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Binder-free sheet-type all-solid-
state batteries with enhanced 
rate capabilities and high energy 
densities
Mari Yamamoto1, Yoshihiro Terauchi1, Atsushi Sakuda   2 & Masanari Takahashi1,3

All-solid-state batteries using inorganic solid electrolytes are considered promising energy storage 
systems because of their safety and long life. Stackable and compact sheet-type all-solid-state batteries 
are urgently needed for industrial applications such as smart grids and electric vehicles. A binder is 
usually indispensable to the construction of sheet-type batteries; however, it can decrease the power 
and cycle performance of the battery. Here we report the first fabrication of a binder-free sheet-type 
battery. The key to this development is the use of volatile poly(propylene carbonate)-based binders; 
used to fabricate electrodes, solid electrolyte sheets, and a stacked three-layered sheet, these binders 
can also be removed by heat treatment. Binder removal leads to enhanced rate capability, excellent 
cycle stability, and a 2.6-fold increase in the cell-based-energy-density over previously reported sheet-
type batteries. This achievement is the first step towards realizing sheet-type batteries with high energy 
and power density.

Storage batteries are key to enabling the use of renewable energy and smart grids, but satisfying the require-
ments for capability, energy and power density, compactness, durability, and safety for next-generation batteries 
is a major challenge. Conventional lithium-ion batteries (LIBs) that utilize organic liquid electrolytes have been 
commercially successful in compact portable electronics1. However, LIBs can be hazardous because of their flam-
mability and the potential for electrolyte leakage, which is problematic as battery size increases2. In contrast, 
all-solid-state lithium-ion batteries (ASSLBs) using non-flammable inorganic sulfide solid electrolytes (SEs)3–6 
are promising for large-scale energy storage applications because of their safety, cycling longevity7–9, and high 
power density10.

The majority of sulfide-based ASSLBs have been fabricated as pellet-type batteries by powder compression7–11. 
Unfortunately, these batteries have previously only achieved outstanding performance with reduced active 
material fractions in the composite electrode (40–70 wt.% LiCoO2)7–11, which maximizes the active material’s 
performance. Further, powder compression is not optimal for reducing the thickness of the SE layer separator 
(240–500 μm)7–11. Thus, these batteries have been limited by low cell-based-energy -densities (10–45 Wh kg−1)7–11 
compared to those of conventional LIBs (100-200 Wh kg−1). Stackable and compact sheet-type batteries are now 
urgently sought for use in electric vehicles to reduce the cell packaging and wiring used in conventional LIBs12–17. 
A coating process has advantages for the fabrication of sheet-type batteries; coating is scalable and uses conven-
tional fabrication equipment, allowing increased battery size. Binders are indispensable for the dispersion of 
active materials in slurries and to allow sheet-like morphologies to be produced12,14–17. However, binders decrease 
cell performance by increasing internal cell resistance14,15, which impairs the inherent features and advantages of 
sulfide-based ASSLBs12.

We developed sheet-type batteries using a volatile poly(propylene carbonate)-based binder, which is remova-
ble after fabrication, and anisole, which satisfies the conflicting demands of solvating the binder and maintaining 
the SE properties. Adjusting the electrode binder content and removing the binder minimizes the internal cell 
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resistance, which reaches values like those of binder-free pellet-type batteries. Thus, binder removal effectively 
improves rate capability and long-term stability. We also describe efforts to improve the cell-based-energy-density 
of binder-free sheet-type full-cells using thinner SE sheets and thicker electrode sheets with high active material 
loadings.

Results
Binder-removal strategy.  Figure 1 illustrates the fabrication strategy for binder-free sheet-type batteries. 
Both binder and solvent are used to disperse the SE, active materials, and conductive additives; to maintain a 
sheet morphology in the positive and negative electrodes and SE sheet, and to prepare three-layered sheets by 
stacking. Finally, the binder is removed from the three-layered sheet by heat treatment.

