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Gene expression is a complex stochastic process composed of numerous enzymatic reac-
tions with rates coupled to hidden cell-state variables. Despite advances in single-cell
technologies, the lack of a theory accurately describing the gene expression process has
restricted a robust, quantitative understanding of gene expression variability among cells.
Here we present the Chemical Fluctuation Theorem (CFT), providing an accurate relationship
between the environment-coupled chemical dynamics of gene expression and gene
expression variability. Combined with a general, accurate model of environment-coupled
transcription processes, the CFT provides a unified explanation of mRNA variability for
various experimental systems. From this analysis, we construct a quantitative model of
transcription dynamics enabling analytic predictions for the dependence of mMRNA noise on
the mRNA lifetime distribution, confirmed against stochastic simulation. This work suggests
promising new directions for quantitative investigation into cellular control over biological
functions by making complex dynamics of intracellular reactions accessible to rigorous
mathematical deductions.
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ARTICLE

very chemical reaction is a stochastic process, and every life

form is operated by chemical reactions catalyzed by

enzymes. Enzyme activity varies strongly even among clonal
enzymes because of its coupling to enzyme conformation and
environmental variables'™. This is evidenced by the fact that the
time elapsed during a single enzymatic turnover and the product
number were found to be stochastic variables with far greater
randomness than predicted by conventional enzyme kinetics,
which assumes a constant enzyme activity*™®. An important
question to ask here is, in what way and how accurately do life
forms achieve the order required to develop and sustain their lives
from the disordered reaction events of single enzymes. This
question was first addressed in the context of gene expression
because of its fundamental importance in biology’°.

Modern single-molecule experiments have shown that the
cellular control over gene expression is imperfect; even among
cells carrying the same exact gene, the abundance of proteins
produced by gene expression was found to vary from cell to
cell®?, causing phenotype variations'!~!3. From a chemical phy-
sics perspective, the fluctuation in protein levels among geneti-
cally identical cells is dependent on the chemical dynamics of
gene expression, which, in turn, depends on the mechanism of
gene expression and the environment-coupled dynamics of the
elementary processes constituting gene expression. Thus, the
variability in the protein levels can be adjusted through various
experimental measures that effectively change the dynamics of
transcription and translation, the two major chemical processes
constituting gene expression'4~1°, Recently, the number of such
experimental studies has grown rapidly!”'8. However, a robust,
quantitative understanding of the chemical dynamics of intra-
cellular gene networks and their relationship to gene expression
variability is still lacking.

The reason being, it is challenging to construct a rigorous
model for the chemical dynamics of gene expression, which is
composed of multi-channel or multi-step reactions with rates
coupled to cell-state variables. Examples of the cell-state variables
coupled to the gene expression rate include the populations of
RNA polymerase (RNAP) and ribosomes'’; the populations of
transcription factors and micro-RNAs?’; the interaction strength
of genes with RNAP and transcription factors’!; the gene copy
number?>??; the phase of the cell cycle?%; the density of nutri-
ents?’; and the conformation of chromosomes?®. All of these cell-
state variables are stochastic variables that differ from cell to cell
and fluctuate over time. The stochastic dynamics of the entire cell
state and its influence on the chemical dynamics of gene
expression are much too involved to be accurately described by
the conventional kinetic network model or any specific mathe-
matical model?”?8, Typically, in quantitative studies in this field,
one cell-state variable is chosen as the control variable, and the
dependence of the gene expression statistics on this control
variable is analyzed using the conventional kinetic network
model. However, a successful quantitative explanation of
experimental data is extremely rare in this field, because the
conventional kinetic network model cannot effectively account
for the interaction of the gene network with the rest of the cell-
state variables, or the environmental variables. Recently, to
describe intracellular networks interacting with hidden cell
environments, a new model and stochastic kinetics have been
developed?, yet this theory is still in its adolescence.

In experimental research, on the other hand, impressive
advances have recently been made; develogment of single-
molecule fluorescence in situ hybridization®®!, multiplexed
error-robust FISH?2, and single-cell RNA sequencing techni-
ques>>3 have enabled measurements of cell-to-cell variation in
messenger RNA (mRNA) levels for single-gene expression sys-
tems>>3® and for the entire genome of cells**3°. Studies on the
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single-gene expression system clearly show that cell-to-cell var-
iation in mRNA levels depends on the molecular mechanism of
transcription?®3°, Meanwhile, a genome-wide expression statis-
tics revealed a global trend in the relationship between the var-
iance and the mean of mRNA levels in Escherichia coli (E. coli)*.
This finding raised the intriguing question as to whether a uni-
versal law governing the expression variability of every gene
exists>®. However, whether such a universal law exists or whether
a unified, quantitative understanding of the above-mentioned
experiments is even possible remains unknown.

Here we show that a simple equation that governs cell-to-cell
variation in gene-expression levels among a clonal population of
cells does exist, and it holds for any gene-expression system. We
call this equation the Chemical Fluctuation Theorem (CFT). The
CFT provides the exact relationship between the fluctuation in
the number of product molecules and the environment-coupled
dynamics of product creation and annihilation processes. Com-
bined with an accurate transcription model that takes into
account the non-Poisson transcription dynamics and the influ-
ence from cell environments in a collective and complete manner,
the CFT provides a unified, quantitative explanation for cell-to-
cell variability in the mRNA number for various experimental
systems. Using both the CFT and the quantitative model of
transcription dynamics optimized from our analysis, we make
quantitative predictions for the dependence of the mRNA noise
on the mRNA lifetime fluctuation. According to our predictions,
the mRNA noise increases with the cell-to-cell heterogeneity in
mRNA lifetime, but interestingly, the mRNA noise decreases with
increasing fluctuation in mRNA lifetime caused by non-Poisson
mRNA degradation dynamics in each cell. The correctness of
these predictions is confirmed against stochastic simulation.

