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Abstract

Multiplexed single cell experimental techniques like mass cytometry measure 40 or more features 

and enable deep characterization of well-known and novel cell populations. However, traditional 

data analysis techniques rely extensively on human experts or prior knowledge, and novel machine 

learning algorithms may generate unexpected population groupings. Marker enrichment modeling 

(MEM) creates quantitative identity labels based on features enriched in a population relative to a 

reference. While developed for cell type analysis, MEM labels can be generated for a wide range 

of multidimensional data types and MEM works effectively with output from expert analysis and 

diverse machine learning algorithms. MEM is implemented as an R package and includes three 

steps: 1) calculation of MEM values that quantify each feature’s relative enrichment in the 

population, 2) reporting of MEM labels as a heatmap or as a text label, and 3) quantification of 

MEM label similarity between populations. The protocols here show MEM analysis using datasets 

from immunology and oncology. These MEM implementations provide a way to characterize 

population identity and novelty in the context of computational and expert analyses.
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Introduction

The size and complexity of single-cell data is increasing with advances in laboratory 

techniques, such as the ability to analyze cells in more than 40 dimensions with mass 

cytometry (Bandura et al., 2009; Spitzer & Nolan, 2016). Numerous recent studies have used 

mass cytometry for multi-dimensional single cell analysis, yielding novel biological insights 
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(Aghaeepour et al., 2017; Cavrois et al., 2017; Lakshmikanth et al., 2017; Seshadri et al., 

2017; Wei et al., 2017). The high dimensionality of the data resulting from these types of 

studies has driven the development of novel computational analysis methods and machine 

learning tools that can parse meaningful information from the increasingly complex data 

(Diggins, Ferrell, & Irish, 2015; DiGiuseppe, Cardinali, Rezuke, & Pe’er, 2017; Levine et 

al., 2015; Lun, Richard, & Marioni, 2017; Newell & Cheng, 2016; Saeys, Gassen, & 

Lambrecht, 2016; Wang, Zhu, Pierson, Ramazzotti, & Batzoglou, 2017; Weber & Robinson, 

2016). However, characterizing populations discovered using these automated or semi-

automated approaches is generally left to expert interpretation, a process that can be both 

time consuming and susceptible to subjectivity or bias.

To address the need for automated population characterization, marker enrichment modeling 

(MEM) was developed to automatically generate a label describing cell populations that is 

both human understandable and machine readable, paving the way for further innovation in 

machine learning approaches to single-cell research (Diggins, Greenplate, Leelatian, 

Wogsland, & Irish, 2017).

MEM quantifies population-specific feature enrichment and provides these values as 

population labels (Eq. 1). MEM outputs the relative enrichment of cell features, such as cell 

markers and protein expression, allowing for comparison between cell populations and 

providing insight into potential unique features of cell populations.

(Equation 1)

The MEM equation finds the difference between each marker’s expression on the population 

and its reference and then scales this factor up if the marker is expressed more 

homogeneously on the population than on the reference. MEM values reflect protein 

enrichment better than other metrics, such as z-score or K-S (Diggins et al., 2017).

When the difference between MAGpop and MAGref is negative, meaning that the feature is 

more highly expressed on the population’s reference than on the population, the MEM score 

is negated to show negative enrichment (i.e. a relative lack). In contrast, positive MEM 

values are obtained when MAGpop is greater than MAGref and are interpreted as a relative 

enrichment.

Protocol 1 demonstrates analysis of healthy human blood cell populations using built-in 

mass cytometry data. Protocol 2 demonstrates use of MEM to characterize cells from 

melanoma patient blood analyzed by mass cytometry and provides an example of 

incorporating a set of new files. Protocol 3 demonstrates quantitative comparison of MEM 

labels using RMSD as a surrogate measure of population similarity that is effective across 

data types, instruments, and laboratory groups.
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Strategic Planning

Data quality control and pre-processing—After data collection, quality control 

should be performed on the data to ensure that results of the MEM analysis arise from 

biological variation rather than technical artifacts. Common steps in quality control are bead 

normalization (Finck et al., 2013), pre-gating for nucleic acid positive events, scaling and 

transformation, and compensation (for fluorescence flow cytometry data).

Pre-gating should be performed after normalization and scale transformations. Typically, 

pre-gating involves creating an intact-cell gate of collected events that were positive for the 

nucleic acid marker. Additional pre-gating for immune cells may involve gating out all non-

CD45 positive events.

Population identification—Populations for MEM analysis can be defined manually or 

automatically. Many tools exist for supervised and unsupervised data classification, gating, 

and clustering (Aghaeepour et al., 2013; Bruggner, Bodenmiller, Dill, Tibshirani, & Nolan, 

2014; Diggins et al., 2015; Saeys et al., 2016; Shekhar, Brodin, Davis, & Chakraborty, 2014; 

Wang et al., 2017; Weber & Robinson, 2016).

MEM requires each cell to be associated with a numerical cluster ID. Biaxial gates or cell 

subsets identified by other supervised approaches should be systematically numbered to 

enable MEM analysis. Many automated clustering tools provide numerical cluster IDs that 

can be extracted for MEM analysis.

File types accepted by MEM—MEM accepts three file types: Flow Cytometry Standard 

files (FCS), tab-delimited text files (TXT), and comma-separated values files (CSV). FCS 

files are generated by the flow cytometer and contain the raw, single-cell median intensity 

values, as well as meta-data with details about the machine, the analysis parameters, the 

samples, and the channel or feature names and tags. These files must be parsed using 

specialized software or programs in order to access the raw data. This data can be accessed 

within R using the flowCore package (B. Ellis, 2017). Commonly used flow cytometry data 

analysis platforms like Cytobank (J. Paul Robinson (Ed.), 2010) and FlowJo 

(www.flowjow.com) can also access, analyze, and extract the information stored in FCS 

files. Any table of data in CSV format where events are in rows (e.g. cells, patients) and 

features are in columns can be analyzed by MEM. Thus, MEM is data type agnostic, and 

while the examples here analyze protein measurements in cells, MEM can also be applied to 

groups of patients where clinical features have been quantified. It is important in this case to 

consider the scale of the data. It may be useful to transform the readings for each feature to a 

comparable scale space prior to using MEM or other quantitative analysis tools.

Data structure accepted by MEM—Data that is entered as input for the MEM function 

must be pre-clustered or gated, and unless each input file corresponds to one discrete cluster, 

the last column of each file should contain a column labeled “cluster” that provides a non-

zero, numeric cluster ID for each cell. The data can be provided to MEM as a single file or 

multiple files where either 1) all data are contained in one matrix with a “cluster” column 

that specifies the cluster ID of each cell (e.g. Protocol 1), 2) the data are divided between 

multiple files where each file only contains cells from one cluster (e.g. Protocol 2), or 3) the 
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data are divided between multiple files, each of which contains cells from multiple clusters 

and therefore includes a column specifying the cluster ID of each cell.

Basic Protocol 1: MEM analysis of internal data

MEM function parameters

The MEM function is defined as:

MEM(input_data, transform = TRUE, cofactor = 5, choose.markers = FALSE,

choose.ref = FALSE, rename.markers = FALSE, file.is.clust = FALSE, add.fileID

= FALSE, IQR_thresh = NULL)

Input data—Input data should meet the requirements outlined above (see Strategic 

Planning section). Briefly, data must be in the form of a matrix or multiple matrices with one 

event per row and one channel or marker per column. The data must also include pre-

determined, numeric cluster IDs for each cell. The data can either be provided the form of an 

R matrix or as a list of file names in the working directory that are of the type FCS, TXT, or 

CSV.

