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Abstract

The paper deals with diffusion of a particle in a tube that consists of alternating wide and narrow 

sections. At sufficiently long times the particle motion can be coarse-grained and described as 

effective free-diffusion along the tube axis. In the coarse-grained description all the details of the 

tube geometry are packed into the effective diffusion coefficient of the particle. We derive a 

formula for the effective diffusion coefficient, which shows how it depends on the geometric 

parameters of the tube. To test the accuracy of this formula we compare its predictions with the 

values of the effective diffusion coefficient found in Brownian dynamics simulations. The 

comparison shows that the formula is applicable at arbitrary values of the length and radius of the 

narrow sections on condition that the radius of the wide sections does not exceed their length.
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1. Introduction

The model of a particle diffusing in a tube of periodically varying geometry was first 

considered in the literature on diffusion in porous solids [1]. Later this model has been used 

to analyze diffusion in different complex media like soils [2], biological tissues [3], neurons 

[4], and zeolites [5]. Theoretical analysis of controlled drug delivery [6] is another important 

application of the model [7]. Periodic variations of the tube geometry lead to a slowdown of 

diffusion along the tube compared to that in free space. This happens because any expanded 

section of a tube works as an entropy well while any constriction zone works as an entropy 

barrier [8,9]. To characterize the slowdown consider displacement of the particle, Δx(t) = 

x(t) − x(0), where x(t) is the particle coordinate measured along the tube axis at time t. At 

sufficiently long times, when 〈Δx2(t)〉 significantly exceeds the square of the period, l, 
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associated with variations in the tube geometry, 〈Δx2(t)〉 ≫ l2, one can introduce a coarse-

grained distribution of the displacement. From here on we use the angular brackets, 〈· · ·〉, as 

a notation of the averaging over both the particle stochastic trajectories and its initial 

position, which is assumed to be uniformly distributed over the tube. The coarse-grained 

distribution can be described by means of the effective propagator, Geff(x, t|x0) = Geff(x − x0, 

t), where x0 = x(0) is the initial position of the particle, that satisfies the effective one-

dimensional (1-D) free-diffusion equation,

(1)

In this equation all information about the varying tube geometry is packed into the effective 

diffusion coefficient, Deff, which may be well below the particle diffusion coefficient in free 

space.

Then the question about the relation between Deff and the tube geometry naturally arises. 

Finding of this relation is a difficult problem that cannot be solved in general. However, the 

problem can be solved when the tube radius, r(x), is a slowly varying function, |dr(x)/dx| ≪ 
1. The point is that in such a case the three-dimensional (3-D) diffusion problem can be 

reduced to an effective 1-D problem. To find Deff first one should replace the initial 3-D 

diffusion equation by an effective 1-D Smoluchowski equation with periodic entropy 

potential and position-dependent diffusion coefficient. This is so-called modified Fick–

Jacobs (F–J) equation [8] that reduces to the regular F–J equation [9] when the position-

dependent diffusion coefficient is replaced by the particle diffusion coefficient in free space. 

Based on the modified F–J equation, one can find Deff by means of the Lifson–Jackson 

formula [10] that is an exact result for the 1-D Smoluchowski equation in which both the 

potential and the position-dependent diffusion coefficient are periodic. This two-step 

approach has been realized for a tube formed by contacting spherical cavities where an 

analytical expression for Deff can be obtained [11]. Although the modified F–J equation was 

derived by Zwanzig [8a] under the assumption that |dr(x)/dx| ≪ 1, the range of its 

applicability is much broader – this equation is still applicable when r(x) satisfies |dr(x)/dx| 

≤ 1 [12].

The present paper is focused on the effective diffusion coefficient in the opposite limiting 

case, when the approach based on the modified F–J equation is inapplicable, namely, the 

paper discusses Deff in a tube of alternating diameter schematically shown in Fig. 1a. In such 

a tube the radius changes abruptly, so that dr(x)/dx diverges at the points where the radius 

makes a jump. Nevertheless, a formula for Deff can be derived. This formula, which is the 

main result of the present paper, shows how Deff depends on the geometric parameters of the 

tube. In the next section we discuss the obtained expression for Deff and demonstrate that its 

predictions are in excellent agreement with Deff found in Brownian dynamics simulations 

when the radius of the wide sections of the tube does not exceed their length. We derive this 

expression in Section 3. Then in Section 4 we compare our result with corresponding result 

that can be obtained following the way applicable for tubes of slowly varying diameter, i.e., 
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using the modified F–J equation and the Lifson–Jackson formula. Finally, some concluding 

remarks are made in the last section.