Initially, 75Li2S·25P2S5 (mol%)5 (LPS) glass was selected as the SE to carry out these processes because 
of its wide potential window5, excellent reduction resistance for Li metal5, relatively high ionic conductivity, 
~10−4 S cm−1 5, high chemical stability to moisture18 and suitable plastic deformation19,20. LPS glass changes to 
a glass ceramic at 230 °C, and the resulting crystal structure is maintained until 300 °C5; thus, we selected ali-
phatic polycarbonates as volatile binders, which thermally depolymerize by unzipping and evaporate at tem-
peratures below 300 °C (see Supplementary Fig. S1)21. Therefore, carbon is removed even when heated under an 
oxygen-free atmosphere.

Exploration of solvent and aliphatic polycarbonates.  The requirements for a good solvent are that it 
should not affect the ionic conductivity of LPS, should dissolve the binder, and have a moderate vapor pressure. 
The ionic conductivities of LPS after exposure to various solvents were investigated to evaluate the stability of 
LPS (Fig. 2a). As the solvent donor number22 is increased to values greater than 14, solvent-exposed LPS shows a 
significantly decreased ionic conductivity and its color changes from pale yellow to brown and green. LPS became 
sticky after exposure to propylene carbonate (PC), with an ionic conductivity that was too low to measure. In 
contrast, LPS showed negligible changes in color and ionic conductivity when exposed to solvents with a donor 
number of 9 or less, such as anisole, toluene, 1,2-dichloroethane, and n-decane. Since solvents with higher donor 
numbers have higher electron-donating abilities, we conclude that solvents with donor numbers greater than 14 
decomposed LPS by nucleophilic attack, causing a decrease in ionic conductivity.

We investigated the solubility of aliphatic polycarbonates in solvents with donor numbers of 9 or less 
(see Supplementary Table S1 online). Poly(ethylene carbonate) (PEC) dissolved only in 1,2-dichloroethane. 
Positive sheets prepared with PEC/1,2-dichloroethane had a whitish surface, implying that lightly pulver-
ized fine 75Li2S·25P2S5 glass powder (f-LPS) floated while sedimentation occurred for heavy LiNbO3-coated 
LiNi1/3Co1/3Mn1/3O2 (NCM). Moreover, many bulges were observed on the surface of the positive sheets due to the 
rapid evaporation of 1,2-dichloroethane, which has a high vapor pressure (8.7 kPa, 20 °C)23 (see Supplementary 
Table S2 online). In contrast, poly(propylene carbonate) (PPC) dissolved in both 1,2-dichloroethane and anisole. 
Positive sheets prepared using PPC/anisole had smooth surfaces with uniform color, implying the homogeneous 
dispersion of NCM and f-LPS. The slow evaporation of anisole, the vapor pressure of which is low (0.47 kPa, 
25 °C)23, prevents the segregation of NCM and f-LPS and the formation of cracks and bulges during the drying 
process. It is worth noting that positive sheets with a pre-compression thickness of 200–300 μm (60–75 μm after 
compression) were difficult to break by punching even 5 months after fabrication (see Supplementary Fig. S2). 
Thus, we selected a combination of PPC and anisole for subsequent experiments.

A PPC-containing SE slurry (Fig. 2b) enables the fabrication of bendable free-standing SE sheets (Fig. 2c), 
which can be punched to afford SE disks (Fig. 2d), and the fabrication of two-layered SE/electrode sheets by slurry 
coating (Fig. 2e).

Since PC exposure causes a significant decrease in the ionic conductivity of LPS (Fig. 2a), the PC that arises 
from the depolymerization of PPC (see Supplementary Fig. S1) must be removed from the as-prepared cells 
quickly under vacuum to minimize the exposure time. We studied the electrochemical properties and the 