In the analysis of experimental data, we find that the mean
mRNA level dependence of non-Poisson mRNA noise, or the
difference between the relative variance and the inverse mean of
the mRNA level, is far more sensitive to the transcription
dynamics than the Fano factor or other previously used measures.
From the analysis, we find that the transcription dynamics is
more sophisticated than that assumed in previous studies. The
gene-state switching process makes an important contribution to
non-Poisson mRNA noise®>*; yet, it alone cannot explain
experimental data for the mRNA level dependence of mRNA
noise. To quantitatively explain these data, we utilize new tran-
scription models in which transcription of activated genes is a
non-Poisson process. Fast-growing E. coli cells show an inter-
esting oscillation in the time-correlation function (TCF) of the
active gene transcription rate and have far less mRNA noise than
their slowly growing counterparts with an exponentially decaying
TCF. The growth condition-dependent TCF can be understood in
terms of the reaction dynamics of the transcription process. The
oscillation period in the TCF of the transcription rate progres-
sively increases with time, which cannot be explained with the
conventional assumption that the transcription dynamics is the
same across the cell population or with use of Cox’s renewal
theory*!.

By analyzing lacZ gene expression under various constitutive
promoters in E. coli?®, we find that the RNAP binding affinity of
constitutive promoters also fluctuates with a rate of about 100 Hz
or greater. This finding is consistent with the experimental data
reported in refs. #>43 (see Supplementary Note 1). This is much
faster than the repressor-regulated gene-state switching, which
occurs with a rate of about 2Hz or less in the case of strong
promoters. RNAP level fluctuation is found to be a major source
of the environment-induced correlation between the transcription
levels of different gene copies.

For the successful application of the CFT to quantitative ana-
lyses of various transcription systems with different control

| DOI: 10.1038/541467-017-02737-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a
Chemical Fluctuation Theorem
(Eq. (1))
Single-gene expression
Model | Model Il Model I
DNA , MRNA | DNA® = mRNA DNA* (1) MRNA
e —> —» - A 2&%
Transcription 3 c o
)| kel [k, v, (1) Kyl k., (0]
model 1 a 'S,LA 1 d "Dl,\EA l a
R - m—y R o -
=0 =0
Transcription . p T
rate (R) K K¢ ()¢
Non-Poisson 5 5 R
mRNA noise 0 InlE Lo+ Ll nge IE NG
(Q, 4/n),)
b
Multi-gene expression
Transcrip}ion g. g .
rate (R=).R) gk ’\"‘_21;,- ;/\',-(F)c,
9 Random variable I = =
Non-Poisson
mRNA noise ‘ ;12 i gm+,72 i&m ,12+<g(g—1 )>C
@/m) | @ gl 9T gz O

Fig. 1 Chemical Fluctuation Theorem (CFT) applied to various transcription
models. Equation (1) relates the variance of mRNA number to the TCF of the
transcription rate, whose mathematical form depends on the transcription
network model. a In Model |, the transcription rate is given by constant «.
In Model I, the gene state switches stochastically between the active state
(£=1) and the inactive state (¢ = 0), for which the transcription rate is given
by k&, with k being a constant and & being a stochastic variable. In Model lI,
the transcription rate is given by x(I')&, where x(I') is a stochastic variable
dependent on the cell state I'. For each transcription model, the CFT yields
the variance in the mRNA number. Non-Poisson mRNA noise for single-
gene transcription is defined by (an_1/(n)1)2—(n>ﬁ, where o7 and (n),
denote the variance and mean of the number of mRNA produced by a
single-gene copy, denoted by Q,1/(n); in the main text (Q,; denotes
62,/(n);—1. The duration time of each repressed and unrepressed gene
state is reported to be an exponentially distributed random variable36:°6; the
mean is, respectively, denoted by k(jrl and k;f}. For mRNA lifetimes, we
assume an arbitrary distribution, y4(t). The analytic expression of the non-
Poisson mRNA noise obtained from Eq. (1) is tabulated for each model
(Supplementary Methods). 52 denotes the relative variance, (§g%)/(g?), of
variable g, (g € {x, &}). The respective susceptibilities ypz, xpe @and ey Of
the mRNA noise to 2, 72, and nZn? are determined by TCFs of the
fluctuations in transcription rate factors, k and &, and the survival probability
of mMRNA (see the text below Eq. (2)). b Non-Poisson mRNA noise among
cells with multiple gene copies. The gene copy number, g, is a stochastic
variable. For this system, the non-Poisson mRNA noise is defined by
(6n/(M)2=(n) "' (= Qu/(n)). Q, denotes 62 /(n) — 1, with 62 and (n) being
the variance and mean, respectively, in the number of MRNA copies across
the cells with gene copy number variation. For all the three models, Model
I-11l, additional non-Poisson mRNA noise emerges from the gene copy
number variation. '13 denotes the relative variance aé/(g)2 in the gene copy
number. For Model IlI, the non-Poisson mRNA noise among cells with gene
copy number variation also emerges from the environment-induced
correlation between the transcription levels of different gene copies. C,
denotes the mean-scaled correlation between the number n; of mRNAs
produced by the first gene copy and the number n; of mMRNA produced by
another gene copy, e.g., the j-th, i.e., Cy = (sman;) /(m){n;) (j*1)

variables, it is essential to construct an accurate model for the
transcription rate coupled not only to the control variable, but
also to uncontrolled or hidden cell-state variables. Below, for
various experimental systems, we demonstrate our new method
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to construct a quantitative model for the transcription rate cou-
pled to hidden environmental variables, for which we lack the a
priori information required to construct an explicit and accurate
model.

Results
Chemical Fluctuation Theorem. Transcription consists of sev-
eral major chemical processes, including the binding of RNAP to
the promoter, the activation of the RNAP—promoter complex,
and transcriptional elongation during which mRNA is actually
synthesized. Each of these processes, in turn, consists of a number
of elementary reactions among biomolecules, whose conforma-
tion and reactivity fluctuate under the influence of cell environ-
ments. The transcription rate is not a constant but, rather, a
stochastic variable, whose dynamical properties depend on the
microscopic details of transcription and its coupling to cell
environments. For genes under transcriptional regulation
mechanisms, the fluctuation in the transcription rate becomes
even more pronounced. It was recently shown that the tran-
scription rate fluctuation caused by cell-to-cell variation in the
RNAP level is an important source of cell-to-cell variability in the
abundance of highly expressed proteins in E. coli*>**, and that
there exists a simple mathematical relationship between the first
two moments of both the RNAP and the protein levels>*44,
This suggests the existence of a general relationship between
the fluctuation in the transcription rate, R, and cell-to-cell
variability in the copy number, 1, of mRNA, which we find here
as

o2(t) = (n(t)) + /Odrl/OdTZS(t —171)8(t — 72)(6R(71)6R(12)).
(1)

