonic biopsies in association with 

exposure to probiotics [60,61]. While these studies have been able to identify specific host 

pathways that are modified by the microbial/probiotic treatment, they are limited by the type 

of treatment that can be administered to healthy subjects, and by the invasiveness of the 

medical procedure necessary to obtain colonic biopsies.

In vitro model systems allow for controlled experimental conditions, can be derived from 

specific cell types (e.g., intestinal epithelial cells), and can be co-cultured with other cell 

types, such as immune cells. Colonic epithelial cell monolayers have been employed to 

study the responses to various treatments, especially in the context of colorectal cancer [62–

66]. Newer models of the gastrointestinal tract, such as Human-Microbiota Interaction 

(HMI) module [67] and the human gut-on-a-chip [68] have been developed to recapitulate 

the dynamic nature of the gastrointestinal tract in order to study host responses under more 

physiological conditions. However, genomic studies of responses to the microbiome have 

not been done using these models. The application of in vitro models for interrogation of the 

genomic architecture of host-microbiome interactions is limited by the fact that cell lines are 

transformed and malignant (e.g., Caco2) and thus might not reflect responses in primary 

cells.

In vitro primary epithelial cell lines overcome some of these limitations, as was recently 

demonstrated [69]. Potentially, they are better suited for large-scale studies of host-

microbiome interactions, across diverse microbial extracts representative of host 

physiological and pathological states. This model was tested by developing a novel co-

culturing approach that exposes primary colonic epithelial cells to healthy microbiome 

extracts prepared for microbiome transplants. Using this approach it was demonstrated that 

the host response to the microbiome in the colon is largely mediated through genes involved 

in cell junctions, cell adhesion, and immune response. In addition, ASE (Allele Specific 

Expression) analysis identified 12 genes with genetic variants that modulate the cellular 

response to the microbiome and may represent mediators of the pathogenic effect of the 

microbiome on human traits.

Ex vivo systems such as primary tissue culture or intestinal organoids [70] are promising 

models that could be used to study inter-individual variation in host-microbiome responses, 

because they have not been transformed and recapitulate in vivo cellular architecture. 

Primary tissue culture using biopsies obtained from healthy and diseased human colon has 

been used to assess the effects of probiotics on inflammation elicited by Salmonella 

infection [71]. Primary colonic tissue culture has been used to study inter-individual and -

ethnic differences in transcriptional response to vitamin D [72], and, this ex vivo model has 

potential for studying the genomic landscape of response phenotypes including host-

microbiome interactions. Limitations of primary tissue culture include short-term viability, 

cell type heterogeneity, and relative invasiveness of the procedure to obtain tissue samples 

[73]. Maintenance of an aerobic-anaerobic interface using primary gut tissue needs to be 

evaluated for studying host-microbiome interactions.
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Organoids are newly described ex vivo cultures established from tissue-derived [74] or 

pluripotent [75] stem cells. This technology was enabled by improved understanding of the 

stem cell niche and has many advantages over animal and in vitro models. Organoids can be 

derived from many tissue types including the gastrointestinal epithelium (e.g., duodenum, 

stomach, small and large intestine) as well as other organs (e.g., prostate, liver) from mice 

and humans. Organoids can be maintained long-term and recapitulate important cellular 

features such as diversity, function and spatial organization [76]. Furthermore, co-culture of 

organoids with immune cells [77] and mesenchymal cells [78] allows for study of responses 

in an environment similar to that in vivo. Human intestinal organoids derived from 

pluripotent stem cells demonstrated a transcriptional signature most similar to fetal intestine 

that become more “adult-like” upon in vivo transplantation [79], although whether 

epigenetic marks are also maintained in organoids has yet to be established. Three-

dimensional organoids are grown on an extracellular matrix with the luminal surface on the 

inside of the spheroid structure. As such, studies of commensal and pathogenic 

microorganisms have required microinjection into the center of organoids to mimic 

physiological conditions [80–82]. There has been one study of transcriptional response of 

murine ileal organoids to short chain fatty-acids and microbial metabolites [83]; however, 

larger scale studies elucidating the genomic landscape of host-microbiome interactions have 

not yet been done using organoids. While there are many advantages to organoid culture, 

disadvantages include limited ability to maintain cultures under anaerobic conditions long-

term as well as cost and a learning curve for establishment of organoid cultures.