Transform and cofactor—The argument transform should be set to either TRUE or 

FALSE to specify if a hyperbolic arcsine transformation should be applied to the data.

The hyperbolic arcsine transformation (asinh for short) is a log-like transformation 

commonly applied to flow cytometry data that brings the raw data values, which can vary by 

orders of magnitude on a given channel, into a comparable scale range to facilitate statistical 

and visual comparisons. If the distances between populations are misrepresented by 

incorrect scaling, automated population identification methods and statistical analyses will 

incorrectly group cells and produce erroneous statistical results.

The cofactor argument in MEM should specify the cofactor to be used for the 

transformation. The default cofactor used when transform=TRUE is 5, which is generally 

appropriate for most mass cytometry data.

A larger cofactor has the effect of compressing values more tightly around 0, while a smaller 

cofactor spreads them out around 0. Visualizing transformed values on a histogram for each 

channel can help you decide whether or not the cofactor is appropriate. If the cofactor is too 

high, the cell events will pile up in tall, narrow peaks near zero with little space between 

populations. If the cofactor is too low, there may be a wide distribution of cells around zero 

or even a hole in the peaks around 0, giving the appearance of two or more distinct 

populations of cells when these cells actually belong to the same population. A good rule of 

thumb is that an appropriate cofactor enables you to manually draw clear distinctions 

between real populations of cells on a histogram or biaxial plot. If in doubt, a control sample 

containing stained (positive) and unstained (negative) cells on the channel or channels in 

question can be run and then analyzed with a variety of cofactors to determine at which 

cofactor the positive and negative peaks are most distinct.
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Fluorescence flow cytometry data often requires a different cofactor for each channel, as 

well as compensation to account for signal spillover. If this is the case, these pre-processing 

steps should be applied to the data prior to MEM analysis, and the data entered into MEM 

should include post-compensated, post-transformed values only with the argument 

transform = FALSE.

Choose markers—FCS files contain more columns than just the measured features of 

interest, such as blank channels, viability or nucleic acid markers, and event length or 

forward and side scatter. There may also be markers in the dataset that are not of interest and 

that you wish to leave out of the analysis. The MEM function argument choose.markers 

allows you to select which columns in the file to keep for the analysis. If choose.markers 

= TRUE, you will be prompted in the console to enter the column numbers to include. The 

function will print out a list of column names and their corresponding index to clarify which 

channel corresponds to which feature or parameter. By default, this argument is FALSE and 

all markers will be included in the analysis. Note that the final step of MEM score 

calculation scales results to a −10 to +10 scale across all MEM values in the data, so if a 

column is included in the analysis that contains off-scale values (e.g. the Time channel in 

mass cytometry derived FCS files), all of the MEM scores will be affected during scaling.

Rename markers—In flow cytometry data, the column names often contain the name of 

the metal or fluorophore tag, sometimes in place of the name of the marker measured on the 

given channel. For example, if CD45 were measured on the channel Sm(154)Di, the column 

could be labeled as Sm(154)Di instead of as “CD45.” The column name depends on how 

you labeled the channels during instrument panel setup. Because channel names frequently 

do not match the marker name, MEM() includes the option to rename markers. If 

rename.markers = TRUE, the original column names will be printed to the console and 

the user will be prompted to enter new column names, in order, separated by commas.

Choose reference—The argument choose.reference is FALSE by default and 

specifies whether or not you want to select a specific population to be used as the reference 

in the MEM calculation. By default, for each population, MEM designates the reference 

population as all other populations in the data set excluding that specific population. 

However, in some cases it may be useful to compare the populations to one specific cluster, 

such as stem cells or a healthy control. In this case, you should set choose.reference = 

TRUE and, when prompted, enter the numeric population ID of the desired reference 

population. Note that only one population can be selected, so if there are multiple 

populations to be used as a custom reference, they should be combined prior to the MEM 

analysis such that they share one population ID.

IQR threshold—MEM uses interquartile range (IQR) as a metric of spread in expression 

values within each population. In the MEM equation (Eq. 1), the IQR component increases 

the MEM score when the given marker is expressed more “tightly” or with less variance on 

the population than on its reference. However, when the expression value is very low or near 

zero on a population, the IQR will also be very low or near zero. The IQR component of the 

equation is a ratio, meaning that a very low denominator will result in a very high ratio and 
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therefore a disproportionately high MEM score. This is especially important when MEM 

scales MEM scores to a −10 to +10 scale, so very high or very low MEM scores resulting 

from near-zero MEM scores can skew the scaling and ultimately misrepresent the degree of 

enrichment on other features. Setting a lower threshold for the IQR values is therefore 

necessary to prevent inflated MEM values due to low IQR values.

The IQR threshold is set by default to 0.5, a value found to work well across multiple 

datasets. Below 0.5, the IQR value is more likely to inflate the overall MEM score high 

enough to skew the −10 to +10 scaling and thereby obscure other highly enriched but 

slightly more variable markers. If the IQR threshold is too low, there may be one or two very 

high positive or negative MEM scores while the majority of MEM scores in the analysis fall 

near 0. Conversely, if the IQR threshold is too high, MEM scores will be approximately 

equal to the difference in medians because of the very low IQR component.

The IQR_threshold argument can be manually set to a different value if 0.5 is believed to 

be inadequate depending on the data type or structure. The MEM package also has the 

option to set IQR_threshold = “auto”, meaning that it will automatically calculate an 

IQR ratio based on the provided data. The “auto” IQR threshold is calculated as the IQR 

value corresponding to the second quartile median value across all of the populations and 

their corresponding reference populations.

The IQR component of the equation, (IQR_Ref/IQR_Pop −1), is only applied when the IQR 

of the reference is greater than the IQR of the population, ensuring that the magnitude 

difference is only scaled up when the marker is more homogenously expressed on the 

population than on the reference. Therefore, when the marker is more variably expressed on 

the population, the MEM score is equal to the difference in population magnitudes.

Working with multiple files as input—When the input data consists of multiple files, 

the arguments file.is.clust and add.fileID should be used to specify the structure of 

the data. If each file is comprised of cells from only one cluster, set file.is.clust = 

TRUE. The function will add numerical cluster IDs corresponding to the file order. A 

numbered list of file names is then output as a text file in the “output files” folder to specify 

which numerical ID corresponds to which file name.

If each file contains cells from multiple clusters, set file.is.clust = FALSE and 

add.fileID = TRUE or FALSE. For example, if each file contains cells from one patient 

but those cells belong to multiple clusters (designated in a “cluster” column), set 

add.fileID = TRUE to append a file ID value to the cluster ID. This modified cluster ID 

will be included in the final MEM output to specify both the cluster and the file from which 

it came. For example, cells from the first file and first cluster will be labeled as “1.1.”

MEM() output—When running MEM, the output of the function should be stored in an R 

object (as opposed to simply printing the results to the console). For example, in the 

following example, the MEM output is stored in an object named MEM_vals:
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MEM_vals <- MEM(PBMC, transform = TRUE, cofactor = 5, choose.markers

= FALSE, choose.ref = FALSE, rename.markers = FALSE, file.is.clust =

FALSE, add.fileID = FALSE, IQR_thresh = NULL)

The structure of the MEM output is a list of matrices (populations in rows, features in 

columns) in the following order:

1. MAGpop: the median intensity values for each population on each marker.

2. MAGref: the median intensity values for each population’s reference.

3. IQRpop: the IQR values for each population.

4. IQRref: the IQR values for each population’s reference.

5. MEM matrix: MEM scores for each population.

Build.heatmaps() function parameters

The function build.heatmaps() takes the list of matrices provided by the MEM() function 

and generates heatmaps displaying population medians, IQRs, and MEM scores. The 

build.heatmaps() function is defined as:

build.heatmaps(MEM_vals, cluster.MEM = "none", cluster.medians = "none",

cluster.IQRs = “none”, display.thresh = 0, newWindow.heatmaps=FALSE,

output.files = FALSE)

Input—The input for build.heatmaps() is the R object containing the list of matrices 

generated by MEM().