Figure 1.  Strategy for the fabrication of binder-free sheet-type ASSLBs. Schematic diagram showing the 
fabrication process for binder-free sheet-type ASSLBs.
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structure of PPC-containing LPS before and after removal of PPC by vacuum heating. Figure 2f shows the ionic 
conductivity of both pristine and 6 wt.% PPC-containing LPS as a function of the heat treatment temperature. 
The ionic conductivity of pristine LPS, 4.1 × 10−4 S cm−1 increased slightly to 5.2 × 10−4 S cm−1 after heat treat-
ment at temperatures between 160–290 °C5. Compared to pristine LPS glass, the conductivity of PPC-containing 
LPS (PPC; 6 wt.%) decreased significantly to 1.1 × 10−4 S cm−1, which suggests that non-conductive PPC inter-
feres with ionic conduction at the interface between LPS particles. The ionic conductivity of PPC-containing LPS 
gradually increased with heat-treatment temperature, returning to that of pristine LPS between 225–290 °C. Even 
though the sheet size increased from 10 mm to 40 mm in diameter and PPC content increased from 6 wt.% to 
10 wt.%, their conductivities returned to that of pristine LPS after heat treatment at 225 °C. Thus, we concluded 
that heat treatment at 225 °C is sufficient to decompose PPC and remove PC from PPC-containing LPS. Since 
both pristine and PPC-containing LPS show a similar color change from pale yellow to dark brown with increas-
ing temperatures (see Supplementary Fig. S3), this change was attributed to the heat treatment rather than the 
removal of PPC.

We confirmed that PPC-containing LPS before and after heat treatment maintains both a framework struc-
ture containing PS4

3− moieties24 (see Supplementary Fig. S4a) and a wide electrochemical window of 5 V (see 
Supplementary Fig. S4b). DC conductivities were evaluated for both pristine and PPC-containing LPS before 
and after heat treatment to investigate whether the electronic conductivity of LPS is affected by the carbon aris-
ing from the decomposition of PPC under an oxygen-free atmosphere (see Supplementary Fig. S4c). While the 
total conductivity (including ionic and electronic contributions) of all samples were close to those obtained by 
AC impedance measurements, the electronic conductivities were ~4 orders of magnitude lower than the corre-
sponding total conductivities, suggesting that residual carbon in the LPS layer had a negligible effect. These results 
demonstrate that the original ionic and electronic conductivity of LPS are retained after the PPC removal under 
vacuum heat treatment.

Figure 2.  Exploration of solvent and aliphatic polycarbonate properties for the fabrication of binder-free 
sheet-type batteries. (a) Ionic conductivity of solvent-exposed LPS (σSE’) divided by that of pristine LPS (σSE), 
i.e. σSE’/σSE, as a function of the solvent’s donor number, where a higher donor number indicates higher 
nucleophilicity. Images of (b) a PPC-containing SE slurry, (c) a flexible and free-standing PPC-containing SE 
sheet (PPC; 6 wt.%, 8 vol%), (d) PPC-containing SE sheets punched by pressing a stainless-steel rod under 
260 MPa and (e) a two-layered sheet prepared by coating the SE slurry on the electrode sheet. The inset is a two-
layered sheet cut by punching machine. (f) Ionic conductivities of LPS and 6 wt.% PPC-containing LPS powder 
treated at various temperatures in the range from 25 to 290 °C.
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Effect of binder removal on cell performance.  Figure 3a compares the initial charge-discharge curves 
of binder-containing and binder-free positive half-cells constructed using as-prepared 3 wt.% PPC-containing 
positive sheets, which had average discharge voltages of 3.04 and 3.15 V and discharge capacities of 123 and 151 
mAh g−1, respectively. The binder-free discharge capacity corresponded to the substantial theoretical capacity of 
NCM25. Impedance measurements were performed to clarify the differences in cell performance (Fig. 3b,c). The 
resistance at the intersection with the real axis around 10 kHz represents the bulk and grain boundary resistance 
of the SE layer (RSE)26. The resistance at the semicircles with peak-top frequencies of ~500 and 1 Hz correspond to 
the charge transfer resistance of NCM/SE (RI) and In/SE interface (RIn/SE), respectively26. While PPC was not used 
in the SE layer, the RSE value was reduced by ~40 Ω by heat treatment, implying a decrease in the grain boundary 
and void volume by heating to temperatures near the glass transition temperature of LPS19,20. The RI value was 
drastically reduced from 638 Ω to 14 Ω by the removal of PPC, suggesting an increased contact area between 
NCM and the SE.

