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Abstract

Purpose—To automate dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) 

data analysis by unsupervised pattern recognition (PR) to enable spatial mapping of intra-tumoral 

vascular heterogeneity.

Methods—Three steps were automated: (i) Determination of contrast agent arrival time at tumor, 

including calculation of pre-contrast signal. (ii) Four criteria-based algorithms for the slice-

specific selection of number of patterns (NPs) were validated using 109 tumor slices from 

subcutaneous flank tumors of 5 different tumor models. The criteria were: half area under the 

curve, standard deviation thresholding, % signal enhancement, and signal-to-noise ratio (SNR). 

The performance of these criteria was assessed by comparing the calculated NPs to visually 

determined NPs. (iii) Spatial assignment of single patterns and/or pattern mixtures, obtained by 

constrained non-negative matrix factorization (cNMF).

Results—The determination of the contrast agent arrival time at the tumor slice was successfully 

automated. For the determination of NPs, the SNR-based approach outperformed other selection 

criteria by agreeing >97% with visual assessment. The spatial localization of single patterns and 
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pattern mixtures, the latter inferring tumor vascular heterogeneity at sub-pixel spatial resolution, 

was established successfully by automated assignment from DCE-MRI signal-versus-time curves.

Conclusion—The PR-based DCE-MRI analysis was successfully automated to spatially map 

intra-tumoral vascular heterogeneity.
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DCE-MRI; pattern recognition analysis; principal component analysis; automation; intra-tumoral 
vascular heterogeneity

Introduction

The tumor microenvironment is heterogeneous, exhibiting severe functional vascular 

abnormalities (1–3). Dynamic contrast-enhanced (DCE)-MRI is used to assess tumor blood 

flow and permeability clinically and pre-clinically, after the administration of the contrast 

agent (CA) gadopentetate dimeglumine (Gd-DTPA), with <30 min (clinically typically 5–10 

min) scan times and high spatial resolution (<200 µm pre-clinically and 1–2 mm clinically) 

(4–8). Parameters from tracer-kinetic modeling of signal-versus-time DCE-MRI curves 

(4,9,10) have been used to differentiate tumor microenvironments (5,6,11,12) and to 

longitudinally monitor vascular changes in response to treatments (6,13–15). Various pattern 

analysis approaches, including machine learning, have been used to extract features to 

improve tumor classification and, to a lesser extent, assess intra-tumoral heterogeneity to 

guide treatment or gauge prognosis (16–23).

Using preclinical in vivo imaging modalities coregistered with pathology, we have shown 

previously that well-vascularized (well-perfused) tumor areas are characterized by rapid Gd-

DTPA uptake/washout, that hypoxic areas exhibit reduced vascular function associated with 

delayed Gd-DTPA uptake/washout, while necrotic areas exhibit slow or no CA uptake and 

no discernible washout over the experimental observation (12,24,25). We categorized these 

tumor microenvironments based on their representative DCE-MRI signal-versus-time curves 

by pattern recognition (PR), using the Gaussian mixture model or constrained non-negative 

matrix factorization (cNMF) (24,25). The semi-automatic PR approach required manual 

input of the number of patterns (NPs) in the DCE-MRI data. The variable (subjective) 

application of a fixed NPs for all tumor slices may lead to overfitting (or underfitting) in 

tumors or tumor slices that are characterized by more (or fewer) patterns than predefined, 

and thus, disregards intra-tumoral heterogeneity represented by disparate DCE-MRI curves 

and physiological environments across tumor slices (Figure 1).

The goal of this study is to optimize and automate DCE-MRI data analysis by our previously 

described unsupervised PR approach (24) to accurately and fully-automated identify 

vascularity-driven intra-tumoral heterogeneity using cNMF. This involves novel automatic 

approaches to determine NPs for each DCE-MRI slice, to spatially map intra-tumoral 

heterogeneities and incorporates the computerized determination of the pre-contrast signal. 

A step-wise scheme of the analysis process is shown in Figure 2. All analysis steps were 

coded in MATLAB (The MathWorks, Inc. Natick, MA).
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Methods

Data Sets: Tumor Models, In Vivo DCE-MRI

We evaluated our approaches using 109 DCE-MR image slices of tumors from a 

tumorigenic, human embryonic kidney cell line (HEK, n = 6) and four prostate cancer cell 

lines: LAPC-4 (kindly provided by Dr. Sawyer (26), n = 7), Myc-CaP ((27), n = 2), PC-3 

((28), n = 2), and RM-1 ((29), n = 4).