Equation (1) shows that the variance, oﬁ, of the mRNA number
deviates from the mean, (n(t))[= fgdt<R(T)>S(t—T)], in the
presence of  the transcription rate fluctuation,
SR(t) = R(t) — (R(¢)); furthermore, this deviation is completely
determined by the TCF of the transcription rate fluctuation and
the survival probability, S(¢), of mRNA, or the probability that
mRNA created at time 0 has not suffered an annihilation as of
time t. The TCF of the transcription rate fluctuation vanishes only
when transcription is a Poisson process with a constant or
deterministic rate, and its precise definition is given in Supple-
mentary Methods. Through this definition, the TCF of the
product creation rate fluctuation can be related to the
microscopic dynamics of the product creation reaction. As long
as product decay is a renewal process*!, Eq. (1) holds exactly,
irrespective of the time profile of the survival probability and the
stochastic properties of the transcription process, which may be
dependent on the transcription mechanism, cell environments,
and the product number in the presence of feedback regulations.
Equation (1) is applicable to a broad class of biological networks
repeatedly creating product molecules, including translation as
well as transcription (Supplementary Note 2). When product
creation is a stationary process and the product lifetime
distribution is a simple exponential function, Eq. (1) reduces to
the result in ref. 2°. In addition, this equation correctly reduces to
other previously reported results in the corresponding limits*>~
(Supplementary Note 3).

Equation (1) cannot be easily derived from the chemical master
equation or its variations when product decay is a general non-
Poisson process, for which the decay rate of each product
molecule at a given time differs from product to product
depending on its survival time. In Supplementary Methods, we
present two separate derivations of Eq. (1) and connect it with

| DOI: 10.1038/541467-017-02737-0 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

well-established laws in probability theory, a transient version of
Little’s law, and the law of total variation®.

It is possible to generalize the CFT to the case where the
mRNA lifetime distribution is strongly heterogeneous among
cells (Supplementary Note 4). The generalized CFT is exploited to
investigate the effects of cell-to-cell heterogeneity in the mRNA
lifetime later in this work. Throughout this work, we assume that
the mRNA degradation process is not strongly correlated with the
transcription process.

Equation (1) shows that the dynamics of the environment-
coupled chemical processes constituting transcription are collec-
tively manifested in cell-to-cell variation of the mRNA level
through the TCF of the overall transcription rate. In experiments,
the dependence of the variance on the mean in mRNA levels can
be adjusted by changing, for example, the gene regulation
mechanism and strength, the promoter-RNAP interaction
strength, the gene copy number, and the cell-to-cell distribution
of RNAP levels, because each of these cell-state variables
effectively changes the TCF of the transcription rate. Therefore,
an accurate analysis of cell-to-cell variation in mRNA level
requires the correct relationship between the TCF of the
transcription rate and the control variables in the experiment.
To find the correct relationship between the two, we need to have
an accurate mathematical description of the transcription rate
that is coupled not only to the control variable but also to all the
remaining cell-state variables.

Vibrant network model for single-gene transcription. Two
popular kinetic models of transcription are the simple Poisson
process with a constant rate (Model )*! and a network of Poisson
transition processes between two gene states, each with its own
transcription rate constant (Model I1)2336:3% There also exists a
more complex transcription model involving a greater number of
gene states®?. This model is in better agreement with experi-
mental results; however, it is uncertain whether this model
accurately represents actual transcription dynamics, because
transcription at each gene state can be a non-Poisson, multi-step
enzyme process whose rate is coupled to various cell-state vari-
ables. Despite the develogment of several new approaches (Sup-
plementary Note 5°37°°), quantitatively accounting for the
influence of complex cell environments on the transcription rate
remains challenging within the framework of the conventional
kinetic model or any other specific mathematical model.

To solve this problem, we take a different approach here, where
a specific and explicit description is used only for the control
variable-dependent part of the transcription rate, while, for the
environmental variable-dependent part, a general and formal
description is used?’. For example, if a gene-state switching rate is
experimentally controlled, but the rate of the ensuing transcrip-
tion process is not, we use Model III in Fig. 1. Note that, in Model
III, the controllable gene-state switching process is modeled
explicitly, whereas uncontrolled transcription following gene-
activation is modeled implicitly, meaning that the dependence of
the uncontrolled transcription rate, x(I"), on hidden cell-state
variable, I', is unspecified. The cell-state dependent transcription
process of the unrepressed gene is represented by the wavy arrow
in Model III. The wavy arrow stands for the vibrant reaction
process, whose rate is a stochastic variable dependent on the cell-
state including the system. In comparison, the plain arrow
represents a reaction process with a constant rate coefficient
independent of cell-state. As we demonstrate below, the CFT
enables us to obtain the general analytic result for the fluctuation
in the number of product molecules created by an intracellular
network involving vibrant reaction processes, for which we may
not have a priori knowledge.
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There are gene expression systems where the waiting time
distributions of the repressed and unrepressed gene states are
approximately given by exponential distributions>®>°, For these
systems, we can model gene activation and deactivation as
Poisson processes with constant rates, ko, and kg (Fig. 1).
However, no experimental evidence supports a Poisson tran-
scription process of the activated gene, and little quantitative
information is available regarding environment-coupled
dynamics of activated gene transcription, making it difficult to
represent the transcription process in terms of a fully explicit
model. We circumvent this problem by using the concept of a
vibrant reaction process, which can represent any type of multi-
step, multi-channel reaction with rate coupled to environmental
variables.