The effect of PPC content on the positive sheets was investigated for binder-containing and binder-free pos-
itive half-cells using positive sheets containing 3 wt.% and 6 wt.% PPC (Fig. 4a). The RI of binder-containing 
half-cell A (PPC: 3 wt.%) was half that of binder-containing half-cell C (PPC: 6 wt.%), increasing the capac-
ity. Binder removal induced drastic decreases in RI, resulting in improved capacity for both cells. Compared 
to binder-free half-cell D (PPC: 6 wt.%), the binder-free half-cell C (PPC: 3 wt.%) exhibited a higher discharge 
capacity and one-fifth as much RI. The small RI indicates a large contact area between NCM and the SE. When the 
volume ratio of PPC/SE in the as-prepared positive sheet (PPC/SE = 0.22 (PPC: 3 wt.%), PPC/SE = 0.45 (PPC: 
6 wt.%)) is small enough, voids and cracks between NCM and the SE originating from the removal of PPC can 
be filled completely during the plastic deformation of the SE by compression. The RI value for the binder-free 
sheet-type half-cell (PPC; 3 wt.%) was consistent with that of a binder-free pellet-type half-cell, suggesting a sim-
ilar NCM and SE contact area was achieved by binder removal (Fig. 4b). Conversely, when the PPC content was 
too low (around 1 wt.%), the positive sheets crumbled easily. Although the PPC content should be adjusted by the 
specific surface area of the components and composition ratio of active materials, SE, and conductive additive, in 
this case, a PPC content of around 3 wt.% is desirable for manufacturing positive sheets.

In addition to the improved positive half-cell performance, the binder removal process also improved the 
charge-discharge capacity of negative half-cells using as-prepared 3 wt.% PPC-containing negative sheets (see 
Supplementary Fig. S5). The initial charge capacity increased from 257 to 308 mAh g−1, which was close to the 
theoretical value for graphite of 330 mAh g−1 estimated for conventional LIBs27. The binder removal process 
was further applied to sheet-type full-cells constructed using an as-prepared SE sheet containing 3 wt.% PPC 
(~180 μm in thickness) and positive/negative sheets (Fig. 5). Binder removal remarkably improved the average 
discharge plateau from 3.54 V to 3.62 V, and the discharge capacity from 103 mAh g−1 to 122 mAh g−1 (Fig. 5a). 
The corresponding impedance profiles show a decrease in RSE (Fig. 5b,c), suggesting that the removal of PPC 
from the SE layer induces a decrease in the grain boundary and void volume19,20. As for the positive half-cells 
(Fig. 3b,c), RI for the full-cell was also substantially reduced by the removal of PPC from 836 Ω to 60 Ω.

Improved rate capability and stable cycling for binder-free cells.  Figure 6a compares the rate capa-
bility of binder-free and binder-containing positive half-cells. Under a low current density of 0.15 mA cm−2, both 
cells show slight differences in their measured capacities (153 mAh g−1 for the former, 155 mAh g−1 for the 
latter), comparable with the theoretical value of NCM25. The use of milder measurement conditions, such as 

Figure 3.  Efficacy of the removal of PPC from positive half-cells. (a) Initial charge-discharge curves of binder-
free and binder-containing positive half-cells (NCM:f-LPS:AB:PPC = 80:20:2:3)/f-LPS/In operated at a current 
density of 0.064 mA cm−2 between the cut-off voltage of 3.7–2.0 V vs. Li-In and (b), (c) the corresponding 
impedance plots measured after charging to 3.7 V vs. Li-In.
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CCCV-charge mode and an In-Li counter electrode, caused the increased initial capacity in the latter cell, com-
pared to Fig. 3a. Notably, with increasing current densities, the binder-containing cells display rapid decays of 
capacities and negligible capacities, 15 mAh g−1, starting at 3.0 mA cm−2. In contrast, the binder-free cell exhib-
ited significantly higher capacity, delivering ~50 mAh g−1 even at 3.0 mA cm−2. Further cycling at a low current 