Clustering heatmaps—The output heat maps can be hierarchically clustered using the 

arguments cluster.MEM, cluster.medians, and cluster.IQRs. Settings for these 

arguments can include “none”, “row”, “col”, or “both.” If “row” or “both” are entered, the 

populations will be clustered, and if “both” or “col” are entered, the features will be 

clustered.

If cluster.MEM is clustered by row and/or column, and cluster.medians and 

cluster.IQRs are set to “none”, the medians and IQRs heatmaps will be ordered 

according to the clustering of the MEM heatmap. The clustering method used by 

build.heatmaps() employs the default complete linkage hierarchical clustering algorithm 

in the hclust package.

Display threshold—The argument display.thresh accepts a numerical input from 0–

10 that specifies which markers to display as labels on the heatmap depending on their 

MEM scores. For example, if display.thresh = 5, only markers with an absolute MEM 
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score of 5 or more will be included in the population MEM label and written to the 

“enrichment scores” output file.

Output—When the argument output.files = TRUE, the results of 

build.heatmaps() are written to a folder that the function creates as a subdirectory of the 

working directory, labeled “output files”. This output includes 1) a TXT file with the matrix 

of MEM scores, where populations are in rows and markers are in columns, ordered to 

match the heat map clustering order; 2) a TXT file with the matrix of population median 

expression levels, arranged according to clustering; 3) a TXT file with the matrix of 

population IQR values; 4) a TXT file containing the population labels as character strings; 

and 5) if there are multiple files, a TXT file containing a list of numbered file names to 

indicate which cluster number corresponds to each file.

If newWindow.heatmaps = TRUE, the IQR, median and MEM heatmaps that are 

displayed by build.heatmaps() will be displayed in a new R window as opposed to 

within the RStudio GUI. If newWindow.heatmaps = FALSE and the size of the heat map 

is too large to fit the allotted space in the GUI Plot panel, an error message will be displayed 

in the console stating that the figure margins are too large.

Note that users working on the MAC platform must install XQuartz (https://

www.xquartz.org/index.html) in order to run the X11() command, which is needed to open 

new windows in R.

Root-mean-square distance for population similarity comparison

The MEM_RMSD() function is defined as:

MEM_RMSD(MEM_vals,format=NULL,newWindow.heatmaps=FALSE,output.matrix=FALSE)

MEM_RMSD to determine population similarity—An optional, final step of the 

MEM analysis is to compare population MEM scores to determine how similar populations 

are in terms of their feature enrichment.

The MEM R package includes a function , MEM_RMSD, that performs a pairwise 

comparison of population MEM scores given the output of MEM() as input. MEM_RMSD 

calculates the average root-mean-square distance between populations’ MEM score. The 

resulting values are therefore a relative measure of how similar each pair of populations are 

to one another.

RMSD is calculated as the square root of the averaged sum of squared differences between 

marker A on population 2 and on population 1, marker B on population 2 and population 1, 

through n markers in the data set (Eq. 2 and Eq. 3). The maximum RMSD is calculated as 

the maximum RMSD value across all pairwise comparisons in the matrix.
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(Equation 2)

(Equation 3)

(Equation 4)

The percent max RMSD values (Eq. 4) can be displayed in a clustered heatmap and written 

to a tab-delimited text file in the output files folder by setting output.matrix= TRUE. In 

the clustered heatmap, cells that are more similar to one another in terms of feature 

enrichment will group together, while those with different enrichment profiles will cluster 

apart.

Necessary Resources

R/Rstudio Software

R is a statistical programming environment that is commonly used for biostatistics and 

bioinformatics analyses. The associated graphical user interface (GUI), RStudio, provides a 

user-friendly platform for writing and executing R code. So, while an installation of R 

provides a basic console interface for writing and running code, using RStudio makes that 

process easier and more intuitive.

RStudio requires that R is also installed in order to run. Both can be downloaded and 

installed for your particular machine and platform. R can be downloaded from http://cran.r-

project.org/bin/windows/base/ and RStudio can be downloaded from http://

www.rstudio.com/products/RStudio. Many tutorials and guides also exist for those who are 

beginners to R/RStudio.

To open the webpages where R and RStudio are available for download or update, you can 

also run the following lines of code:

> browseURL("http://cran.r-project.org/bin/windows/base/", browser =

getOption("browser"), encodeIfNeeded = FALSE)

> browseURL("http://www.rstudio.com/products/RStudio/", browser =

getOption("browser"), encodeIfNeeded = FALSE)
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MEM R package

MEM is implemented as an R package. The most recent version of MEM and its associated 

files can be downloaded from mem.vueinnovations.com. To open the browser and download 

the files, run the following command:

> browseURL("https://mem.vueinnovations.com/", browser =

getOption("browser"), encodeIfNeeded = FALSE)

The download will be available within 24 hours. Download the files and save them in a new 

folder. Be sure to unzip the files and use the unzipped files for running MEM.

Example Data Sets

Internal data: Normal Human PBMC—The dataset included with the MEM package as 

internal data is a mass cytometry dataset from analysis of normal human peripheral blood 

mononuclear cells (PBMCs) (Leelatian, Diggins, & Irish, 2015). This dataset is downloaded 

as a component of the MEM package itself, and is contained in the MEM package data 

folder. It can be accessed from within R at the command line (described in Protocol 1). The 

data are comprised of raw (pre-transformation) median intensity values and includes a total 

of 25 surface markers. The cells have been pre-gated into seven major populations: 1) CD4+ 

T cells, 2) CD8+ T cells, 3) Dendritic cells (DCs), 4) IgM- B cells, 5) IgM+ B cells, 6) 

Monocytes, and 7) Natural killer (NK) cells. These data were generated using an early 

version of CyTOF software, and therefore the optimal arcsinh cofactor is 15 rather than the 

current default of 5.

External data: Melanoma patient blood—Blood was collected from 5 melanoma 

patients treated with anti-PD1 therapy, before and after treatment. Mass cytometry analysis 

was performed as previously described (Greenplate et al., 2016b). The data were clustered 

using flowSOM (Support Protocol 1) to yield 25 clusters of cells across all patients and 

timepoints. The data can be downloaded from flow repository (https://flowrepository.org/

experiments/1394). The study was conducted in accordance with the Declaration of Helsinki 

and was approved by Vanderbilt University Medical Center Institutional Review Board.

CD4+ T cell and B cell MEM Scores—MEM scores were previously calculated for 80 

populations of cells: 39 B cell subsets and 41 CD4+ T cell subsets (Diggins et al., 2017). 