2. Formulation of the result

Consider a particle diffusing in a tube schematically shown in Fig. 1a. The tube consists of 

alternating narrow (n) and wide (w) sections of radii a and R, whose lengths, respectively, 

are ln and lw. The tube radius, r(x), is a periodic function of the x-coordinate measured along 

the centerline of the tube, r(x + l) = r(x), where l = ln + lw is the tube period. At long times, 

when the mean squared displacement of the particle, 〈Δx2(t)〉, is much greater than the 

square of the tube period, 〈Δx2(t)〉 ≫ l2, the mean squared displacement linearly grows with 

time,

(2)

where Deff is the effective diffusion coefficient. In our analysis we ignore the hydrodynamic 

interaction of the particle with the tube walls and assume that the value of the particle 

diffusion coefficient in both sections of the tube is identical to its value in free space, 

denoted by D.

The slowdown of diffusion is due to the fact that to enter a narrow section the particle has to 

climb up the entropy barrier to find the entrance. When a ≪ R, this may take the particle a 

lot of time, since the entropy barrier is high. The main result of the present paper is the 

expression for the effective diffusion coefficient that shows how Deff depends on the 

geometric parameters of the tube, a, R, ln, and lw,

(3)

where f(ν) is a function of the radii ratio, ν, given by

(4)

This function monotonically increases with ν from unity at ν = 0 to infinity as ν → 1, as 

shown in Fig. 2. Using D as a scale, we can write Deff in terms of the tortuosity, τ [13], as
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(5)

Although the tube is characterized by four parameters, a, R, ln, and lw, the tortuosity is a 

function of three dimensionless parameters. We illustrate the dependence of Deff on the 

parameters of the tube in Fig. 3.

The formula for Deff is applicable at arbitrary length and radius of the narrow sections 

whereas the length of the wide sections must satisfy

(6)

When the length of the narrow sections tends to zero, ln → 0, we deal with a tube with 

infinitely thin periodic partitions that separate the tube into compartments of length l = lw. 

The particle can go from one compartment to the other through a circular aperture of radius 

a located in the center of the partition separating the compartments. In this limiting case the 

tortuosity takes the form [14b]

(7)

and we recover the expression for Deff derived recently [14].

As a → R (ν → 1, f(ν) → ∞), the tortuosity, Eq. (5), approaches unity and Deff, Eq. (3), 

tends to D as it must be. As a → 0 (ν → 0, f (ν) → 1), the tortuosity diverges and Deff 

tends to zero. The small-a asymptotic behavior of τ is given by

(8)

This asymptotic behavior depends on the thickness of the narrow sections of the tube: When 

ln is finite τ diverges as 1/a2, and Deff tends to zero as a2 while at ln = 0 (tube separated into 

compartments by infinitely thin periodic partitions) τ diverges as 1/a, and Deff tends to zero 

linearly in a (see Fig. 3a).

We have developed a theory of diffusion in tubes with infinitely thin periodic partitions, ln = 

0, lw = l, in Ref. [14], where we derived a formula for Deff and demonstrated excellent 

agreement between its predictions and Deff found in Brownian dynamics simulations at all 
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values of the radii ratio, ν = a/R, on condition that the length of the compartments satisfied l 
= lw ≥ R. This constraint is quite general and holds true not only when the narrow sections 

are infinitely thin partitions. With this in mind, we tested the dependence of Deff, Eq. (3), on 

the length and radius of the narrow sections at lw = R and 2R. The results at lw = R are 

presented in Table 1, which gives the ratios of the Deff obtained in Brownian dynamics 

simulation and predicted by the theory at different values of the radii ratio, ν = 0.1, 0.3, 0.5, 

0.7, 0.9, and several values of the length of the narrow sections, ln/R = 0, 0.5, 1, 2. One can 

see excellent agreement between the theoretical predictions and the simulation results. 

Similar comparison at lw = 2R (the results are not shown) corroborates this conclusion.

3. Derivation

To derive the formula for Deff discussed in the previous section we first map diffusive 

motion of the particle onto the nearest-neighbor continuous-time random walk between 

periodically spaced tube cross-sections located in the middle of the wide sections of the 

tube. For the sake of convenience we take that these cross-sections are located at xn = nl, 
where n = 0, ±1, ±2,. . ..