Figure 4.  Effect of PPC content in the electrode on the cell performance. (a) Initial discharge capacities and RI 
after initial charging of binder-free and binder-containing positive half-cells using positive sheets with different 
PPC content, (NMC:f-LPS:AB:PPC = 80:20:2:x)/LPS/In. (x = 3, 6) (b) Impedance plots of the binder-free 
sheet-type cell, sheet (NCM:f-LPS:AB:PPC = 80:20:4:3)/LPS/In, and the binder-free pellet-type cell, powder 
(NCM:f-LPS:AB = 80:20:4)/LPS/In, measured after initial charging to 3.7 V vs. In-Li at a current density of 
0.064 mA cm−2.

Figure 5.  Efficacy of the removal of PPC from full-cells. (a) Initial charge-discharge curves of binder-
free and binder-containing full-cells, (NCM:f-LPS:AB:PPC = 80:20:2:3)/(LPS:PPC = 100:3)/(graphite:f-
LPS:AB:PPC = 58:42:1:3) operated at a current density of 0.064 mA cm−2 with a cut-off voltage of 4.2–3.0 V and 
(b,c) the corresponding impedance plots measured after charging to 4.2 V.
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density returned the cell to a reversible capacity of 149 mAh g−1. Thus, we concluded that the rate capability is 
remarkably improved by reducing the RI value.

Stable charge/discharge cycling was exhibited by binder-free positive half-cells after 25 cycles at the above 
testing rate (Fig. 6b). The cell shows an initial discharge capacity of 149 mAh g−1 with 100% coulombic effi-
ciency and retains a high capacity of greater than 125 mAh g−1 for at least 175 cycles. The capacity retention 
rate of binder-free and binder-containing half-cells that were operated at several current densities are shown 
in Supplementary Fig. S6a, which obtained from the discharge capacity of Nth cycle compared to that of (N-4)th 
cycle in Fig. 6a. The binder-free cell operated at 0.15 mA cm−2 had a capacity retention rate of 99.4% per 5 cycles 
(30th/26th). Thus, the capacity after the 175th cycle was estimated to be 121 mAh g−1 (see Supplementary Fig. S6b), 
which is comparable with the experimental value (125 mAh g−1) in Fig. 6b. This agreement suggests the capac-
ity retention rate per 5 cycles may be a reliable measure for estimating the long-term stability under various 
current densities. The capacity retention rates of the binder-free cell decreased with increasing current densi-
ties (see Supplementary Fig. S6a). This decrease can be improved by reducing the dominant cell internal resist-
ance for the half-cell, RSE, by using a thinner SE layer, a SE with a higher ionic conductivity (~10−2 S cm−1)10, 
and higher-temperature operation (~100 °C)10. In comparison with a binder-containing cell, the binder-free cell 
maintains higher capacity retention rates at every current density (see Supplementary Fig. S6a). Therefore, the 
reduction of RI by the removal of the binder is effective to enhance long-term stability especially for the operation 
under higher current densities. Stable cycling was also exhibited for binder-free negative half-cells (Fig. 6c). The 
cell shows an initial charge capacity of 319 mAh g−1 with 88% coulombic efficiency. Notably, extended testing for 
more than 250 cycles indicated excellent reversible capacity above 240 mAh g−1 with coulombic efficiencies in 
excess of 99% after a few initial cycles.