The same population of stem cells was used as the reference for all the populations during 

the MEM calculations. These populations of cells were identified either manually or 

computationally from data sets collected across institutions, platforms (fluorescence vs mass 

cytometry), tissues (peripheral blood, bone marrow, and tonsil), and stimulation conditions 

(unstimulated vs stim with SEB). Details of each sample and population can be found in the 

Excel file included with the Supplementary Data and well as in Diggins et al. (Diggins et al., 

2017). The MEM score files used in Protocol 3 is available in the flow repository experiment 

(https://flowrepository.org/experiments/1394) as an attached zip folder.
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Protocol Steps

1. Install MEM and dependent packages.

Download the MEM files from https://mem.vueinnovations.com/ and determine 

the path to the downloaded folder. For example, if after downloading and 

extracting the file it was placed in the Documents folder, the path might be “C:/

Users/You/Documents.” The following lines of code can be run to 1) set the path 

to the folder, 2) view the files in the folder to check that the path is correct, and 

3) install the package. Note that RStudio must be run as an administrator in order 

to allow direct package installation and updates.

MEM also depends on the base packages “stats”, “tools”, “grDevices”, and 

“utils”. These are included with the R download and do not have to be manually 

installed.

> MEM_path = “C:/Users/You/Documents/MEM_files/MEM”

> list.files(MEM_path)

> install.packages(MEM_path, type="source", repos=NULL)

MEM depends on the packages “gplots” and “flowCore.” These can be installed 

directly at the R command line using the following commands.

> install.packages("gplots")

> source("https://bioconductor.org/biocLite.R")

> biocLite("flowCore")

> install.packages(MEM_path, type="source", repos=NULL)

2. Set up R environment to run analysis.

> library(MEM)

> library(flowCore)

> library(gplots)

Use the library() command to load the required packages into the RStudio 

environment.

The commands setwd() and getwd() can be used to set and get (i.e. check) 

your working directory, respectively. The working directory is the folder path 
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where data files are located and where MEM output files will be written. 

Running getwd() prints out your current working directory path to the console, 

which is useful if you aren’t sure what working directory is currently set in your 

R environment.

> setwd(“C:/Users/You/Path”)

> getwd()

[1] "C:/Users/You/Path"

3. Set MEM() parameters and run the function.

To perform a MEM analysis on the internal PBMC dataset, run MEM() with the 

following settings:

> MEM_vals <- MEM(PBMC, transform = TRUE, cofactor = 15,

choose.markers = FALSE, choose.ref = FALSE, rename.markers = 

FALSE,

file.is.clust = FALSE, add.fileID = FALSE, IQR_thresh = NULL)

This should take only a few seconds to execute. The results of the analysis will 

be stored in the R variable MEM_vals.

4. View MEM output in console (optional).

The individual matrices generated by MEM()can be viewed in the RStudio 

console by entering the commands: MEM_vals$MAGpop, MEM_vals$MAGref, 

MEM_vals$IQRpop, MEM_vals$IQRref, and MEM_vals$MEM_matrix 

(Fig. 1).

5. Set build.heatmaps() parameters and run the function.

The build.heatmaps() function takes the output of MEM() as input. In this 

example, the output from MEM() is stored in the object MEM_vals. Because 

newWindow.heatmaps = TRUE and cluster.MEM = ”both”, the heatmaps 

will display in new windows and the MEM heatmap will be clustered on rows 

and columns. The median and IQR heatmaps will be displayed with the same 

row and column order as the clustered MEM heatmap.

>

build.heatmaps(MEM_vals,newWindow.heatmaps=TRUE,cluster.MEM="both
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",c

luster medians=”none” display thresh=0 output files=FALSE)

6. View and interpret heatmaps.

When newWindow.heatmaps = FALSE, the heatmaps will output in the lower 

right panel of the RStudio GUI in the Plots tab (Fig. 2). Navigate through the 

plots by clicking the arrows at the top of the Plots tab. Note that large matrices 

will not display properly in the GUI panel and an error message will appear. It is 

therefore best practice to set newWindow.heatmaps = TRUE unless the dataset 

contains approximately ten populations or fewer.

When newWindow.heatmaps = TRUE, one pop-out R window will appear for 

each of the heatmaps: IQRpop, MAGpop, and MEM (Fig. 3).

The row names of populations in the MEM heatmap are set as the population ID 

followed by the MEM label. Due to their length, the labels are often cut off of 

the plot window. To view them in full, a saved PDF of the MEM heatmap can be 

opened in programs like Adobe Illustrator or other editing programs. These 

MEM labels are also written to the output files folder as “[date-time stamp] 

enrichment row-names.txt” and can be viewed there in full.

7. Access MEM output files in subdirectory folder.

The outputs folder generated by build.heatmaps() when output.files = 

TRUE can be found within the working directory folder (see Step 2). In the 

outputs folder, you will see three tab-delimited text files containing the 

population MEM labels (enrichment scores), the matrix of MEM scores, and the 

matrix of population medians. The TXT files are labeled with a date and time 

stamp appended to the generic file name (Fig. 4). In cases where multiple files 

were entered as input to MEM(), the list of numbered file names will also appear 

in this folder.

8. Calculate and visualize the RMSD comparison of population MEM scores.

The MEM_RMSD() function can be run using either a matrix of MEM scores or 

the list of matrices from MEM() output as input. In the following example, the 

list of matrices, MEM_vals, is provided as input to MEM_RMSD.

> pop_compare = MEM_RMSD(MEM_vals, newWindow.heatmaps=TRUE,

output.matrix=TRUE)

In this example, the values displayed in the MEM_RMSD heatmap are stored in the 

object pop_compare. The MEM_RMSD function produces the percent maximum 

RMSD scores between each pair of populations and displays those values as a 
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heatmap (Fig. 5). The arguments newWindow.heatmaps and output.matrix 

are FALSE by default. If TRUE, the heatmap will output to a new R window and 

the matrix of pairwise percent max RMSD scores will be written to the output 

files folder as a tab-delimited text file. The output heatmap is hierarchically 

clustered by rows and columns.

9. Reformat heatmaps and text labels for publication. The heatmaps can be saved as 

PDFs from within RStudio and modified in Adobe Illustrator and other editing 

programs.

Basic Protocol 2: Analyzing external data with MEM

In Protocol 2, data were clustered for MEM analysis using FlowSOM. FlowSOM uses self-

organizing maps (SOM) to cluster data and visualizes the results as a minimum spanning 

tree. Given multi-dimensional data as input and a desired number of clusters, the algorithm 

computes meta-clusters and provides cell-level cluster IDs as well as a minimum spanning 

tree visualization of the clusters. FlowSOM has been shown to classify single-cell data with 

a high level of accuracy compared to manual biaxial gating analysis (Van Gassen et al., 

2015; Weber and Robinson, 2016). FlowSOM is implemented as an R package (Van Gassen 

S, 2017). See Support Protocol 1 for details.

Necessary resources

See Basic Protocol 1.

Protocol Steps

1. Cluster or gate data.

The data shown in this example were clustered using viSNE and FlowSOM (See 

Support Protocol 1 below).

2. Download data in a designated folder on your computer.

The example data set used here can be downloaded from flow repository (https://

flowrepository.org/experiments/1394). Once downloaded, extract the files and 

put them into a new folder. For example, if the zipped folder is downloaded from 

flow repository and then extracted into a folder called “Data files” in the 

Documents folder, the complete path on a Windows platform would be “C:/

Users/Me/Documents/Data files.” Note that the folder should only contain the 

files to be analyzed by MEM.

Remember that for any data set, the file formats and file types must meet the 

requirements outlined in “Data formatting for R and MEM analysis”.