Let us first apply Eq. (1) to Model III. The overall transcription
rate of Model III can be written as R = &x(I"), where & is a
stochastic variable representing a gene state, with the value being
0 for the repressed gene state and 1 for the unrepressed gene state,
and k(') represents the transcription rate of the unrepressed
gene, which depends on cell-state variable I". For Model III, Eq.
(1) yields
(2)

1
’7;21,1 = <I’l> +)(m<77)2c +)(m§rl§ +}(n(l<,§)’1ﬁrl§a
1

in the steady state (Supplementary Methods). 7, and (n),
denote the relative variance and the mean number of mRNA
created by a single-gene copy in the steady state, respectively. The
mean mRNA number (n), is given by (n); = (£){(n); ..., where
(€) and (n), . denote the probability of the unrepressed gene
state, (£) = kon/(kon + ko) and the maximum value,
(1)1 max = (K)Tm, of the mean mRNA number for the case with

=1. 1, denotes the mean mRNA lifetime, ie,
T = [, dt $(t). Throughout this work, 72 denotes the relative
variance or noise of g, i, 17, = (34°) / (ng (qefx, &}). Equation
(2) shows that #%, deviates from (n),  because of fluctuation in
& and «, the two factors of the transcription rate, and the
deviation is bilinearly proportional to ;72 and n?. The susceptibility
or response of the mRNA noise to fluctuation in one of the
two rate factors is determined by its TCF, ¢y, =

T;,ZISthlfgodtZS(tl)S(tz)gbq(\tl — t2|) (q c {K, f}) Slmllarly,
the  bilinear  susceptibility  y,.s is  given by

Tntee) = T o At [ d62S(0)S(2) b, (|1 — t2])p(|ty — 1a]). For
Model TIII, we have ¢,(t) = e konthott)  and 1142: = koft/kon
(Supplementary Note 6). In contrast, ¢,(¢) and #? are unknown
at this moment; however, information about them can be
extracted from experimental data, as shown later in this work.

For Models T and II, Eq. (1) yields 72, = (n);' and
nk, = (' + Xnells> respectively, which can also be obtained
from Eq. (2) by setting 7 = 7 = 0 for Model I and setting 57 =
0 for Model II.

Equation (2) is exact as long as £ and « are independent of each
other. It is applicable not only to Model III, but also to other
models in which £ and « bear different meanings and stochastic
properties compared to those in Model III. This will be exploited
in the analysis of various experiments in this work.

Equation (2) tells us that the effects of the cell-state dynamics
and its coupling to the rate, k(I'), of the vibrant reaction process
are manifested in product noise through the TCF of x(I).
However, product noise is not sensitive to other microscopic
details of the environmental dynamics and its coupling to the
reaction rate, so there can be numerous environment-coupled
network models that yield the same product noise. It is
remarkable that, even if the two rate factors, £ and «, are
independent of each other, the product noise is contributed from
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Fig. 2 Dynamics of transcription rate fluctuation consistent with cell-to-cell variation in the number of mRNA expressed from repressor-regulated lacZ in E.
coli. a (circles) Experimental data for the mean mRNA number (n), per single-gene copy and non-Poisson mRNA noise Q,/(n),(= (g)Qn/{n)) for various
concentrations of inducer IPTG3®. The decay rate, 7, of the lacZ mRNA is 1/120 Hz3¢. The red circles represent the data obtained from slowly growing cells
with doubling times greater than 45 min. The experimental data were reported in Fig. 3 of ref. 36, (dotted line) The result of Model I, for which Qn/(n); is
the same as the Fano factor (F; =2 0.21) of the gene copy number variation (Supplementary Note 16). (dot-dash line) Result of Model II. Non-Poisson
mRNA noise also emerges from the gene-state switching process. (blue solid line) Result of Model Ill. The fluctuation in transcription rate x produces
additional mRNA noise. By comparing Model Ill and the entire data, we extract the time profile of the TCF, ¢,(t), of transcription rate . (red line) Result of
Model IIl with ¢.(t) modeled as exp(—At), which is in good agreement with only the red circle data. The optimized value of A/y is 306. The major
contributors to non-Poisson mRNA noise are those from the gene-state switching process and its bilinear coupling with the ensuing transcription process,
corresponding to the last two terms on the RH.S. of Eq. (2) (Supplementary Note 17 and Supplementary Fig. 16a). b (blue line) ¢,(t) extracted from the
entire data shown in a using Model IlI. (red line) Exponential TCF, ¢, (t) = e~#, extracted from the red circle data in a, obtained from the slowly growing
cells. The dependence of the non-Poisson mRNA noise on the mean mRNA level is consistent with the known mechanism of IPTG-regulated transcription

(see Supplementary Note 6)

the bilinear coupling term, the last term on the right-hand-side
(R-H.S.) of Eq. (2), which makes it possible to extract information
about the dynamics of x from the dependence of the product
noise on £. Due to the bilinear coupling term, the mRNA noise in
Eq. (2) is not given by the simple sum of the mRNA noise
originating from the control variable-dependent part of the
transcription network and the mRNA noise originating from the
environmental variable-dependent part. This means that these
two mRNA noises do not designate the “intrinsic” and “extrinsic”
noise terms that often appear in the literature®?%>7 (Supplemen-
tary Note 7).

Effects of gene copy number variation. Phillips and co-workers
recently showed that gene copy number variation is an important
source of mRNA noise while investigating the deg)endence of
mRNA variability on the promoter architecture>’. Here, we
extend Eq. (2) to account for the effects of gene copy number
variation. We once again start from Eq. (1). Let us consider cells
with g identical copies of the system gene. Because the total
number of transcription events in any time interval is the sum of
the number of transcription events for each gene copy in the
interval, the total transcription rate R is given by R =Y $_| R,
with R; being the transcription rate from the i-th copy of the gene.
The number, g, of gene copies is a stochastic variable with a
fluctuation time scale much longer than the time scale of the
individual transcription process.