Fabrication of binder-free sheet-type full-cells with high cell-based-energy-density.  We fab-
ricated SE sheets with half their original thickness and positive/negative sheets with twice the original loading 
of active materials to improve the cell-based energy density. Moreover, the capacity ratio of negative to positive 
sheets, N/P, was tuned to be ~1.2–1.5 to prevent the occurrence of fine short-circuiting associated with the forma-
tion of lithium dendrites on the negative layer, although N/P is generally tuned to 1.1 in the industrial production 
of LIBs. As a result, the cell-based-energy-density of sheet-type binder-free full-cells reached 115 Wh kg−1, which 
was calculated from the initial discharge capacity (116 mAh g−1), the average discharge voltage (3.51 V), and 
the weight of the cell without current collectors (PE 16.38 mg, SE 10.93 mg, NE 16.89 mg) (see Supplementary 
Fig. S7).

Figure 6.  Improved rate and cycle performances of binder-free half-cells. (a) Rate capability of the binder-
free and binder-containing positive half-cells, (NCM:f-LPS:AB:PPC = 80:20:4:3)/LPS/In-Li, operated 
at several current densities from 0.15 mA cm−2 (0.17 C) to 3.0 mA cm−2 (3.5 C) under CCCV charge-CC 
discharge between 3.7 and 2.0 V (vs. Li-In) at 30 °C. The numbers denote the operating current densities in 
mA cm−2. Cycling retention of (b) binder-free positive half-cell shown in (a) operated at current density of 
0.15 mA cm−2 (0.17 C) under CCCV charge-CC discharge and (c) binder-free negative half-cell, (graphite:LS-
LPS:AB:PPC = 58:42:2:3)/LPS/In-Li, operated at 0.064 mA cm−2 (0.13 C) under CC charge-CC discharge.
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The above binder-free sheet-type full-cell after 350 cycles could be taken out from the mold without breaking, 
indicating its free-standing feature, and its microstructure was observed by SEM (Fig. 7). The thickness of the 
positive layer, the SE layer, and the negative layer were estimated to be 74, 59, and 134 μm, respectively (Fig. 7a). 
Despite a relatively thin SE layer, the positive and negative sheets were successfully stacked on both sides of the 
SE sheet without short-circuiting. NCM particles were dispersed in the SE matrix homogeneously and made 
intimate contact with the SE (Fig. 7b). In addition, no pulverization of NCM by compression between NCM par-
ticles14 was observed in the cross-sectional view of the positive layer. The SE layer appears as an almost completely 
dense region without voids, cracks, or grain boundaries (Fig. 7c). Similarly, smooth cross-sections were also 
observed in hot-pressed SE pellets19,20. Even without added pressure, sintering of SE particles may be promoted by 
heat treatment near the glass transition temperature. The originally spherical graphite powder was crushed with 
cleavage in the direction perpendicular to the external pressure used in the fabrication of the cell to form a closely 
packed composite with the SE particles (Fig. 7d). Scarcely any evidence of PPC removal, such as visible voids and 
cracks in the electrode and electrolyte layers, was found by SEM. Surprisingly, the active materials and SE make 
intimate contact and are densely packed even after 350 cycles and despite graphite’s ~10 vol% volume change28.

Discussion
Our work demonstrates the novel fabrication process of sheet-type ASSLBs in which the binder can be removed. 
Most of the conventional binders for LIBs, such as PVdF, and for sheet-type sulfide-based ASSLBs, such as sil-
icone12, SEBS14,15, SBS15, PEG16, and BR17 decompose around 400 °C under an oxygen-free atmosphere causing 
carbon deposits, which may affect the electronic conductivity of the separator layer. Therefore, we focused on 
volatile aliphatic polycarbonates, which depolymerize by unzipping at lower temperatures. The aliphatic poly-
carbonates tend to be hard to dissolve in solvents with low donor number, while SE tends to be decomposed by 
solvents with a high donor number. A combination of PPC and anisole fulfilled these conflicting demands.

PPC acts as a suitable dispersant and binder to make homogeneously dispersed slurries that afford bendable 
free-standing SE sheets, splinter-free electrodes during punching, and two-layered SE/electrode sheets by coat-
ing. The removal of PPC even from large-area SE sheets with high PPC content induces no adverse effects on 
the conductivity of the SE, implying the possibility of preparing large-area sheet-type cells which are important 
for applications. The binder-free sheet-type full-cells were also free-standing, similar to the previously reported 
binder12,15, polymer mesh12 and nonwoven13-containing sheet-type cells. This property was accomplished by the 
intimate contact between the SE and the active materials through the plastic deformation of SE19,20 by compres-
sion after heat-treatment. Therefore, the SE can act as a binder after the removal of PPC.

