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ABSTRACT Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract
infection (LRTI) annually affecting �2 million children in the United States �5 years old.
In the elderly (�65 years old), RSV results in �175,000 hospitalizations annually in the
United States with a worldwide incidence of �34 million. There is no approved RSV vac-
cine, and treatments are limited. Recently, a phase 3 trial in the elderly using a recombi-
nant RSV F protein vaccine failed to meet its efficacy objectives, namely, prevention of
moderate-to-severe RSV-associated LRTI and reduced incidence of acute respiratory dis-
ease. Moreover, a recent phase 3 trial evaluating suptavumab (REGN2222), an antibody
to RSV F protein, did not meet its primary endpoint of preventing medically attended
RSV infections in preterm infants. Despite these setbacks, numerous efforts targeting the
RSV F protein with vaccines, antibodies, and small molecules continue based on the
commercial success of a monoclonal antibody (MAb) against the RSV F protein (palivi-
zumab). As the understanding of RSV biology has improved, the other major coat pro-
tein, the RSV G protein, has reemerged as an alternative target reflecting progress in un-
derstanding its roles in infecting bronchial epithelial cells and in altering the host
immune response. In mouse models, a high-affinity, strain-independent human MAb to
the RSV G protein has shown potent direct antiviral activity combined with the allevia-
tion of virus-induced immune system effects that contribute to disease pathology. This
MAb, being prepared for clinical trials, provides a qualitatively new approach to manag-
ing RSV for populations not eligible for prophylaxis with palivizumab.
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RSV BIOLOGY
The medical need. Respiratory syncytial virus (RSV) is a negative-strand RNA virus

in the family Pneumoviridae with 10 genes encoding 11 proteins (Fig. 1) that has
resisted effective management for �60 years in part because infection does not
provide robust immunity. As has been extensively reviewed (1–6), �50% of infants are
infected by RSV during their first year, with nearly 5% requiring hospitalization. The only
care available for RSV infection is supportive. Preterm infants (gestational age of �29
weeks) have been the focus for prophylaxis with palivizumab, which reduces morbidity
but not mortality (1). The RSV F protein is more conserved overall compared to the G
protein, and it has been the target for palivizumab and most other pharmacological
efforts. However, the G protein has a central conserved domain (CCD) that is nearly
invariant across all circulating strains, whose importance has become clearer over the
past several years, particularly with regard to the unmet need for a postinfection
therapeutic (4).
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Vaccine hindrances. For RSV, there are four fundamental vaccination strategies: (i)
vaccinate children, (ii) vaccinate adults (19 to 55 years), (iii) vaccinate the elderly, and
(iv) vaccinate pregnant woman (2–5). The diminished immune system in the very young
and the elderly poses special challenges. Regarding the other vaccine groups, the
highly transmissible nature of RSV and the poor immunological memory to natural
infection make it difficult to achieve herd immunity. Other obstacles include induction
of nonneutralizing antibodies or insufficient titer of neutralizing antibodies, exagger-
ated Th2-like responses resulting in massive infiltration of inflammatory cells, ineffec-
tive priming of CD8 responses, and complement deposition. Moreover, susceptibility
varies with factors difficult to manage, such as the level of cocirculating respiratory
viruses, including influenza virus and rhinovirus (7). The failure of the Novavax phase 3
vaccine trial (RSV F vaccine) in the elderly (5), despite enrolling nearly 12,000 subjects,
is a stark reminder of the obstacles to RSV vaccine development. Novavax is currently
in phase 3 testing of the same vaccine in pregnant women. However, persistence of
maternal antibodies in the neonate may be too short to achieve reliable protection
unless a very high titer of neutralizing antibodies is achieved.

Vaccines that require a cold chain to maintain efficacy have additional obstacles,
particularly for global use. Formalin inactivation of whole virus, a technique used to
increase stability, caused disease exacerbation upon subsequent natural infection,
resulting in two deaths (8), which set back significantly the effort to develop an RSV
vaccine for infants. Currently, live-attenuated RSV vaccines remain compelling vaccine
candidates for use in infants, while protecting the elderly remains more elusive.
Specifically, a structurally stabilized postfusion F protein vaccine has recently failed in
phase 2 trials to prevent RSV-associated respiratory illness in the elderly (9). A better
understanding of the complex interaction between virus and host, including age-
specific factors, is needed for safe and effective RSV vaccine development to proceed
(10).