3. Reformat data if necessary.

If the data are not in the form of cells in rows and markers in columns, with a 

column labeled “cluster” as the last channel to designate cell cluster IDs (unless 

each file contains one discrete cluster), it should be reformatted prior to loading 

it into R or from within R prior to MEM analysis. This can be done in programs 

Diggins et al. Page 14

Curr Protoc Cytom. Author manuscript; available in PMC 2019 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://flowrepository.org/experiments/1394
https://flowrepository.org/experiments/1394


such as Microsoft Excel or in R, depending on the type and extent of required 

formatting. The example dataset here is already correctly formatted and does not 

require modification.

4. Set up R environment for MEM analysis.

Setting up the R environment entails setting your working directory, loading 

required packages, and loading data files into R. In the following example, the 

file path is set to the location of the downloaded and extracted data files (a folder 

called “Data files”). Note that if you have not installed MEM and its required 

packages, this must be completed before running your MEM analysis. See 

“Strategic Planning” section for details on how to install these packages.

The files to be analyzed by MEM are loaded into R as the list of file names found 

in the working directory and stored in an object. Here, that object is a list called 

infiles. The command dir() retrieves all file names in the working directory.

> setwd(“C:/Users/Me/Documents/Data files”)

> library(MEM)

> library(flowCore)

> infiles <- dir()

To test that the correct files have been loaded into R, enter the name of the file 

list object (e.g. infiles) as a command in the console. The list of file names 

will print in the console.

> infiles

[1] "Diggins et al_melanoma patient blood_Cluster 1.fcs"

  [2] "Diggins et al_melanoma patient blood_Cluster 10.fcs"

  [3] "Diggins et al_melanoma patient blood_Cluster 11.fcs"

  [4] "Diggins et al_melanoma patient blood_Cluster 12.fcs"

  [5] "Diggins et al_melanoma patient blood_Cluster 13.fcs"

  [6] "Diggins et al_melanoma patient blood_Cluster 14.fcs"

  [7] "Diggins et al_melanoma patient blood_Cluster 15.fcs"

  [8] "Diggins et al_melanoma patient blood_Cluster 16.fcs"

  [9] "Diggins et al_melanoma patient blood_Cluster 17.fcs"

[10] "Diggins et al_melanoma patient blood_Cluster 18.fcs"

[11] "Diggins et al_melanoma patient blood_Cluster 19.fcs"

[12] "Diggins et al_melanoma patient blood_Cluster 2.fcs"

[13] "Diggins et al_melanoma patient blood_Cluster 20.fcs"

[14] "Diggins et al_melanoma patient blood_Cluster 21.fcs"

[15] "Diggins et al_melanoma patient blood_Cluster 22.fcs"
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[16] "Diggins et al_melanoma patient blood_Cluster 23.fcs"

[17] "Diggins et al_melanoma patient blood_Cluster 24.fcs"

[18] "Diggins et al_melanoma patient blood_Cluster 25.fcs"

[19] "Diggins et al_melanoma patient blood_Cluster 3.fcs"

[20] "Diggins et al_melanoma patient blood_Cluster 4.fcs"

[21] "Diggins et al_melanoma patient blood_Cluster 5.fcs"

[22] "Diggins et al_melanoma patient blood_Cluster 6.fcs"

[23] "Diggins et al_melanoma patient blood_Cluster 7.fcs"

[24] "Diggins et al_melanoma patient blood_Cluster 8.fcs"

[25] "Diggins et al_melanoma patient blood_Cluster 9.fcs"

5. Set MEM parameters and run function.

> MEM_vals = MEM(infiles,

transform=TRUE,cofactor=5,choose.markers=TRUE,rename.markers=TRUE

,file.i

s.clust=TRUE)

The example dataset contains raw median values and therefore requires arcsinh 

transformation with a cofactor of 5. Because these files are raw FCS files, they 

also contain columns than will not be used for the MEM analysis. To exclude 

these and rename the marker that are included, choose.markers and 

rename.markers should be set to TRUE. The file.is.clust argument is also 

be TRUE because each file contains cells from one discrete cluster.

You will first be prompted to enter which columns to include (Fig. 6). In this 

case, the columns 19:20, 22:40, 42:53, and 55 (where “:” indicates “through”) 

contain the markers of interest. The other columns are either blank channels or 

non-marker information, such as event length (column 4) or t-SNE channels 

(columns 69 and 70).

Enter column numbers to include (e.g. 1:5,6,8:10). 19:20,

22:40, 42:53, 55

Enter the desired column numbers at the prompt:

Next, you will be prompted to rename the columns (Fig. 7).
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Enter new marker names, in same order they appear above, 

separated

by commas.

              No spaces allowed in name.

            

CD49D,CD19,CD5,CD69,CD4,CD8a,CD7,CD16,CD25,CD134,CD14,CD95,Tim

            

3,CD45,CD279,CD183,CD194,CD197,CD28,CD152,Ki67,CD161,CD45RO,CD

            

44,CD27,CD278,CD45RA,CD3,CD9,CD5,CD137,HLADR,LAG3,CD127

Enter the column names at the prompt:

The MEM function will complete the run. This may take a couple of minutes. 

Once completed, the cursor will reappear at the command line and the 

MEM_vals object will appear in the Environment panel of RStudio (Fig. 8).

6. Set build.heatmaps() parameters and run the function.

>

build.heatmaps(MEM_vals,cluster.MEM="both",cluster.medians=”none”

,cluste

r.IQRs=”none”,newWindow.heatmaps=TRUE,output.files=TRUE)

The build.heatmaps() function takes the output of MEM() as input. In this 

example, that output is stored in the MEM_vals object. Here, cluster.MEM = 

“both”, meaning that both rows and columns of the MEM heatmap will be 

clustered. The medians and IQRs heatmaps will be ordered according to the 

clustered row and column order of the MEM heatmap. The argument 

newWindow.heatmaps and output.files are set to TRUE, so the heatmaps 

will be displayed in new windows and the matrix values will be written to file in 

the output files folder. Note that because there are multiple data files, the output 

files folder will also contain a text file listing the file names and their 

corresponding cluster ID.

The three heatmaps will display as new windows (Fig. 9–11). You can resize the 

windows to spread out the rows and columns for easier viewing. The heatmaps 

can also be saved to file (e.g. as a PDF, PNG, JPEG file) using the dropdown File 

menu in the heatmaps’ display window.
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The output files are written to the output files folder in the working directory 

(Fig. 12). The enrichment scores file contains the row names that are cut off in 

the output heatmap.

7. Set MEM_RMSD parameters and run function.

MEM_RMSD, described above, can be used to compare how similar populations 

are to one another given their MEM scores. In the following example, the 

heatmap will display in a new window (Fig. 13) and the values will be written to 

a text file in the output files folder.

> RMSD_vals =

MEM_RMSD(MEM_vals,newWindow.heatmaps=TRUE,output.matrix=TRUE)

The same results can be obtained by handing MEM_RMSD()a matrix as input, 

where populations are in rows and markers are in columns. For example, in the 

following example, the MEM matrix is extracted from the list of MEM_vals 

matrices and used as input to MEM_RMSD, yielding the same results.

> RMSD_vals =

MEM_RMSD(MEM_vals

$MEM_matrix,newWindow.heatmaps=TRUE,output.matrix=TRUE)

8. Format heatmaps for publication. Save the heatmaps as PDF files and edit from 

Adobe Illustrator or other graphics editing program. MEM labels can be 

formatted to show enrichment scores as superscripts to facilitate visualization, 

and heatmap groups can be broken apart (Figure 14).