Figure 7.  SEM images of intimate contact of SE and positive/negative layer maintained over 350 cycles. Cross-
sectional SEM images of (a) the binder-free full-cell, (NCM:LS-LPS:AB:PPC = 80:20:2:3)/(LPS:PPC = 100:3)/
(graphite:LS-LPS:AB:PPC = 58:42:2:3), and the magnified images of the (b) positive layer, (c) SE layer and (d) 
negative layer after 350 cycles. Scale bar, (a) 40 μm, (b–d) 5 μm.
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The binder removal strategy is a simple, effective, and fruitful approach to producing sheet-type cells. To the 
best of our knowledge, this report is the first case that realizes binder-free sheet-type sulfide-based ASSLBs by 
coating.

Long-term stability of the binder-free half-cells was achieved despite operation under much harsher condi-
tions relative to previously reported pellet-type half-cells7–9, including twice the ratio of positive active materi-
als in the electrode and a two-fold increase in current density. Although previously reported binder-containing 
half-cells were investigated for only 20 cycles or less12,14,15, and some battery exhibits significant capacity fading12, 
we validated the reliability of the binder-free half-cells over 175 cycles. While gradual capacity fading for the 
binder-free full-cell was observed over 350 cycles, this may be improved by using a SE with high ionic conductiv-
ity and high operating temperatures10. Work to enhance the reversible cycle stability of these full-cells is currently 
in progress.

Binder removal drastically decreases RI, which is lower than that reported for SEBS14,15 and SBS-containing 
cells15, and reaches values close to those seen for binder-free pellet-type cells (Fig. 4c). As a result, the rate capa-
bility (Fig. 6a) and capacity retention rates (see Supplementary Fig. S6a) were improved by binder removal, 
especially under higher current densities. As the thickness of the SE layer decreases and the conductivity of SE 
(10−2 S cm−1)10 increases, RI is expected to become the dominant factor in the total cell internal resistance, com-
prising RI and RSE

29. Therefore, minimizing RI is critical to improving the rate capability and long-term stability, 
and is effectively accomplished by removing the binder from sheet-type cells.

Stackable binder-free sheet-type batteries may potentially satisfy the demands of next-generation electronic 
vehicles in terms of energy density. These batteries exhibited an energy density of 115 Wh kg−1, which is a ~2.6–
5-fold increase compared with conventional pellet-type cells (LiCoO2/graphite)10,11 and a 2.6-fold increase rel-
ative to nonwoven-containing sheet-type cells (LiCoO2/Li4Ti5O12)13. This feat was accomplished through the 
fabrication of thinner SE sheets and homogeneously dispersed electrodes with higher active material weight 
fractions by using PPC.

The results of this study provide a novel and unique process that can enhance rate capability, long-term sta-
bility and cell-energy-density, and offer opportunities to build high-performance sheet-type ASSLBs that are not 
limited to NCM/graphite ASSLBs.

Methods
Evaluation of solvent-exposed LPS and PPC-containing LPS before and after heat treatment.  
All processes were performed in a dry Ar atmosphere. Three types of 75Li2S · 25P2S5 (Li3PS4) were prepared 
according to previous reports: Li3PS4 glass (LPS) prepared by mechanical milling (~10 μm in diameter, 
4 × 10−4 S cm−1)5; pulverized fine Li3PS4 glass (f-LPS) (~3 μm in diameter, 2 × 10−4 S cm−1)30; thin rod-like Li3PS4 
(LS-LPS) prepared by liquid-phase shaking (LS) (ca. 3 μm × 500 nm × 100-200 nm, 2 × 10−4 S cm−1)31,32. The sta-
bility of LPS toward solvents was evaluated by soaking LPS powder in a solvent for 24 h followed by drying for 
a few days at room temperature. PPC-containing LPS was prepared by mixing LPS and PPC (Mw = 357,000, PO 
units = 3 wt.%, Sumitomo Seika Chemicals) in a weight ratio of 100:6 in anisole and drying the resultant slurry at 
room temperature for a few days in a dry Ar atmosphere. Heat treatment of the resultant powder was carried out 
in a stainless-steel container on a hot plate under vacuum for 30 min.