Consider a particle that starts from the cross-section located at xl. When the wide sections of 

the tube are long enough, the distributions of the particle exit points to the neighboring 

cross-sections located at xl±1 are (i) uniform over these cross-sections and (ii) independent 

of the particle starting position on the initial cross-section. Based on these observations we 

replace diffusive motion of the particle by continuous-time random walk between 

neighboring cross-sections. Then we can find Deff using the relationship [15]

(9)

where 〈t〉 is the mean first-passage time of the particle from an initial cross-section to one of 

the two neighboring cross-sections separated from the initial one by distance l. Thus, 

derivation of the formula for Deff reduces to finding the mean first-passage time 〈t〉 as a 

function of the tube parameters.

To solve this problem consider a particle that starts from the cross-section located at x1 = l. 
Our goal is to find the particle mean first-passage time to one of the two neighboring cross-

sections located at x0 = 0 and x2 = 2l. This mean first-passage time is identical to the mean 

particle lifetime assuming that the cross-sections located at x0 = 0 and x2 = 2l are absorbing, 

so that the particle trajectory is terminated at the first contact with these cross-sections. 

Because of the symmetry we can replace the initial cross-section located at x1 = l by a 

reflecting wall. Thus we have to find the mean lifetime of the particle that starts from the 

reflecting wall located at x1 = l and is trapped at the first contact with the absorbing cross-

section located at x0 = 0.

To reach the absorbing cross-section, the particle has to pass through the narrow section of 

the tube located between x = lw/2 and x = ln + lw/2 = l − lw/2. We describe diffusion of the 
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particle in such geometry by means of the effective 1-D description suggested recently [16]. 

In this approach the free-diffusion equation is used to describe the particle motion in the 

wide and narrow sections of the tube, and the solutions found in the neighboring sections are 

matched using the matching conditions introduced in Ref. [16].

Let G(x, t) be the particle propagator, which can be written as

(10)

In each of the three intervals the components of the propagator satisfy

(11)

The components of the propagator also satisfy the initial condition

(12)

as well as the absorbing and reflecting boundary conditions at x = 0 and x = l, respectively,

(13)

At x = lw/2 and x = ln + lw/2 the components satisfy the matching conditions. To write these 

conditions we introduce two trapping rates, κw and κn. The former, κw, describes transitions 

of the particle from wide sections to the narrow ones, whereas the latter, κn, describes the 

particle transitions in the opposite direction. The matching conditions have the form [16]

(14)

and

(15)
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Here the first equalities are the conditions of the flux conservation at the boundaries, while 

the second equalities establish the relations between the fluxes through the boundaries and 

the components of the propagator.

The trapping rates κw and κn are not independent. They are related by the relationship

(16)

which follows from the condition of detailed balance, i.e., from the requirement of no net 

fluxes at equilibrium. The trapping rate κw was found in Ref. [17] using a version of the 

effective medium approximation called boundary homogenization [18]. The result is [17]

(17)

Respectively, the trapping rate κn is given by

(18)

As a → 0 (f(ν) → 1), the trapping rates take the forms κw = 4Da/(πR2) and κn = 4D/(πa). 

The former follows from the Berg–Purcell–Shoup–Szabo theory of trapping by patchy 

surfaces [19] in the low patch surface fraction limit [17,18]. The latter describes escape of a 

particle diffusing in a cylindrical membrane channel into an infinite semi-space outside the 

membrane [20]. As a → R (f(ν) → ∞), both κw and κn diverge, as it must be in a tube of a 

constant diameter.

Using the propagator, Eq. (10), one can find the particle survival probability, S(t), defined as

(19)

Then one can find the particle lifetime probability density, φ(t),

(20)

and, finally, the mean lifetime of the particle,

Makhnovskii et al. Page 7

Chem Phys. Author manuscript; available in PMC 2018 January 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(21)

Using Eq. (19) one can write the mean lifetime as a sum of three integrals

(22)

where functions Fi(x), i = 1, 2, 3, are defined as the time integrals of the components of the 

propagator,

(23)

As follows from Eqs. (11) and (23), these functions satisfy

(24)

According to Eqs. (13)–(15), they also satisfy the boundary conditions at x = 0 and x = l,

(25)

and the matching conditions at x = lw/2 and x = ln + lw/2,

(26)

(27)

One can find functions Fi (x) from Eqs. (24)–(27). The result is

(28)
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(29)

(30)

Using these functions when carrying out the integrations in Eq. (22), one obtains

(31)

Substituting here κw and κn defined in Eqs. (17) and (18), one eventually arrives at the 

expression for the mean lifetime that can be written in terms of the tortuosity τ, Eq. (5), as

(32)

Finally, substituting this expression for 〈t〉 into Eq. (9), one recovers the formula for Deff 

given in Eq. (3), which is the main result of the present paper.