Support Protocol 1: viSNE and FlowSOM clustering of mass cytometry data

Melanoma patient blood samples were collected and analyzed by mass cytometry 

(Greenplate et al., 2016a). For each of five patients, a sample was collected before and after 

Pembrolizumab (anti-PD-1) treatment, yielding a total of 10 data files. Here, the samples are 

clustered in a two-step process: 1) viSNE analysis to reduce the dimensionality and visualize 

the data in a 2D map, and 2) automatic clustering of data using FlowSOM in R. This cluster 

analysis yields 25 cell clusters across all patients and timepoints.

ViSNE Analysis

Analyze data using viSNE (Amir el et al., 2013). In this example, data were first analyzed by 

viSNE in Cytobank (www.cytobank.org). viSNE is also available from http://

www.c2b2.columbia.edu/danapeerlab/html/index.html, and the underlying t-SNE algorithm 
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can be run in R using the packages “tsne” (https://CRAN.R-project.org/package=tsne) or 

“Rtsne” (https://CRAN.R-project.org/package=Rtsne ).

For the viSNE analysis, sample cells equally from the 10 FCS files and select all measured 

markers for dimensionality reduction. Download files as FCS files containing the t-SNE 

channels.

FlowSOM R package

FlowSOM is implemented as an R package. It can be downloaded at: https://github.com/

SofieVG/FlowSOM (Van Gassen et al., 2015). To install the package:

> source("https://bioconductor.org/biocLite.R")

> biocLite("FlowSOM")

FlowSOM analysis

FlowSOM can be run using a single FCS file or multiple FCS files. In this example, 10 FCS 

files from the viSNE analysis are analyzed separately. Files can also be concatenated for 

FlowSOM analysis using the Cytobank concatenation tool (https://

support.cytobank.org/hc/en-us/articles/206336147-FCS-file-concatenation-tool).

Use FlowSOM to generate clusters across all patient files. 25 clusters are generated in this 

example using t-SNE channels as input for clustering. The per-cell cluster ID is added back 

to the file which can then be uploaded to Cytobank for visualization and formatting, or input 

directly into MEM within R. Here, the data are gated in Cytobank into 25 clusters and 

download as 25 files, one for each cluster. These files are available for download from Flow 

Repository ((https://flowrepository.org/experiments/1394).

Protocol Steps

1. Run flowSOM. Note that here, only the tSNE channels are used for clustering. 

Alternatively, all or a subset of the measured features can be used for the 

clustering step.

> library(FlowSOM)

> setwd(“C:/Users/You/Path to folder containing data files”)

> datafiles <- dir(pattern="*.fcs")

> fSOM <- FlowSOM(datafiles, pattern = ".fcs", compensate = 

FALSE, transform =

TRUE, toTransform=c(68:69), scale = TRUE, colsToUse = c(68:69), 
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xdim = 10, ydim

= 10, nClus = 25, seed = 42)

See Step 9 to run MEM directly on the FlowSOM clusters generated here. Steps 

2–8 describe methods for visualizing the flowSOM results on the original viSNE 

axes and gating the clusters into individual files.

2. Create a flowSOM plot with meta-clusters overlaid

> PlotStars(fSOM[[1]])

> PlotStars(fSOM$FlowSOM,backgroundValues = as.factor(fSOM

$metaclustering))

3. Obtain cluster IDs and export to a CSV file.

> flowSOM.clustering <- as.matrix(fSOM[[2]][fSOM[[1]]$map

$mapping[,1]])

> write.csv(flowSOM.clustering, 

file="melanomadatasetFlowSOM.csv")

4. Copy FlowSOM cluster IDs into concatenated CSV file. For those familiar with 

R, concatenating the cluster IDs to the files can also be done in R/RStudio.

5. Import CSV file with FlowSOM cluster IDs into flow cytometry data analysis 

platform (here, we used Cytobank).

6. Gate by FlowSOM ID. This can be done by plotting FlowSOM ID as the X and 

Y axis and gating around each unique FlowSOM ID.

7. Plot t-SNE1 and t-SNE2 on the x and y axis and visualize FlowSOM IDs as the 

overlaid figure dimension to see where FlowSOM clusters lie relative to t-SNE 

axes (Fig .15).

8. Export FCS file with FlowSOM cluster IDs for use in MEM analysis. See 

Protocol 2.

9. You can also run MEM directly on the clusters generated by FlowSOM without 

visualizing and gating the results. Combine the FCS files into a single matrix and 

add the FlowSOM clustering results as the last column using the following code:

> tempfile = exprs(read.FCS(datafiles[1]))
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> allfiles <- matrix(nrow=0,ncol=ncol(tempfile))

> for(i in 1:length(datafiles)){

   datafile <- exprs(read.FCS(datafiles[i]))

   allfiles <- rbind(allfiles,datafile)

}

> all_clustered = cbind(allfiles,as.numeric(flowSOM.clustering))

> colnames(all_clustered) = c(colnames(allfiles),"cluster")

10. Run MEM on the FlowSOM clusters and build heatmaps. See Protocol 2, Step 5 

for marker indices and names to enter when prompted. These are the same data 

files as those used for Protocol 2 and therefore include the same parameters.

> MEM_vals <- MEM(all_clustered, transform=TRUE, cofactor=5,

choose.markers=TRUE, rename.markers=TRUE)

>

build.heatmaps(MEM_vals,cluster.MEM="both",cluster.medians=”none”

,cluster.IQRs=

”none” newWindow heatmaps=TRUE output files=TRUE)

Basic Protocol 3: Calculate RMSD similarity on populations from separate 

MEM analyses

It may sometimes be useful to use to compare populations from one MEM analysis to those 

from another analysis. This analysis can be performed using the MEM_RMSD() function.

The MEM_RMSD() function can accept a file path as input, pointing to a folder containing a 

set of files where each file includes MEM scores for a single population. These should be 

tab-delimited text files that each contain 2 columns: 1) the marker names and 2) the 

corresponding MEM score.

For each pair of populations, the MEM_RMSD() function determines which markers they have 

in common and then calculates the percent maximum RMSD between the two populations 

as described above using their common markers’ MEM scores. Therefore, populations can 

be compared even if they were not measured using the exact same antibody panel. Note that 

marker names must match each other exactly in order for the function to consider them the 

same.

Figure 2 of Diggins et al. (Diggins et al., 2017) shows the comparison of 80 immune cell 

populations from multiple experiments. In this example, the same populations of cells 

described in Diggins et al. are compared using the MEM_RMSD() function. These data, as 

well as a Microsoft Excel workbook containing file details, can be found in Supplemental 

Data downloadable from Flow Repository (https://flowrepository.org/experiments/1394).
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Protocol Steps

1. Download files (Supplemental Data).

Download and extract the zipped folder of files into a new folder on your 

computer. There are 80 tab-delimited text files, one for each population. Each is 

formatted as a 2-column matrix, where the first column is the marker name and 

the second column contains the corresponding MEM score.

This folder also contains the Microsoft Excel file describing the samples. Move 

this file out of the folder prior to running MEM_RMSD().

2. Set working directory in R to the folder containing the downloaded files in Step 

1.

Set your working directory to the folder containing the downloaded and extracted 

files. In this example, the files are in the folder “RMSD data files.” If this is a 

new R session, load the MEM package using the library() command.

> setwd(“C:/Users/Me/Documents/RMSD data files”)

> library(MEM)

3. Set MEM_RMSD() parameters and run the function.

The working directory is entered here as input. The argument format should be 

set to “pop files”. The default setting is format = NULL, meaning that the 

argument is ignored unless set to “pop files” to indicate that the input is a 

path to multiple population files containing MEM scores.