In vivo DCE-MRI was performed using a custom-built, solenoid 1H MR coil on a 

horizontal-bore Bruker 7T magnet (Bruker Biospin, Germany). A bolus of 0.2 mmol/kg Gd-

DTPA (Magnevist, Berlex Laboratories, Inc., Wayne, NJ) was administered i.v. via tail-vein 

catheter. During the MR experiment, mice were anesthetized with <2% isoflurane in oxygen. 

The breathing rate was kept at 50–90 breaths/min by adjusting the isoflurane level. The 

rodent core temperature was maintained at 34–37°C. After tumor positioning, 1H MR coil 

tuning and matching, the water line width was optimized to ~30–70 Hz full-width-half-

maximum by field map-based shimming. To assess tumor vascularity, DCE-MRI data were 

acquired using a T1-weighted fast low-angle shot (FLASH (30)) sequence with 3.2 ms echo 

time, minimum repetition time (TRmin), 256 time points (NR256, number of frames/

repetitions (NR) per image slice set of 5, 6, or 7 slices), 1 average, 15×15 mm2 field-of-view, 

128×128 matrix, 1 mm slice thickness and 5–7 slices to cover the entire tumor. For 5, 6 and 

7 slices respectively, TRmin were 42.875 ms, 51.450 ms, and 60.025 ms with a 

corresponding temporal resolution of 5.487 s, 6.585 s, and 7.683 s. All animal studies 

complied with protocols approved by the Institutional Animal Care and Use Committee of 

Memorial Sloan Kettering Cancer Center.

Data Loading and Determination of Mean Pre-contrast Signal S0

For each image slice, text image masks, outlining the entire tumor area (ROI), are created 

using ImageJ (http://imagej.nih.gov/ij/, NIH, Bethesda, MD) from ROIs drawn manually on 

processed (Fourier-transformed, magnitude calculated) MR images acquired with 1 NR and 

500 ms TR (other parameters equal those for DCE-MRI) (Figure 2, 1st step). Sequence 

parameters, DCE-MR images, and ROI masks in each slice are loaded via a graphic user 

interface (Figure 2, 1st step). To automatically identify the time point of the CA arriving at 

the tumor tissue (NRCA), the derivative of the average signal-versus-time curve is calculated 

for each ROI. An example curve is depicted in Figure 2 (2nd step). The largest signal 

difference (red arrow, Figure 2, 2nd step) corresponds to NRCA. The lowest NR of the time 

points with the top 10 highest signal changes is selected to reduce the chance of erroneously 

identifying a later time point as NRCA. The pre-contrast signal S0 is obtained by averaging 

the signal between NR1 and NRCA with the first and last 5 NRs excluded to minimize errors 

due to signal distortions at the start of the DCE-MRI scan and due to potentially missing 

points that may already show enhancement but not the largest change (Figure 2, 2nd step). It 

is used to calculate baseline-corrected signal (signal-S0) and normalized signal (signal/S0) -

versus-time curves.
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Principal Component Analysis: Approaches for Automatic Determination of NPs

Principal component analysis (PCA, (31,32)) which identifies the sources of largest 

variations (principal components, PCs) is applied to the baseline-corrected signal (Figure 2, 

3rd step). It was conducted through singular value decomposition of the data covariance 

matrix (24). For each pixel, signal-versus-time curves (S(x, t), with spatial location x and 

dynamic time frame t=NR1, …,NR256) extracted from DCE-MRI data were resolved as the 

weighted sum of the PCs. Orthonormal PCs were ordered by decreasing amounts of 

variability.

Comparing the NPs, determined by 1–3 readers (SH, EA, RS) based on PC curve 

characteristics (signal above noise, see also Figure 1) through visual inspection, we 

evaluated four criteria (Eq. 1 – Eq. 4) for their ability to automatically determine the number 

of signal-related PCs (equivalent to NPs) in each tumor-slice ROI. All criteria were 

calculated from PC curves. Let PC(tN, k) be the Nth point (N = 1, …, 256) in the kth PC (k = 

1, …, 256).

The first criterion, half area under the curve (HAUC(k)), hypothesizes that the area of the 

first half of the points post-contrast in each PC is signal related if HAUC is above an 

empirically defined threshold of 0.5×HAUC(1).