The mean mRNA number in the multi-gene system is simply
given by (n) = (g)(n),, with (g) and (n), being the mean gene
copy number and the mean number of mRNA produced per gene
copy, respectively. The mRNA noise in the multi-gene system is
contributed from gene copy number variation as well as from the
transcription dynamics of individual genes. The transcription
dynamics of individual genes manifests itself in the non-Poisson
noise, 72 — (n) "' (= Q,/(n)), much more evidently than it does
on conventional measures of mRNA level fluctuation, such as the
variance, the Fano factor, and the relative variance of the mRNA
level (Supplementary Note 8).
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For the multi-gene transcription system of Model III, Eq. (1)
yields

Qn _ LQn,l 2
)~ T

(g(g—1))
@ ), ¢

g

(3)

where n? and C, denote the relative variance of the gene copy
number and the mean-scaled correlation between the mRNA
levels produced by different copies of a single-gene, defined by
Cu = (n;dn;) /(n;)(n;) (i%j), respectively, (Supplementary Meth-
ods). Values of (g) and 77§ can be estimated by using either the

static model?® or the dynamic model®”>® of replication
(Supplementary Note 9). The correlation between the transcrip-
tion levels of different gene copies emerges from fluctuations in
global environmental variables such as the cellular levels of
RNAP, transcription factors including sigma factors, and
nutrients®?22°,

Equation (3) clearly shows that non-Poisson mRNA noise is
contributed from the gene copy number noise and the correlation
between the transcription levels of different gene copies.
However, for Model III, these contributions are independent of
the mean mRNA level (Supplementary Note 10), so the mean
mRNA level-dependent change in non-Poisson mRNA noise
results only from the first term on the R.H.S. of Eq. (3), non-
Poisson mRNA noise produced by the single-gene transcription,
which carries information about the environment-coupled
transcription dynamics of individual genes.

The analytic result for non-Poisson mRNA noise is given in
Fig. 1 for Models I-IIL. C, vanishes for Models I and II
(Supplementary Note 6), but not for Model III due to
environment-induced correlations between the transcription rates
of different gene copies. C, cannot be greater than the non-
Poisson noise, Q,1/(n),, produced by a single gene, but the two
quantities have the same order of magnitude when the major part
of gene expression variability originates from fluctuation in the
common environment shared by the gene copies®’.

| DOI: 10.1038/541467-017-02737-0 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-02737-0

a

RNAP mANA - gnap

” RNAP RNAP* ‘
vt V(L) vty
ol _coe } ——» (B Gne  ——» (o) oo } ——> (ol _ooe }
—>
Initial binding Closed complex Successful Elongation complex Elongation
initiation
o= (t1) Ty =(t,) 73=(t3)
b= (L)t
d(t—rs)
3
t2 t3
b 0.5 0.5 0.5
Tt = 4(s) /n=2 o/f=4

0.4} b=1.0 04+ b=0.5
- CV2=0.28 CV2=0.14
S 03¢f 03}t
N
*
z 02
>

0.1}
0.0 . : .
2 4 6 8 10
t(s)

C

1.0 o ADO Simulation
=
<

0 5 10 0 5 10
t(s) t(s) t(s)

Fig. 3 Non-Poisson transcription dynamics and TCF of the transcription rate of an unrepressed gene. a A simple model of the non-Poisson transcription
process: (Step 1. Initial binding) initial binding of RNAP to promoter to form the closed complex; (Step 2: Successful initiation) transition of the RNAP-
promoter complex into the elongation complex; and (Step 3: Elongation) synthesis of mMRNA. Step 1is modeled as a Poisson process with the mean reaction
time, 7, for which the reaction waiting time is distributed according to () (t) = T{We’t‘/”. The reaction waiting time of Step 2 is modeled as a gamma
distribution, y(? (t;) = t57'e™%/% /(I'(a)b%), with (t2) = ab(= 72) and (8t3)/(t,) = b. The elongation process (Step 3) is a highly sub-Poisson process for
which the reaction time is modeled as () (t3) = &(t; — 73). The next round of RNAP binding to the promoter is not allowed before the preceding RNAP
completes the second step to leave the promoter. During transcriptional elongation by RNAPs, other RNAP can associate with the promoter and proceed to
the next step. Multiple RNAPs can simultaneously perform the elongation process. b Distribution of transcription waiting times or the times between
successive transcription events of the single-active gene copy. This distribution is given by the convolution of w"(t) and (). The shape of the
transcription waiting time distribution is shown for three different sets of parameter values for 7;, 75, and b. The mean value, 71 + 75, is fixed at 4 s. ¢ TCF,
¢, (t), of the active gene transcription rate corresponding to each transcription waiting time distribution (see Supplementary Note 18). When the coefficient
of variation (CV) in the transcription waiting time is small enough, ¢,(t) exhibits an oscillatory feature. For the model shown in a every cell has the same
transcription dynamics, in which case the oscillation period in ¢, (t) is constant in time and approaches the mean transcription waiting time, 71 + 75, as the
CV of the transcription waiting time decreases. In the presence of coupling to a disordered environment, the period of the oscillation in ¢,(t) gradually
increases over time, as shown by the blue line in Fig. 2b (Supplementary Note 6 and Supplementary Figure 7). Further details on the stochastic simulation
method used in Fig. 3b, ¢ can be found in Supplementary Note 19

Transcription statistics of lacZ gene controlled by IPTG.
Golding and co-workers>® investigated cell-to-cell variation in the
number of mRNA expressed from the lacZ gene in E. coli,
changing the transcription level by controlling the concentration
of isopropyl -D-1-thiogalactopyranoside (IPTG), which induces
transcription by inhibiting the binding of the lac repressor to the
gene. These experimental data have not yet been analyzed with

6 NATURE COMMUNICATIONS] (2018)9:297

variation in the gene copy number taken into account, which is
done here with use of Model I-III. For this system, the mRNA
lifetime distribution is approximately an exponential function;>
accordingly, we model mRNA degradation as a Poisson process
with a constant rate, y, (w,(t) = —0S(t)/0t = ye"" in Fig. 1) in
the analysis of this system. As shown in Fig. 2a, we achieve an
excellent quantitative explanation of these experimental data by
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Fig. 4 Effects of RNAP-promoter binding affinity fluctuation on non-Poisson mRNA noise in constitutive expression. a Transcription model of a constitutive
gene without promoter strength fluctuation. The overall transcription rate of a single-gene copy is modeled by R, = [KNRP/U + KNRP)}kTX(F), where the
number Ng, of RNAP is a stochastic variable, but the RNAP binding affinity K of the promoter is a constant. b Transcription model of constitutive gene with
promoter strength fluctuation due to conformational dynamics of DNA. The overall transcription rate is given by the same formula as transcription model a,
but with K being a dichotomous stochastic variable whose value takes either O or Ko. Our analysis shows fluctuation in the value of Ky is negligible
(Supplementary Note 20). ¢ (circles) Experimental results for the mean number (n), of mMRNA per gene copy and non-Poisson noise Q,/{(n),(= (g)Qn/(n))
from the constitutive expression data reported in Fig. 2 of ref. 23. (red dot-dash) Prediction of the previous model proposed in ref. 23. (solid line) Result of
transcription model a best fitted to the experimental data. d (solid line) Result of transcription model b best fitted to the experimental data. Binding affinity
fluctuation in the constitutive expression occurs much faster than in the repressor-regulated gene expression (Supplementary Figs. 2 and 10). For
constitutive gene expression, transcription model b provides a better quantitative explanation of the experimental data than Model Ill. However, in the

absence of fluctuation in Ngp, transcription model b becomes equivalent to Model Ill (Supplementary Fig. 12)

using Model III and the assumption that IPTG changes the rate,
kofr, at which the lac repressor changes the gene state from the
unrepressed to the repressed state (Supplementary Note 6),
consistent with the known mechanism of IPTG and the conclu-
sion of ref. 3°.