PHARMACOLOGY
Targeting the F protein with a MAb. Given the obstacles to developing a safe and

effective RSV vaccine, providing an optimized MAb with strong virus-neutralizing
activity is appealing. The F protein promotes fusion of RSV with the host cell membrane
and is essential for infectivity both in vitro and in vivo. Palivizumab, a humanized murine

FIG 1 RSV genome. (A) Ten genes produce 11 proteins. The M2-2 open reading frame (ORF) is accessed
by ribosomes that reinitiate after exiting the M2-1 ORF. The G protein is produced as both membrane-
bound and secreted forms via alternative translation start sites. Two antigenic subgroups (A and B) are
defined by the hypervariable mucin-like regions of the G protein. (B) RSV F protein (575 amino acids [aa])
is cleaved by furin (at the arrow) to produce the F1 and F2 domains with a conformational change that
promotes fusion with cell membranes; the location of heptad repeats (HR), fusion peptide, and trans-
membrane domain (TM) are shown. (C) The RSV G protein (298 aa) central conserved domain (CCD)
includes a conformationally constrained CX3C motif (182-CWAIC-186) that is implicated in infection of
lung epithelial cells through binding to CX3CR1, assisted by a heparin binding domain (HBD). The MAb
TRL3D3 binds to an epitope within the CCD.
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monoclonal antibody (MAb) that inhibits the fusion process, has become widely used
for prophylaxis of premature birth infants at high risk of severe RSV disease (1).
Although the MAb reduces the incidence of severe disease from �10% to less than 5%,
widespread use of this costly agent is judged uneconomic (11). Moreover, a phase 2
trial to expand its use to full-term infants as a therapeutic was unsuccessful (12).
Although the number of patients enrolled in the study was too small to establish
statistical significance (n � 35), all three clinical efficacy endpoints measured were
inferior to placebo. Motavizumab, a higher-affinity derivative of palivizumab, reduced
hospital admissions in Native American full-term infants (13), but the MAb failed to
reach FDA approval because of safety concerns (hives and allergic reactions) that were
not offset by any clear superiority to palivizumab (4). Further, escape from palivizumab
is easily achieved (14) and may be clinically relevant (15). Escape correlates with a
reduced on-rate of the MAb (16), which is important since avoiding escape via higher
on-rate risks generating increased off-target reactivity as seen in the protein engineer-
ing effort leading to motavizumab (17).

Despite the limitations of palivizumab, its commercial success has led to a
variety of products that mimic its pharmacological properties (3, 4, 6). REGN2222 is
a biosimilar MAb targeting the F protein. In a recently reported double-blind,
placebo-controlled phase 3 study (n � 1,149), healthy preterm infants (gestational
age of �36 weeks and �6 months old at the beginning of the study) were treated
with one or two doses at 30 mg/kg of body weight; assessment at day 150 failed to
show efficacy for the primary endpoint of medically attended RSV infections
(http://investor.regeneron.com/releaseDetail.cfm?releaseid�1037184). Other bio-
similar efforts are on hold or still preclinical. MEDI8897 is an anti-F protein MAb
engineered for longer serum half-life (18). ALX-0171, a 15-kDa “nanobody” with com-
parable epitope recognition to palivizumab, is being evaluated as an inhaled formula-
tion for postinfection treatment (19).

Other F protein interventions in development. Vaccine efforts focused on the F
protein are continuing, as recently reviewed (2–5), including MEDI-559, a cold-
passaged, live-attenuated RSV, and MEDI-534, a human-bovine chimeric parainflu-
enza virus construct expressing the RSV F protein. GSK3389245A is a vaccine based
on an adenovirus vector to stimulate a T cell response. DS-Cav1 and GSK3003891A
are stabilized prefusion forms of the F protein (Fig. 1). MEDI-7510 is a recombinant
F protein vaccine in the postfusion conformation; it failed to show efficacy in a
phase 2 trial in the elderly (n � 1,894) despite being immunogenic (9). Preclinical
efforts exploring the utility of stabilized postfusion F protein are continuing (4).

Although the first small molecule fusion inhibitor compound, BTA9881, was
terminated when the phase 1 clinical results did not meet the desired safety margin
(6), several compounds with similar activity are still being pursued, including
TMC-353121 (an improved-pharmacokinetics version of JNJ-2408068), AK-0529,
RFI-641, and BMS-433771 (4). GS-5806 has shown efficacy in a phase 2a challenge
model (attenuated virus in healthy adults); however, it also showed evidence of
escape mutations (4).