(Eq. 1)

where k refers to the kth PC.

The second criterion, standard deviation thresholding (SDTh) hypothesizes that an 

empirically set cutoff value of 4× the standard deviation of 

, i.e. the sum of the pre-contrast time points of all 

PC curves (t=5 to t=(NRCA−5NR)) with kth PC weighted by its % contribution Fk to the 

overall signal, leads to the selection of only significant patterns (NPs), and is given by:

(Eq. 2)

The maximum i for which SDTh(i), i.e. the sum over all time points of all weighted PC 

curves (k=1 to NR256) minus the sum of all time points of k=1 to the ith weighted PC curves 

reaches the cutoff value, defines the NPs.

The third criterion, % signal enhancement (SEnh), is defined as:

(Eq. 3)

Han et al. Page 4

Magn Reson Med. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where max refers to the maximum ‘signal’ height, tEnh to the time frame from CA arrival 

until the end of the DCE-MRI acquisition (NRCA to NR256), mean to the average ‘signal’ 

height, and tBL to the time frame covering the pre-contrast acquisition from which S0 is 

calculated. A threshold of SEnh = 6000 was set empirically to select the NPs contributing 

significantly to the portrayal of the signal-versus-time curves, by optimizing agreement with 

visually determined NPs as more tumor slices were added to the analysis.

And the fourth criterion, signal-to-noise ratio (SNR), is defined as:

(Eq. 4)

with the noise (above which the ‘signal’ has to rise) defined by SD that is 4 times the 

standard deviation of the mean of PC(tBL,k). Guided by the Rose Criterion (33,34), a SNR 
threshold of 5 was set to assure 100% certainty in distinguishing the PC ‘signal’ from the 

noise (35). In cases of low or no contrast enhancement (e.g. necrotic tumors) with an SNR of 

the first PC between 2 and 5, the number of significant PCs was set to 1.

To assess the performance of these criteria, calculated NPs were compared to NPs 

determined visually.

Constrained Non-negative Matrix Factorization (cNMF) and Pattern Assignments

The orthonormal PCs are not able to represent signal-versus-time curves directly, as the 

latter are not commonly orthonormal (24). However, PCs are useful to characterize the 

number of uncorrelated, significant signal-related patterns (NP) underlying the signal-

versus-time curves of DCE-MRI data. Therefore as described previously (24), constrained 

non-negative matrix factorization (cNMF, (36–38)), an unsupervised PR approach, is used to 

describe each pixel’s normalized signal-versus-time curve by the NP patterns (cNMF curves, 

which are not orthonormal unlike the PCs) and their corresponding weights without 

significant loss of information (Figure 1, 4th step). The weights determine the contribution of 

each representative cNMF curve to a given signal-versus-time curve, and thus, allows one to 

separate pixels dominated by one of the NP patterns of CA uptake/washout behavior from 

pixels that are characterized by a mixture of several cNMF patterns.

To generate cNMF curve pattern maps visualizing the contributions of the NP different 

patterns to each pixel in the ROI, the weights of each cNMF curve in a pixel are expressed as 

the fraction of sum of the weights in that pixel. Applying an encoder with NP binary cells 

which has 2 NP states, two different approaches were used to create pattern masks: (i) each 

pixel is assigned to the pattern with the maximum normalized weight (Decision Map 1), as 

done previously (24); (ii) each pixel is assigned either to a single pattern or a mixture out of 

2 to NP patterns (Decision Map 2), that is if the normalized weight difference of the pattern 

with the maximum weight to one or more of the other pattern weights is less than 25%, the 

pixel is assigned to a pattern mixture, otherwise, it is assigned to the dominant pattern.
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Pixels with a maximum signal enhancement (SEnh(k), Eq. 3) of less than 4 standard 

deviations of the pre-contrast signal (mean±SD) were assigned as no contrast regions, thus, 

unlike before (24), low contrast regions are included in the analysis and spatial mapping.