Computational analysis of multi-omic host and microbiome data

Joint analysis of host genetics and microbiome data can be used to identify novel biological 

interactions contributing to host phenotype, microbiome phenotype, or both. These high-

dimensional, multi-omic studies are powerful instruments for discovery and hypothesis 

generation, and can enable discovery of host-microbiome interactions that would be difficult 

to discover in model systems. These studies can be divided into two general categories of 

analysis: studies in which certain aspects of host genetics or other features are controlled via 

experimental design (design-based host-microbiome studies), and studies in which host 

factors are actually quantitated within experimental blocks for direct association with the 

microbiota (multi-omic host-microbiome studies). Examples of design-based host-

microbiome studies are the use of genetic knockout or knockdown animals [22], or the study 

of heritability of microbiomes in families or twins [11,27]. These approaches are by far the 

most common type of host-microbiome study, and do not actually require collection of host 

genomic data directly. However, it is challenging to generate novel mechanistic hypotheses 

about host-microbiome interactions through these studies, as the type of host variation under 

study includes a single gene, thus being limited to well-studied genes. In addition, 

heritability studies only consider relatedness and do not include information on specific host 

genes. In contrast, the multi-omic host-microbiome studies represent both a much greater 

statistical challenge and a higher potential for discovery of novel interactions. Examples are 

studies that attempt to associate the microbiome directly with host genetic variation (SNP 

data from sequencing or genotyping arrays), gene expression (RNA-seq or expression 
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microarrays), epigenetics (methylation data), or other types of variation such as immune 

system activation.

Multi-omic host-microbiome studies can in theory allow direct interrogation of statistical 

host-microbiome associations by combining high-dimensional host data with high-

dimensional microbiome data. These types of analysis are playing an increasingly important 

role in microbiome studies as the microbiota are influenced heavily by host immunity and 

metabolism, diet, environmental exposures, host demographics, and clinical history 

including a wide range of medications with different effects on the microbiota [2]. For 

example, host genotype has now been linked directly to microbiome variation in several 

instances, including with replication across cohorts in healthy individuals [30,84] and 

patients with inflammatory bowel disease [44]. Host gene expression has also been 

correlated to variation in microbial taxa on skin and in the ileal pouch of patients with ileal 

pouch-anal anastomosis [85]. However, since environmental, dietary, and ecological factors 

also describe a large fraction of interindividual variation in gut microbiota [22], and may 

also be correlated with host genetics, they may confound study results and must be 

controlled for statistically or through study design [44]. Host genetics can also be used to 

predict tissue-specific gene expression [86], which may allow interrogation of host-

microbiome expression networks in existing data integrating both host genotype with 

microbiome. As both microbial and host gene expression vary widely across cell types and 

environmental conditions, deeper exploration into dual-expression datasets will likely reveal 

more close correlates of host-microbiome interaction.

The importance of host genetics in microbiome-based translational 

medicine

Although there has been a recent sharp rise in interest in using the microbiome as a potential 

medical therapeutic, microbiome-based treatments have existed for many years. These 

treatments mostly included dietary recommendations and supplements of milk-souring 

bacteria in the form of fermented milk products, tablets, powders, and food additives [87]. 

These have later evolved into the use of “probiotics”, commonly defined as live 

microorganisms that benefit health [88]. In addition, some physicians, such as Dr. Benjamin 

Eiseman, recognized the microbiome as a potential treatment for complications of 

antibiotics at the beginnings of their widespread usage. As early as 1950s, his team 

successfully treated a series of patients with pseudomembranous colitis using stool from 

healthy donors [89]. This procedure has seen a dramatic rise in usage in the recent years as 

an effective treatment of antibiotic-refractory Clostridium difficile infections. Fecal 

microbiota preparations have evolved into increasingly standardized products that are 

becoming acceptable by mainstream medicine [90]. However, C. difficile is but one of a 

number of multidrug resistant pathogens that constitute a growing threat to modern 

healthcare. Fecal microbiota transplantation (FMT) is increasingly being considered as an 

approach to restore colonization resistance in subsets of patients with heavy antibiotic 

exposure and weakened immune system [91]. Moreover, FMT is currently being examined 

for use as a therapy for several other microbiome-related conditions, such as inflammatory 

bowel disease. In this context, it is important to consider the possible interaction of host 
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genetics with this treatment. Indeed, it is likely that a patient’s response to an FMT treatment 

can be modulated by specific host factors that interact with the microbial community being 

introduced, including the host genome. We anticipate that future algorithms in precision 

medicine will be able to incorporate a patient’s genome into selection of optimal microbial 

treatment regimen to achieve the best clinical outcomes.

Concluding Remarks and Future Perspectives

Human genomic variation has an important role in affecting host-microbiome interaction. 