> RMSD_vals = MEM_RMSD(“C:/Users/Me/Documents/RMSD data files”, 

format =

“pop files”, newWindow.heatmaps=TRUE, output.matrix=TRUE)

After running the above code, the heatmap will be displayed in a new window 

(Fig. 16), and the matrix of values will be written to the output files folder 

created in the working directory.

Commentary

Background

Quantifying the features that define populations of cells or other data groups has 

traditionally involved identifying the most highly expressed or strongest features of the 

group or identifying the most variable features across groups (e.g. fold change analysis, 
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principal component analysis, z-score, variance analysis). However, variance-based analyses 

do not account for feature magnitudes, and magnitude analyses fail to account for both inter- 

and intra-population feature heterogeneity. These tools therefore may indicate that a feature 

is important to a group’s identity because it has a high magnitude even if the magnitude is 

also high across all populations in the analysis (e.g. CD45 on all immune cells) or if the 

feature is highly variable within the population (e.g. IgM on B cells).

MEM improves upon traditional statistical approaches by accounting for magnitude 

differences as well as feature heterogeneity in order to quantify population-specific feature 

enrichment in the context of other populations. The equation allows for quantification of 

negative enrichment, which occurs when a feature is specifically lacking on a population 

compared to other cells in the dataset (e.g. hematopoietic stem cells lacking CD45 relative to 

other immune cells in a bone marrow sample). Negatively enriched features would be 

overlooked or minimized in traditional analyses that look for highly expressed features. 

MEM also produces automated population labeling, thereby providing an unbiased, 

alternative method of cell population classification compared to the traditional approach of 

expert-guided manual interpretation.

The MEM algorithm was originally developed for use with cell clusters derived from single-

cell data, However, the equation can be applied a wide variety of data types and systems. 

The MEM approach quantifies feature enrichment given feature measurements for all 

individuals across multiple clusters, and thus holds promise for application in virtually every 

scientific field.

Critical Parameters

Software

• Be sure you have installed the most recent versions of R and RStudio.

• To run a line of R code, place your cursor within the line of code and hit CTRL + 

ENTER or CTRL + r.

• A small stop sign appears in the top right corner of the Console while a 

command is executing.

• Lines of R code that start with a # symbol are comments, meaning that they will 

not be executed as commands.

• Run R as an administrator to ensure that all installations and updates can run 

under administrator privilege.

• For creating a path to the MEM files in Windows:

– Path format: “C:/Users/You/”

– To find the path of a specific folder: Shift + Click on a folder and hit 

“copy as path.” You can copy this path into the R console. Check to 

make sure the slashes are all forward slashes (“/”) and not back slashes 

(“\”).

• For creating a path to the MEM files on Mac:
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– Path format: "/Users/You/Documents”

– To find the path: Control + Click on a folder. In the popup window 

under General is where you will see the path to the file.

Clustering of data

• FlowSOM code:

– Use the argument toTransform to apply a scale transformation to all 

of the columns used for clustering.

– Grid size dimensions 10 x 10 will produce 100 nodes; if you want less 

granularity (fewer nodes), decrease the grid size.

– The nClus argument indicates the total number of clusters to be output 

after meta-clustering.

• If you have created many FlowSOM clusters, it may be helpful to use a script to 

automatically draw gates for you. If you are working in Cytobank, you can 

obtain Javascript code to do this by creating a support ticket.

Troubleshooting

R/Rstudio

• If you copy and paste text into R and get an error stating that you have entered 

unexpected input, try retyping the code into R instead of pasting it in. Some fonts 

do not transfer over properly via copy and paste.

• Errors and warnings may occur if you have not installed or updated to the most 

recent version of R/Rstudio (https://www.r-project.org/) and Bioconductor 

(https://www.bioconductor.org/install/).

MEM

• If you need additional help running MEM, a detailed R script titled “Detailed R 

script to install and run MEM,” can be found as part of the MEM files download 

from mem.vueinnovations.com. This script provides detailed guidance through 

each step of MEM installation, setup, and analysis.

• Technical errors like antibody staining artifacts may affect MEM results. 

Standard quality control measures should always be taken prior to analysis.

FlowSOM

• When inputting a CSV file, view the CSV file prior to analysis in a program like 

Microsoft Excel. Often the column names will be shifted incorrectly and must be 

manually shifted back.

• The FlowSOM code is sensitive to exact spacing. If you get an error, check that 

all spacing and capitalization matches the code described above or the code in 

the original FlowSOM publication (Van Gassen et al., 2015).
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Interpreting the Results

MEM outputs the analysis results as text MEM labels (or enrichment scores), as heat maps 

indicating median, IQR, and MEM values for each population, and as matrices containing 

the values represented by the heatmaps. The MEM labels are saved to the file in the output 

files folder called “[date-time] enrichment score rownames.txt.” The matrices of values are 

saved with the same date-time format. Note that if you have run an RMSD analysis and 

indicated that files should be output using output.files = TRUE in the RMSD function, 

the MEM_RMSD matrix of values will also be saved in the output files folder.

The MEM labels are formatted as a list of marker names each with a value indicating 

positive (+) or negative (−) enrichment (Table 1). A value of “+0” indicates no enrichment of 

that feature on the population relative to the reference population. Positive enrichment 

indicates that the feature was expressed specifically on the population, while negative 

enrichment means that the marker was specifically lacking on the population relative to the 

reference population.

The heatmap color scale for the median values is dataset-dependent and spans the range 

from 0 to the maximum median value in the dataset. The IQR heatmap color scale matches 

the median heatmap scale range, and the MEM heatmap color scale always ranges from −10 

to +10. The corresponding matrices that are written to text files in the output files folder 

contain the exact values used to build the heatmaps and are arranged in the same order as the 

heatmaps. For example, if you indicated cluster.MEM=”both” when running 

build.heatmaps(), the populations and markers in the MEM matrix file will be in the 

same order as the MEM heatmap.

MEM labels are meant to be both human and machine readable. For publication, MEM 

labels can be reformatted for readability by making the MEM value a superscript of the 

marker name (e.g. CD4+10) (Diggins et al., 2017). It may also be useful to publish the labels 

as text strings such as those shown in Table 1 in order to facilitate downstream analysis and 

comparison of scores by other researchers using machine learning tools.

Time Considerations

The runtime for a MEM analysis depends on the number of cells or events in the file(s), the 

number of populations, and the number of features in the dataset. Runtime also depends on 

the machine being used for the analysis. In general, MEM analysis of a small dataset 

(<100K cells and <20 clusters) will run in under one minute. Analyzing larger files or using 

less powerful machines may increase the runtime to 15 minutes or more.