Targeting intracellular viral proteins. The efficacy of palivizumab is linked to
neutralization of RSV replication by blocking cell entry. Other routes to blocking
replication have been explored that involve targeting viral proteins expressed
intracellularly (3). ALN-RSV01 is an RNA interference (RNAi) construct to the N
(nucleoprotein) gene that showed initial signs of efficacy in a live-virus challenge
model (Memphis 37 strain) in healthy adults. It was dropped after missing the
primary endpoint, namely, a reduction in progressive bronchiolitis obliterans syn-
drome at 180 days in lung transplant patients with confirmed RSV infection (20).
RSV604 is a small molecule targeting the N protein, which reached phase 2 in bone
marrow transplant patients but was discontinued due to variability in oral absorp-
tion (4). Another approach to blocking replication is inhibition of the viral poly-
merase (L protein), exemplified by ALS-8174 (4).
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Targeting the G protein with a MAb. The G protein is one of two major RSV
envelope proteins. The F protein is generally conserved, and its deletion abolishes RSV
infectivity; loss of the more variable G protein varies in effect from some inhibition of
replication (21) to full prevention of replication (22, 23). The G protein has attracted
increasing attention to address the need for RSV prophylaxis in healthy infants through
an entire RSV season and for postinfection treatment. Building on a promising vaccine
over a decade ago that showed efficacy in mice and immunogenicity in humans (24),
three features have emerged that define the G protein as an attractive target. First,
there is a small central conserved domain (CCD) that is highly conserved (4). Although
variation in the hypervariable domains flanking the CCD increases in response to
immune system pressure (25), the CCD itself remains highly conserved. Second, the
CCD is essential for infectivity in vivo and mediates attachment to airway epithelial cells
(26–28). Third, the CCD has a CX3C chemokine motif implicated in alteration of the host
immune response (29).

The G protein’s role in RSV pathology. Under some circumstances, RSV is known
to bias the immune response toward a Th2 phenotype (30). A role for the innate
immune response affecting RSV disease severity has also been suggested by
observations of increased disease severity in patients with certain polymorphisms
of either Toll-like receptor 4 (TLR4) (31) or the CX3C chemokine receptor (32). The
G protein modulates neonatal regulatory B lymphocytes (nBreg cells) to produce
immunosuppressive interleukin-10 (IL-10), and the frequency of RSV-infected nBreg
cells in the neonate respiratory tract is predictive of acute bronchiolitis severity (33).
It is worth noting that the cotton rat provides a useful model to study MAbs against
the F protein because it is more permissive for viral replication than mice; however,
the cotton rat is an imperfect model for understanding the pathological host
response in humans (34).

An important unmet need is for a post-RSV treatment since conventional anti-
inflammatory agents have failed to provide clinical benefit (35). Nonclinical studies
using anti-G protein MAbs targeting the CCD motif have shown efficacy as a postin-
fection treatment (33, 34, 36, 37). In a mouse model using RSV strain A2, a murine anti-G
protein MAb (131-2G) administered at day 3 postinfection reduced the influx of inflamma-
tory cells into the airways, with a pronounced effect at day 5 that was sustained to day 14
(36). A murine anti-F protein MAb (143-6C) had no such effect. In a similar model, using RSV
line 19F (known to cause increased airway hyperreactivity and mucus hyperproduction in
mice), an anti-G protein MAb improved breath distension of peripheral arteries (pulse
oximetry) (37). These studies emphasize the anti-inflammatory activity of MAbs targeting
the RSV G protein CCD. Additional studies have boosted this therapeutic rationale by
comparison of an anti-G protein IgG to an F(ab=)2 construct. Both were able to suppress
airway inflammation, but only the intact IgG was able to reduce viral load, consistent with
the complement-dependent activity of a different MAb against a similar epitope (38). This
experiment established that the anti-inflammatory effect is not just a result of reduced viral
load (39).