Although one of the major mechanisms by which the microbiome can affect the host is by 

altering host gene regulation, we know little about microbiome-driven alterations of host 

gene expression, and how human genetic variation can modulate these regulatory 

interactions. We argue that functional genomics techniques, which have been extensively 

used in human genomics, can be useful in characterizing these regulatory effects of the 

microbiome. We outline experimental and computational approaches that can be used, and 

highlight potential regulatory mechanisms that can be discovered.
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Glossary

eQTL
Expression quantitative trait locus. A genetic locus associated with variation in the 

expression of a gene in the population

Heritability
The fraction of phenotypic variation which can be attributed to a genetic cause

response-eQTL
A genetic locus associated with the gene expression response to a specific environmental 

change, for example to a treatment, a disease condition or exposure

microbiome response eQTL
An eQTL for host gene expression response to a specific microbiome exposure

Transcription Factor (TF)
A protein that binds the DNA and regulate expression of a gene

GTEx project
a large study of human gene expression variation across several tissues, aiming to 

understand the genetic basis of gene expression variation

Allele-Specific Expression
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A departure from the 50:50 ratio in the expression of the two alleles at a heterozygous site in 

the gene transcript. It is often an indirect way of identifying genes with eQTLs
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Trends Box

• Human genetic variation is associated with variation in microbiome 

composition across populations and body sites. These microbiome-linked 

variants are enriched in disease-related genes.

• Identification of eQTLs for microbiome traits may provide mechanistic 

insights into how microbiome can interact with host genetic variation

• Novel functional genomics experimental approaches can identify 

microbiome-controlled eQTLs and describe the combined role of human 

genetic variation and microbiome composition in controlling complex 

disease.
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Outstanding Questions Box

• Which human variants, genes, and pathways are associated with variation in 

microbiome composition across various human populations and body sites? 

How are these associations affected by non-genetic factors such as diet, 

medication use, social interaction, environmental contacts, and changes in the 

microbiome throughout life?

• What feature(s) of the microbiome are the most significant “traits” that are 

affected by host genetic variation? How do ecological factors of the 

microbiome confound our ability to detect host gene X microbiome 

interactions?

• What are the molecular mechanisms by which host genetic variation affects 

microbiome composition?

• How does inter-individual variation in microbiome composition alter gene 

expression in host cells, and which host genes and pathways are affected?

• How does host genetic variation modulate the effect of microbiome on host 

gene expression? Can these regulatory effects of the microbiome impact 

human disease susceptibility?

• How can knowledge of the genetic basis of host-microbiome interactions be 

used to develop microbiome-based therapeutics?
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Box 1

Response eQTL mapping identifies genetic variants that modulate the 
transcriptional response to environmental perturbations

Recent studies have shown that genetic variants in regulatory regions not only are 

associated with gene expression levels across individuals, but also modulate the gene 

expression response to environmental perturbations. Loci harbouring these variants are 

defined response or interaction eQTLs. Response eQTLs have been successfully 

identified in cells treated with microbial pathogens, or with different chemicals, including 

hormones and drugs [55–58,92–95]. Response eQTLs have also been described as cases 

of genotype-by-environment interactions for molecular phenotypes. Specifically, they 

represent cases of variants where the effect of the genotype on the gene expression 

phenotype varies depending on the cellular context. An example of a response eQTL for 

pathogen infection would be a locus associated with the expression of a gene only in 

infected cells. In recent years, the increasing accessibility to and sophistication of next-

generation sequencing (NGS) techniques has allowed for the development of allele-

specific analyses to identify regulatory variants [96–98]. Allele-specific approaches 

compare allelic effects within individuals, thereby controlling for same genetic 

background and cellular environment. Analysis of ASE across different environments or 

environmental proxies is emerging as a powerful approach to identify genes with 

response eQTLs in a large number of environmental contexts [99,100].
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Figure 1. 
(A) A diagram of possible causal interaction between the microbiome, host genetic 

variation, and host gene expression to impact host phenotype. (B) Host genetics controls 

phenotype, which causes an alteration in the microbiome. (C) Host genetics controls the 

microbiome, which in turn affects host phenotypes. (D) Host genetic variation and the 

microbiome interact to control host gene regulation, which in turn affects host phenotype.
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Figure 2. 
An illustration of microbiome impact on host gene expression for a hypothetical gene, and 

the effect of an eQTL, which is designated with a star with two variants (red and green). (A) 

microbiome does not alter gene expression; (B) Microbiome regulates the gene and causes 

an increase in gene expression in a consistent manner, regardless of genetic variation; (C) 

Microbiome regulates the gene and causes an increase in gene expression only if the eQTL 

has the red variant.
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Figure 3. 
An illustration of interaction between microbiome and host eQTL in regulating a 

hypothetical gene. The gene’s expression level is shown on the y-axis, and the genotype at 

the eQTL is on the x-axis. The three panels correspond to three microbiome compositions, 

with the lowest abundance of the causal microbe on the left, and the highest on the right.
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