The success of Model III attests that transcription rate, , of the
unrepressed gene is not a constant, as assumed in Model II, but a
dynamic stochastic variable. From the quantitative analysis of the
experimental data with Model III, we can extract the time profile
of the TCF, ¢,(t), of k, which exhibits an oscillatory feature
(Fig. 2b). The experimental results shown in Fig. 2 cannot be
explained by assuming a model with a monotonically decaying
TCF or a white noise model of transcription rate fluctuation
(Supplementary Figures 2 and 4). The oscillatory ¢,(t) can be
understood from the known mechanism of transcription, only if
the distribution of transcription waiting times, or the times
between successive transcription events of the unregressed gene,
has a peak with a small relative fluctuation (Fig. 3) 9,

To understand the oscillatory TCF, we consider the well-
known mechanism of activated gene transcription, shown in
Fig. 3a, which is represented by the wavy arrow in Model III. For
the mechanism, the oscillation in ¢ (t) emerges when the
successful initiation of the open RNAP-promoter complex,
consisting of a number of consecutive chemical processes, is the
slow rate-determining step. When the initial approach and
binding of RNAP to the promoter, which has greater randomness
than the ensuing transcription processes, get slow, ¢, (t) becomes

| (2018)9:297

a monotonically decaying function (Fig. 3b, c), which is the case
for slowly growing cells with less RNAP.

The progressively increasing oscillation period of ¢,.(¢) shown
in Fig. 2b signifies that the transcription dynamics is hetero-
geneous among a clonal population of cells (Supplementary
Note 6 and Supplementary Fig. 7), which cannot be explained by
assuming that every cell has the same transcription dynamics or
that transcription is a renewal process with a single waiting time
distribution independent of cell environments (Supplementary
Fig. 21).

The oscillatory TCF of the transcri(l))tion rate was previously
observed for the human cell system®, but it results from a
different origin, that is, the oscillatory dynamics of chromatin
remodeling. The period of this oscillatory dynamics is order of 10
h and far greater than the oscillation period of the TCF of the E.
coli transcription rate, which is about 3.8 s (Fig. 2b), and close to
the mean time between successive transcription events.

In actual bacterial transcription, the rate coefficient of the
bimolecular association between RNAP and the promoter may
not be constant either, because of the RNAP binding affinity
fluctuation of the promoter associated with conformational
dynamics of DNA. This has an important consequence for cell-
to-cell variation in the number of mRNA copies created by
constitutive gene expression, as we show in later in this work.

Under the alternative assumption that IPTG changes k,, rather
than kogp neither Model II nor III provides a satisfactory
explanation of the experimental data shown in Fig. 2 (Supple-
mentary Note 6 and Supplementary Fig. 2c).
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Promoter strength-dependent transcription statistics. Phillips
and co-workers? recently showed that the relationship between
the variance and mean in the mRNA level depends on the
molecular mechanism of transcription and the experimental
control variable. In their quantitative analysis, the authors first
addressed the effects of both gene copy number variation and
fluctuation in the RNAP number, Ngp,, on mRNA level variation.
However, the authors’ analysis was based on a simple model of
transcription dynamics, in which a single gene transcription is a
simple Poisson process with the rate linearly proportional to Ngy,
and the environment-induced correlation between the tran-
scription levels of different gene copies is negligible. For this

simple model, Eq. (3) yields Q,/(n) = ( g>_1’712\er + 175, indepen-
dent of the mean mRNA number (Supplementary Note 11),
inconsistent with the experimental results (Fig. 4c, d).

Using Eq. (1) and the models shown in Fig. 4a, b, we reanalyze
these experimental results in Fig. 4, obtained for the lacZ gene
under various constitutive promoters?>. We assume that the lacZ
mRNA in this system also shows the same exgonential decay as the
lacZ mRNA in the system investigated in ref. 3°. Because the RNAP
binding affinity, K, of the promoter is the experimental control
variable, the single-gene transcription rate is modeled as
R, = [KNRP / (1 +IG\IRP)]kTX(F ). Again, the control variable-
dependent part of the transcription rate is modeled explicitly,

a b
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whereas the environment-dependent part, krx(I'), is modeled
implicitly. In the model shown in Fig. 4a, krx and Ng, are
stochastic variables, but the RNAP binding affinity, K, of the
promoter is not. In contrast, in the model shown in Fig. 4b, K is also
a stochastic variable accounting for fluctuations in the RNAP
binding affinity of the promoter caused by the conformational
dynamics of DNA. If the lacZ gene was expressed under promoters
subject to a feedback regulation, K would have been dependent on
the product number as well (Supplementary Note 12).

RNAP number, Ngp, is a global environmental variable that
affects the transcription rates of all genes in the same manner, so
cell-to-cell fluctuation in N, is an important source of the
correlation, C,, between the gene-expression levels of different
genes or gene copies (Supplementary Note 13)%¢. According to
Eq. (3), the global environment-induced correlation contributes
to non-Poisson mRNA noise. For the models considered in Fig. 4,
Ngp is nonlinearly coupled to the control variable, K, in the
control variable dependent part, 6, of the transcription rate as
0 = KNgp/ (1 + KNRP), which makes C, depzendent on the
control variable K, ie., C, = n%\]Rp /(1 +KNRP) with over-bar
designating the mean (Supplementary Note 14 and Supplemen-
tary Fig. 11).