4. Discussion

It seems interesting to compare the formula for Deff, Eq. (3), with the result for the effective 

diffusion coefficient that can be obtained on the basis of the modified F–J equation. In the 

case under consideration this equation is identical to the regular F–J equation and has the 

form:

(33)

where G(x, t|x0) is the particle propagator and A(x) = π[r(x)]2 is the tube cross-section area 

at given x. The entropy potential, U(x), counted from its value in the wide cross-sections 

(Fig. 1b) is given by

(34)
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where kB and T are the Boltzmann constant and the absolute temperature and Aw = πR2 is 

the cross-section area of the wide sections. Using the entropy potential one can write Eq. 

(33) as the Smoluchowski equation:

(35)

where β = 1/(kBT).

Since the entropy potential is a periodic function of x, U(x + l) = U(x), one can find the 

corresponding effective diffusion coefficient, DF–J, by means of the Lifson–Jackson formula 

[10], according to which

(36)

where τF–J is the corresponding tortuosity and 〈f(x)〉l denotes the average of a periodic 

function f(x), f(x + l) = f(x), over the period l,

(37)

Carrying out the integrations one obtains

(38)

Note that Michaels obtained this expression for the tortuosity long time ago [1b].

Using τF–J we can write the tortuosity given in Eq. (5) as

(39)

The difference between τ and τF–J is the most pronounced at small ln. Indeed, as ln → 0, τF–

J tends to unity whereas τ tends to its limiting form given in Eq. (7). The latter is the 

tortuosity in the tube separated into compartments by infinitely thin periodic partitions. This 

tortuosity is much larger than unity when a is much smaller than R, more precisely, when the 

tube parameters satisfy the inequality al ≪ R2. To summarize, the formula for τ given in Eq. 
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(5) predicts correct behavior of the tortuosity at small ln while the formula for τF–J, Eq. (38), 

found on the basis of the F–J equation fails in this limiting case.

5. Concluding remarks

The main result of this paper is the formula for the effective diffusion coefficient of a 

particle diffusing in a tube of alternating diameter, Eq. (3). The formula is applicable at 

arbitrary length and radius of the narrow sections of the tube on condition that the radius of 

the wide sections does not exceed their length. Thus, one can find Deff not only when the 

tube radius is a slowly varying function, |dr(x)/dx| ≤ 1, but also in the opposite limiting case 

when the tube radius changes abruptly. The point is that one can introduce an effective 1-D 

description of diffusion in a 3-D tube in both cases. In tubes of slowly varying diameter the 

corresponding 1-D description is formulated in terms of the modified Fick–Jacobs equation, 

whereas in tubes of alternating diameter this is the 1-D description suggested in Ref. [16]. 

Finally we indicate that the validity of the Fick–Jacobs equation has been studied recently in 

Refs. [21,22].
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Fig. 1. 
Schematic representation of a tube of alternating diameter (panel (a)) and corresponding 

dimensionless entropy potential (panel (b)). The tube consists of alternating wide and 

narrow sections of radii R and a whose lengths are equal to lw and ln, respectively. The 

dimensionless entropy potential, βU(x) = 2 ln (R/r(x)), is equal to zero and 2 ln (R/a) in the 

wide and narrow sections of the tube, respectively. At the boundaries separating the two 

sections the potential make a jump, βΔU = 2 ln (R/a).
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Fig. 2. 
Function f(ν) defined in Eq. (4).
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Fig. 3. 
Dependence of the effective diffusion coefficient on the tube parameters, Eq. (3). (a) Deff as 

a function of a/R at ln/R = 0 (solid curve), ln/R = 1 (dashed curve), and ln/R = 10 (dashed-

dotted curve). For all the curves lw/R = 1; (b) Deff as a function of ln/R at a/R = 0.1, 0.3, 0.5 

for lw/R = 1 (solid curves) and lw/R = 10 (dashed curves). One can see that non-monotonic 

behavior of Deff is more pronounced at larger values of lw/R.
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Table 1

Ratios of the effective diffusion coefficients found in Brownian dynamics simulations to their theoretically 

predicted counterparts, Eq. (3), at different values of the length and radius of the narrow sections. The 

simulation results were obtained at lw = R by averaging over 5 × 104 trajectories. The relative errors of these 

results do not exceed 2%.

Radii ratio, a/R Length of narrow sections, ln/R

0 0.5 1 2

0.1 1.00 1.00 1.01 1.01

0.3 0.99 0.99 1.00 1.01

0.5 0.99 0.97 0.99 1.00

0.7 0.99 0.98 0.98 0.99

0.9 0.99 0.99 0.99 0.99
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