FlowSOM runs quickly (<1 minute) even for large data sets. Organization of files for 

analysis and overlaying flowSOM clusters on the viSNE plot can be time consuming (up to 

2 hours combined depending on level of experience).
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Significance Statement

Identifying distinct clusters or groups from high dimensional data has become 

increasingly automated with clustering and dimensionality reduction tools. However, 

classifying and labeling those groups is still left to expert interpretation, which can be 

both time consuming and subjective. Marker enrichment modeling (MEM) automates this 

process by producing a quantitative label for a cluster indicating which features are 

enriched on that cluster relative to others in the sample or dataset. MEM quantifies both 

positive and negative feature enrichment, i.e. which features are specifically expressed 

and specifically lacking on a population, on a scale from −10 to +10. These labels can be 

interpreted by experts or read by machines to facilitate machine learning and automated 

classification approaches to cell subset identification and characterization.
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Figure 1. View the output matrices from the MEM function in the RStudio console
The output of MEM is a list of matrices: MAGpop, MAGref, IQRpop, IQRref, and 

MEM_matrix. These can be viewed in the console by entering the name of the MEM output 

object (e.g. MEM_vals) as a command at the command line. Individual matrices can be 

viewed using the $ operator to subset them by name. Here, the MEM_matrix object is 

displayed using MEM_vals$MEM_matrix.
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Figure 2. View output of build.heatmaps() in the RStudio GUI
Small heatmaps can be displayed in the R GUI Plots panel. Here the output is shown from 

build.heatmaps() in RStudio.
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Figure 3. Heatmaps generated by build.heatmaps()
Heatmaps are shown in new windows when newWindow.heatmaps = TRUE. Output is 

shown resulting from setting cluster.MEM = “both.” These plots can be saved as PDF 

files from the dropdown menu in the window’s File tab.
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Figure 4. View files in output files folder
Build.heatmaps() creates a new folder called output files as a subdirectory of the working 

directory and writes output as tab-delimited text files. The files include 1) the population 

MEM labels (enrichment score row names) that are displayed in the MEM_matrix heatmap, 

2) the matrix of population median values, and 3) the matrix of MEM scores.
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Figure 5. MEM_RMSD heatmap
Heatmap of percent maximum RMSD values calculated pairwise between the seven 

populations in the PBMC dataset, given their MEM scores as input to MEM_RMSD(). Each 

population is compared to the others, including itself.
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Figure 6. R console prompt to enter columns to include in MEM analysis
This prompt will appear when the argument choose.markers=TRUE.
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Figure 7. Prompt to enter marker names
This prompt will be displayed if rename.markers=TRUE.

Diggins et al. Page 35

Curr Protoc Cytom. Author manuscript; available in PMC 2019 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. Environment panel in RStudio
All variables and values are displayed in this panel. After the MEM analysis completes, the 

MEM_vals object, a list of 5 matrices, will appear here.
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Figure 9. IQR heatmap of 25 clusters melanoma patient blood
Output heatmap of population IQR values from 25 clusters of melanoma patient blood cells. 

Rows and columns are ordered the same as the MEM heatmap (Fig. 12) because 

cluster.IQRs=”none”.
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Figure 10. Medians heatmap of 25 clusters from melanoma patient blood
Transformed median expression levels for the 25 clusters of melanoma patient blood cells. 

Rows and columns are order the same as the MEM heatmap (Fig. 12) because 

cluster.medians=”none”.
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Figure 11. MEM heatmap of 25 clusters from melanoma patient blood
Hierarchically clustered MEM scores of 25 cell clusters from melanoma patient blood. 

Dendrograms are displayed on the rows and columns, and the MEM labels (marker and 

respective enrichment score) are displayed as row names. When these row names are cut off, 

as they are above, they can be viewed in the output files folder in the “enrichment score- row 

names” file or by saving the heatmap as a PDF file and opening it in Adobe Illustrator or 

other editing programs.
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Figure 12. Output files in Output Files folder found in working directory
View of the output files folder, located in your working directory, after running 

build.heatmaps() with the argument output.files=TRUE. If you are unsure of where 

this folder is located, run the command getwd() at the R command line, and the path to 

your working directory will print to the console.
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Figure 13. Heatmap of percent maximum RMSD values comparing 25 clusters
Pairwise comparison of each population in the analysis using RMSD to compare their MEM 

scores. The row and column numbers correspond to the file number for each cluster (or row 

number of the population, when the input to MEM() was a single file). The numbered list of 

file names corresponding to these values can be found in the output files folder.
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Figure 14. MEM heatmap shows features enriched on melanoma patient blood cells
MEM heatmap was modified using Adobe Illustrator to show major breakpoints in the 

clustered heatmap. Representative MEM labels are shown for 3 of the 25 cell populations, 

including CD4 T cells, CD8 T cells, and APCs.
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Figure 15. Plot t-SNE axes and view FlowSOM clusters as the overlaid dimension
FlowSOM clusters can be displayed on top of the t-SNE axes on which FlowSOM clustered. 

This method can be used to visually check whether or not the clustering captures expected 

populations of cells. The number of clusters and other FlowSOM parameters can then be 

adjusted to optimize the clustering.
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Figure 16. MEM RMSD heatmap from population files
Percent maximum RMSD between CD4+ T cells and B cells across multiple experiments, 

tissues, and platforms. Each pair of populations was compared using their common markers 

for the RMSD calculation. The row and column numbers correspond to the file order in the 

folder.
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Table 1

MEM labels for 7 canonical PBMC populations

MEM Label Expert Label

1 CD4+4 CD3+4 CD44+2 CD61+1 CD45+1 CD33+1 CD19+0 CD117+0 CD34+0 CD123+0 CD45RA+0 CD10+0 
CD14+0 CD15+0 CD25+0 IgM+0 • CD16-9 CD8-7 CD11c-5 HLADR-5 CD69-3 CD11b-2 CD20-2 CD38-1 

CD56-1

CD4+ T cells

2 CD8+7 CD3+3 CD69+2 CD20+1 CD45RA+1 HLADR+1 CD19+0 CD117+0 CD11b+0 CD34+0 CD61+0 
CD123+0 CD45+0 CD10+0 CD33+0 CD11c+0 CD14+0 CD15+0 CD16+0 CD25+0 IgM+0 CD56+0 • CD4-10 

CD38-2 CD44-1

CD8+ T cells

3 CD11c+4 HLADR+4 CD123+2 CD16+2 CD45RA+1 CD33+1 CD44+1 CD19+0 CD117+0 CD20+0 CD34+0 
CD61+0 CD45+0 CD10+0 CD14+0 CD69+0 CD15+0 CD38+0 CD25+0 IgM+0 CD56+0 • CD3-8 CD4-3 CD8-3 

CD11b-1

Dendritic cells

4 HLADR+4 CD19+3 CD20+3 CD45RA+1 CD44+1 CD117+0 CD34+0 CD61+0 CD123+0 CD45+0 CD10+0 
CD33+0 CD11c+0 CD14+0 CD69+0 CD15+0 CD16+0 CD38+0 CD25+0 IgM+0 CD56+0 • CD4-9 CD3-8 CD8-3 

CD11b-1

IgM- B cells

5 HLADR+5 IgM+4 CD19+3 CD20+3 CD117+0 CD34+0 CD61+0 CD123+0 CD45RA+0 CD45+0 CD10+0 
CD33+0 CD11c+0 CD14+0 CD15+0 CD16+0 CD38+0 CD25+0 CD56+0 • CD4-10 CD3-8 CD8-4 CD11b-1 

CD69-1 CD44-1

IgM+ B cells

6 CD33+5 CD11c+5 CD61+4 CD14+4 CD11b+3 CD44+3 HLADR+3 CD38+1 CD19+0 CD117+0 CD20+0 
CD34+0 CD123+0 CD45RA+0 CD45+0 CD10+0 CD69+0 CD15+0 CD16+0 CD25+0 IgM+0 CD56+0 • CD3-7 

CD4-5 CD8-3

Monocytes

7 CD16+6 CD11b+1 CD45RA+1 CD11c+1 CD38+1 HLADR+1 CD56+1 CD19+0 CD117+0 CD8+0 CD20+0 
CD34+0 CD61+0 CD123+0 CD10+0 CD33+0 CD14+0 CD69+0 CD15+0 CD25+0 IgM+0 • CD4-10 CD3-6 

CD44-2 CD45-1

Natural Killer (NK) 
cells
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