The model shown in Fig. 4a provides a better explanation of
the experimental data than the model proposed in ref. 2, but its
prediction is still qualitatively different from the data. However,
we achieve an excellent quantitative explanation of the experi-
mental results using the model in Fig. 4b, showing that, even for
constitutive expression, the RNAP binding affinity, K, of the
promoter is, in fact, not a constant, but a stochastic variable,
attributable to the conformational dynamics of DNA®%0! (Fig, 4d
and Supplementary Note 15).

mRNA noise dependency on the mRNA lifetime distribution.
There are many cell systems where the mRNA lifetime distribu-
tion is a non-exponential function for which the master equation
or other existing methods cannot provide an accurate description.
However, as demonstrated here, the CFT provides an accurate
description of the mRNA noise for any mRNA lifetime distribu-
tion, when each mRNA degradation process is a renewal process.

The CFT makes it clear that when transcription is a Poisson
process, mRNA noise becomes Poisson noise, i.e., 62(t) = (n(t)),
regardless of the mRNA lifetime distribution. This is consistent
with ref. 2, where the authors show that mRNA noise is

independent of the number of reaction steps composing mRNA
degradation given that transcription is a Poisson process.

However, the CFT also makes it obvious that mRNA noise is
dependent on the mRNA lifetime distribution whenever tran-
scription is a non-Poisson process with non-vanishing TCF. For
example, we compare the mRNA noise predicted by the CFT and
Model III for three different models of mRNA degradation in
Fig. 5a: the sub-Poisson Michaelis—Menten process, the one-state
Poisson process, and the two-state super-Poisson process63_65.
Each represents a renewal process that is characterized by the
mRNA lifetime distribution shown in Fig. 5b, and the mRNA
lifetime distribution varies depending on the model in question.
In this comparison, we set the mean mRNA lifetime the same for
all three models and use the transcription part of Model III
optimized by our analysis of the experimental data shown in
Fig. 2 for the slowly growing E.coli system.

As shown in Fig. 5¢, the steady-state mean mRNA number
saturates to the same steady-state value regardless of mRNA
lifetime fluctuation. However, non-Poisson mRNA noise varies
between the models even in the steady state. The mRNA noise is
found to be smallest for the two-state model of the super-Poisson
mRNA degradation dynamics, but greatest for the sub-Poisson
mRNA degradation model. These theoretical predictions are
confirmed to be correct, in agreement with stochastic simulation
(Fig. 5c, d), suggesting that mRNA noise decreases with
increasing mRNA lifetime fluctuation caused by non-Poisson
mRNA degradation dynamics.

For example, the mRNA of atoS, fabB, and ykgE in E. coli
reportedly show bi-exponential lifetime distributions®®, and
degradation of these mRNA were modeled by the 2-state super-
Poisson process shown in Fig. 5a%°7%°, As shown in Fig. 5e, for
this model, both the CFT and stochastic simulation tell us that
non-Poisson mRNA noise decreases as the mRNA lifetime
fluctuation increases. This and other previous models of mRNA
degradation assume that mRNA degradation dynamics is not
influenced by heterogeneous cell environments.

When mRNA degradation dynamics is strongly coupled to
heterogeneous cell environments, the mRNA lifetime distribution
differs from cell-to-cell and the overall mRNA degradation
process is a non-renewal process to which the CFT is not
applicable; however, we generalize the CFT to encompass this
case in Supplementary Note 4. The generalized CFT indicates that
mRNA noise increases with cell-to-cell heterogeneity in the
mRNA degradation dynamics or lifetime distribution. For
example, in Fig. 5f, we present the prediction of the generalized

Fig. 5 Quantitative prediction for mRNA noise dependence on mRNA lifetime fluctuation. a Models of the mRNA degradation process: (left) the

Michaelis-Menten sub-Poisson process; (middle) one-state Poisson process; (right) two-state super-Poisson process. mRNA degradation starts from state
1. The three models represent renewal processes with different distributions of mRNA degradation time. Randomness, Ry, in MRNA degradation time or
lifetime is defined by the relative variance of mMRNA lifetime minus unity. For sub-Poisson mRNA degradation, Ry < O; for a Poisson process, Rq = 0; and for
a super-Poisson process, Rq> 0. b mRNA lifetime distributions. (red line) Michaelis-Menten (MM) sub-Poisson process; (green) 1-state Poisson process;
(blue line) 2-state super-Poisson process (Supplementary Note 16). The 2-state super-Poisson model has been used to model the bi-exponential lifetime
distribution of atoS, fabB, and ykgE mMRNA®3765 The mean mRNA lifetime is set equal to 25.8 s, the mean lifetime of atoS mRNA. ¢, d Time dependence of
the mean and Fano factor in the number of mRNA transcribed by a single gene. The mean and Fano factor of mMRNA number are calculated from equation
(M1-6) and Eq. (1) for Model IlI, optimized from our analysis in Fig. 2 for experimental data obtained from slowly growing E. coli*® (see Supplementary
Table 1). The fraction of the active gene state is set to 1/2. e, f Dependence of the steady-state non-Poisson mRNA noise on the mean and randomness of
the mRNA lifetime for two models: for the two-state super-Poisson mMRNA degradation model without cell-to-cell heterogeneity (e) and for the 1-state
Poisson mRNA degradation model, but with cell-to-cell heterogeneity in the rate (f). The theoretical prediction is made by the CFT in e, but by the
generalized CFT, equation (M8-5) in f. (surface) Theoretical prediction. (spheres) Simulation results. (cubes) Prediction for atoS, fabB, and ykgk mRNA
transcribed under IPTG inducible lac promoter in slowly growing E. coli shown in Fig. 2, given the 2-state super-Poisson model of mRNA degradation is
valid®®. Non-Poisson mRNA noise is measured by A(x) [= Qn/(n);—Qn/{n)|x=1], or the mean mRNA number dependent component of non-Poisson mRNA
noise produced by single-gene transcription (see Supplementary Note 6). Both models yield the same bi-exponential mMRNA lifetime distribution. mRNA
noise increases with the randomness in the mRNA lifetime originating from cell-to-cell heterogeneity in the mRNA degradation rate, but decreases with an
increase in the randomness of mMRNA lifetime caused by non-Poisson mRNA degradation dynamics (Supplementary Note 4 and Supplementary Movies 1
and 2)
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CFT for Model III, but with the bi-exponential mRNA lifetime
distribution resulting from cell-to-cell heterogeneity in the
mRNA degradation rate. In this model, the bi-exponential
mRNA lifetime distribution is contributed from two cell groups
each with their own differing exponential mRNA lifetime
distribution. According to the prediction of the generalized
CFT, non-Poisson mRNA noise increases with the mRNA
lifetime fluctuation originating from cell-to-cell heterogeneity in
the mRNA degradation dynamics. It is noteworthy that, even
though these two models have the same bi-exponential mRNA
lifetime distribution, the homogeneous mRNA degradation
model considered in Fig. 5e and the heterogeneous mRNA
degradation model considered in Fig. 5f show opposing trends in
the dependence of mRNA noise on mRNA lifetime fluctuation.