In normal human bronchial epithelial (NHBE) cells infected by RSV, TLR4 signaling
was reduced, an effect linked to increased SOCS3, which suppresses antiviral interfer-
ons (IFNs) (40). Treatment with an anti-G protein MAb (131-2G) counteracted the
immune-modifying nature of the RSV G protein leading to enhanced IFN, whereas an
anti-F protein MAb depressed the IFN response below the mock infection control level.
A similar effect was observed in plasmacytoid dendritic cells, where mutation of the G
protein CCD prevented IFN suppression with an anti-G protein F(ab=)2 antibody,
emulating the phenotype of the G protein mutation (41). A finding showing a prepon-
derance of IFN-�1 (IL-29) in lower airway samples from RSV-infected infants suggests
that IFN-�1 is the principal IFN responding to RSV infection in infants with severe
disease (42).

G protein provides a favorable target. Interventions that reduce viral replication
are important and have represented the vast majority of RSV control efforts (43).
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However, suppression of replication does not specifically address a key feature of RSV,
namely, alteration of the host’s immune system resulting in airway inflammation (4). An
early attempt to target the CCD of the G protein with a recombinant protein vaccine
(BBG2Na) showed a moderate ability to induce neutralizing antibodies in healthy,
young adults (24). Low immunogenicity of the CCD is a prominent feature of the virus
(25). A more direct route to targeting the G protein CCD is use of a MAb. Building on
foundational work using murine hybridomas (36), the most advanced preclinical can-
didate is TRL3D3, a native human antibody that binds the CCD motif with low
picomolar affinity (38). As epitope conservation implies essential functionality, escape
mutants are less likely than for therapeutics targeting other viral proteins or domains
of the G protein.

An important feature of the G protein is an alternative translation initiation site
that leads to secretion of �15% of the protein beginning 6 h following RSV
infection and well before the appearance of progeny virus (44). A mutation that
prevents production of the soluble G protein improved the efficacy of a polyclonal
serum against the F protein (45), and this mutation has been incorporated into a
live-attenuated vaccine candidate (46). Neutralization of soluble proteins typically
requires higher affinity than for membrane-bound proteins to avoid prolonging the
serum half-life that results in increased exposure of tissues to the factor (47).
Achieving high affinity uniformly in a diverse population is difficult for a vaccine,
and the RSV G protein CCD is particularly difficult to target since it is poorly
immunogenic. One approach to achieving a vaccine against both A and B strains has been
to create a fusion peptide comprising CCD peptides from both strains, with promising
efficacy in mice, although the affinity of the induced MAbs has not yet been studied (23).
In another recent study (48), recombinant G protein ectodomain induced protective
responses in cotton rats, although the immunodominant epitopes were in the highly
variable N- and C-terminal regions (Fig. 1).

The TRL3D3 MAb, whose affinity is high enough to neutralize the soluble G protein,
has also shown direct antiviral activity with improved potency over palivizumab in mice
(38). Consistent with the ex vivo effects of MAbs against RSV F or G proteins on IFN
production, treatment with palivizumab was associated with increased airway inflam-
mation in a mouse model, whereas TRL3D3 suppressed it (49). The lack of robust,
long-lasting immunity following RSV infection results in frequent reinfection. Early
infection, when the immune system is immature predisposes to asthma-like symptoms
in childhood (1, 49, 50). To model the effect of infection when the immune system is
immature in a mouse entails initial exposure to RSV as a neonate followed by secondary
exposure at 6 weeks. Prophylaxis with TRL3D3 at the primary infection provided
markedly improved lung function upon secondary infection, whereas palivizumab
provided no such improvement (49). Supplemental IFN at the neonate sensitization
step substantially reduced perivascular inflammation and mucus hyperproduction
upon reinfection (51). Consistent with these results, palivizumab has no effect on
reinfection rate or disease severity (3).

SUMMARY

The RSV F protein has historically been favored as a target for vaccine and preven-
tive intervention. As summarized in Table 1, four F protein vaccines and three MAbs or
MAb analogs are currently in clinical trials with a corresponding predominance in the
catalog of preclinical agents in development (43). However, from an efficacy perspec-
tive, the G protein central conserved domain is an increasingly compelling target.
Antibodies to this site combine (i) complement-mediated antiviral activity, (ii) blockade
of airway epithelial cell infection, and (iii) anti-inflammatory activity. The nearly invari-
ant sequence reduces escape potential, a significant advantage compared to targeting
the F protein (14). From a safety perspective, a reduced ability of the G protein to
modify the host immune response may provide unique efficacy as a postinfection
treatment. The development path for a treatment is more practical than for a prophy-
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lactic agent, with RSV detection kits (52) expected to facilitate adoption of novel
therapeutic agents.
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