The ionic conductivities of pelletized samples were measured by AC impedance spectroscopy at frequencies 
ranging from 0.1 Hz to 1 MHz under an applied voltage of 10 mV (FRA1455, Solartron) in a symmetric cell 
(stainless-steel/sample/stainless-steel). The structure was studied by Raman spectroscopy with a green laser at 
532.05 nm (NRS-3100, JASCO). Cyclic voltammetry measurements were conducted to quantify the voltage sta-
bility window for the pelletized sample using Li foil as the counter/reference electrode, a stainless-steel disk as 
the working electrode, and a sweep rate of 5 mV s−1 between −0.1 to 5 V. DC conductivity was measured using a 
potentiostat (Multistat 1470E, Solartron) at room temperature under a constant DC voltage of 50 mV in a sym-
metric cell configured as either Li/sample/Li or stainless-steel/sample/stainless-steel, and calculated from the 
thickness of the pellets and obtained current values.

Fabrication of binder-free sheet-type ASSLBs.  Typical electrode and SE sheets were prepared by mix-
ing the active materials LiNbO3-coated LiNi1/3Co1/3Mn1/3O2 (NCM)33 and graphite (Nippon Graphite, CGB-10), 
f-LPS, acetylene black (AB, Denki Kagaku, Denka Black HS-100), and PPC in anisole with a weight ratio of 
80:20:2:3 (NCM:f-LPS:AB:PPC), 58:42:1:3 (graphite:f-LPS:AB:PPC) and 100:3 (SE:PPC), casting the resultant 
slurry onto aluminum foil (20 μm) or copper foil (18 μm), and drying at room temperature (see Supplementary 
Fig. S8). Two-layered SE/electrode sheets were also prepared by coating an SE slurry on the electrode sheet.

Typical half-cells were fabricated using the electrode sheet as the working electrode, SE glass powder as 
the separator, and In foil or In-Li foil as the counter and reference electrodes. The electrode sheet and SE pow-
der (80 mg) were placed in a 10 mm-diameter polyimide mold and pressed together by applying a pressure of 
110 MPa14. Then, the bilayer sheet was placed in a stainless-steel container and heated at 225 °C for 30 min under 
vacuum. An In foil or In-Li foil were placed on the surface of the SE side of the bilayer sheet and compressed 
using two stainless-steel rods as current collectors under ~100 MPa. The sheet-type full-cells were constructed as 
described above except for simultaneous stacking of the PPC-containing positive, the SE, and the negative sheet.

Evaluation of the binder-free sheet-type ASSLBs.  Charge-discharge cycling was conducted using a 
charge-discharge measurement device (BTS-2004, Nagano) between cut-off voltages of 2.0–3.7 V vs. Li-In for 
the positive half-cells, −0.57–0.88 V vs. Li-In for the negative half-cells, and 3.0–4.2 V for the full-cells at room 
temperature. The capacity calculations are based on the mass of NCM for positive half-cells and full-cells, and 
graphite for negative half-cells. AC impedance measurements were performed after initial charging at a current 
density of 0.064 mA cm−2 under frequencies ranging from 0.01 Hz to 1 MHz at an applied voltage of 10 mV.
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The morphology and microstructure of the full-cell were characterized by scanning electron microscopy 
(KEYENCE VE-9800) at 10 kV. Cross sections of the specimens were formed by Ar milling using a cooling cross 
section polisher (CP, JEOL 1B-19520CCP). The samples were transferred in an Ar atmosphere from the glove box 
to the equipment for CP and SEM.
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