This result suggests that the dependence of mRNA noise on
mRNA lifetime fluctuation can serve as a probe of the main
contributor to the non-exponential mRNA lifetime distribution.
When cell-to-cell heterogeneity in the mRNA degradation
dynamics is the main contributor, mRNA noise increases with
mRNA lifetime fluctuation. On the other hand, when it is the
homogeneous non-Poisson mRNA degradation dynamics,
mRNA noise decreases as mRNA lifetime fluctuation increases.

Discussion

Equation (1) tells us that non-Poisson mRNA noise emerges from
fluctuations in the transcription rate?>>’. According to our analysis
shown in Fig. 2a, transcriptional regulation by the gene-state
switching process inevitably increases transcription rate fluctuation
and, consequently, non-Poisson mRNA noise as well. The rate of the
ensuing transcription process of the RNAP-promoter complex also
suffers large fluctuations; however, the dynamics of the process is a
strongly non-Poisson, non-renewal process with small randomness,
producing unexpectedly low mRNA noise (see Supplementary
Note 6). This result shows that E. coli does not always exploit
diversity in phenotype. It is equipped with special transcription
dynamics of the gene in the active state to produce negligible mRNA
noise compared to mRNA noise inevitably produced in the gene-
state switching step required for adaptation or environment-
dependent gene expression (Supplementary Fig. 16).

It was recently observed that the variance in the protein level
was quadratically proportional to the mean®”. Similarly, the
variance, 6%, in the mRNA level appears to be a quadratic func-
tion of the mean mRNA number, (n) (Supplementary Fig. 9). Our
analysis shows that the origin of the quadratic dependence of ¢?
on (n) is the gene-copy number variation and the correlation
between the transcription levels of different genes, which are
independent of the control variable or the transcription dynamics
of individual genes (see Supplementary Note 8). In contrast, non-
Poisson mRNA noise originating from these control variable-
independent sources, which corresponds to the last two terms on
the RH.S. of Eq. (3), is constant in the mean mRNA level.
Therefore, the mean mRNA level dependence of the non-Poisson
mRNA, resulting from the first term on the RH.S. of Eq. (3), is
far more sensitive to the single-gene transcription dynamics,
which is exploited in our analysis shown in Fig. 2.

The non-Poisson mRNA noise data in Fig. 4 for the con-
stitutive promoter are smaller than the data for the promoter
regulated by repressors (Fig. 2a), even when the mean mRNA
level and the magnitude of the transcription rate fluctuation are
similar for both. This is because the dynamics of the gene-state
switching caused by conformational dynamics of the constitutive
promoters occurs faster than the dynamics associated with the
reversible binding of repressors to promoters (Supplementary
Fig. 1); according to the CFT, mRNA noise decreases as the speed
of the transcription rate fluctuation increases. In Saccharomyces
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cerevisiae as well, non-Poisson mRNA noise for constitutive genes
was smaller than the noise for genes under additional regulation
mechanisms®®,

The mathematical form of the CFT is in no way affected by the
presence of feedback regulation, cell-to-cell communication, or
other types of complication in the product creation process. A
practical application of the CFT to the quantitative analysis of the
reaction networks comprising more complicated processes is
another interesting topic we leave for future research. However,
we briefly discuss the application of the CFT to gene expression
networks with feedback regulation in Supplementary Note 12,
where we note that the TCF of the protein number is crucial
information for such an application. Our derivation can be
extended to obtain the TCF of the protein number in a
straightforward manner, which is to appear elsewhere.

We present the CFT, arguably the first mathematical equation
that chemical fluctuation in living cells actually obeys. Combined
with our new type of transcription models, the CFT provides a
unified, quantitative explanation of cell-to-cell variation in
mRNA number for various experimental systems. Using a
quantitative transcription model developed in our analysis, we
make quantitative predictions for the dependence of mRNA noise
on the mRNA lifetime distribution. This work proposes a pro-
mising, new approach to quantitative investigations into sto-
chastic chemical dynamics of intracellular networks interacting
with cell environments, marking an advance that would have
been unobtainable through the master equation and other exist-
ing approaches. Examples of reaction networks composed of non-
Poisson processes can be found in a vast variety of topics in both
natural and social science, to which the CFT can be applied for
quantitative fluctuation analysis.

Methods

A brief summary of Supplementary Information. Derivations of the CFT, or Eq.
(1), are presented in Supplementary Methods, including the derivation of Egs. (2)
and (3) from Eq. (1). The results are summarized in Fig. 1. The methods used in
quantitative analyses of the experimental data shown in Figs. 2 and 4 are presented
in detail in Supplementary Notes 6, 15, 18, and 21. In Supplementary Note 15, we
include the derivation of the analytic results of the mRNA noise for the two
transcription models in Fig. 4a, b, used in the quantitative analysis of the experi-
mental data shown in Fig. 4c, d. The stochastic simulation methods used in Figs 3
and 5 are described in Supplementary Note 19. Supplementary Note 4 provides the
generalization of the CFT into the case where the product lifetime distribution is
strongly heterogeneous among the cells, considered in Fig. 5f.

Data sources. The experimental data analyzed in Figs. 2 and 4 are taken from refs.
36 and 23, respectively.

Code availability. The Mathematica and C-language code used to generate the
reported results are available from the corresponding authors upon request.

Data availability. All data used in the current research are available upon request
to the corresponding authors.
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