Results

Significance of Selection of NPs

The significance of choosing the NPs based on tumor characteristics is illustrated in Figure 

1. As shown for a representative tumor slice in Figure 1A, PCA produced 2 distinct PCs 

followed by higher-order PCs depicting noise. The corresponding cNMF maps of this tumor 

slice with associated cNMF curves for NPs set to 2 and 3, respectively, are shown in Figure 

1B. For 2 NPs, two distinct cNMF patterns are identified; for 3 NPs however, the second and 

third pattern are very noisy with visually overlapping pattern curves due to data over-fitting 

and the inability to reproducibly/accurately assign a pixel to pattern 2 or 3. In a 2nd example 

(Figure 1C), PCA on two different slices in a heterogeneous flank tumor demonstrates that 

the number of PCs, with a signal level significantly different from the noise on the PC curve, 

may vary between slices in a single tumor. Thus, to avoid over- or under-fitting to 

characterize the patterns present across a tumor, it is essential to adjust the NPs to reflect the 

number of physiological relevant patterns describing the tumor microenvironments present 

in each tumor slice.

Automation of DCE-MRI Analysis

Three out of four steps, involved in the proposed DCE-MRI data analysis (Figure 2) have 

been automated:

Automatic Determination of S0—The automated selection of the pre-contrast signal, as 

detailed in the method section, accounts for variable injection time points due to manual 

injection of the CA and specifies the actual arrival time of the CA at the tumor-healthy tissue 

interface (Figure 2, 2nd step; Supporting Figure S1 discusses ROI versus pixel-based 

calculation of the S0).

Automatic Selection of Significant NPs—The automatic selection criteria of NPs 

were compared to NPs determined from visual inspection of PC curves (Figure 1) by up-to 3 

readers (SH, EA, RS). Representative examples of the 4 methods for automatic selection of 

NPs are presented from tumor slices of HEK tumor #1 in Figure 3A. For the determination 

of NPs, only consecutive PCs above a pre-defined threshold were selected because higher 

PCs above the defined threshold, but following one or more PCs below the threshold (Figure 

3A, red arrow), contribute typically less than 0.05% to the overall signal. As the SDTh 

method by definition assumes that the 1st PC (subtracted from the overall signal (Eq. 2)) is 

significant, NPs were calculated by adding one (depicted as +1* in Figure 3A) to the NPs 

determined from thresholding.

Table 1 lists the accuracy for each tumor as the fraction of tumor slices where NPs from the 

four selection criteria and visual inspections agreed. The selection criterion SNR was 

applied with thresholds 5 and 2, whereby the latter improved the accuracy for tumors with 
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low contrast-to-noise ratio (CNR, red numbers in Table 1). The corresponding overall 

accuracy for each method was 50%, 53%, 76%, 87%, and 97% for HAUC, SDth, SEnh, 
SNRTh5, and SNRTh2, respectively (Table 1, Total). Figure 3B shows the accuracy per tumor 

averaged over 21 tumors for each of the pattern selection criteria. The most accurate 

criterion to select NPs, SNR, is the only method (for both threshold levels) that does not 

significantly deviate from the desired 100% (P>0.19).

Constrained Non-negative Matrix Factorization (cNMF) and Pattern 
Assignments—A representative example of cNMF curves and corresponding weight 

maps are shown in Figure 4 (left, center). Based on pattern shape and weight, single patterns 

or pattern mixtures were assigned automatically to each pixel and pattern masks created 

(Figure 4, right). Decision Map 1 (Figure 4) shows the spatial distribution of the dominant 

pattern in each pixel, while the Decision Map 2 (Figure 4) visualizes the spatial localization 

of single patterns and pattern mixtures, the latter inferring intra-tumoral heterogeneity at 

sub-pixel resolution. The in vivo DCE-MRI tumor data analyzed here do not have aligned ex 
vivo data. Thus, we validated the automated and optimized PR analysis by reanalyzing 

DCE-MRI data from experiments with aligned ex vivo data (Figure S2). While improving 

spatial mapping across tumor slices by the slice-wise analysis, we detect the same CA 

uptake behavior related to the tumor microenvironment as before (Figure S2).

Discussion and Conclusions

As shown previously, an unsupervised PR approach, using PCA followed by cNMF, can 

visualize intra-tumoral microenvironmental heterogeneity based on tumor vascular features 

(24). Here, we successfully decreased user intervention and processing time by automating 

several analysis steps: (i) identification of the time period prior to CA arrival at tumor, 

resulting in an automated determination of the mean pre-contrast signal for signal-versus-

time curve normalization; (ii) determination of NPs, previously obtained via visual 

inspection and required for cNMF analysis; and (iii) pattern assignments to visualize their 

spatial distribution across the tumor. Of the four developed and tested NP selection criteria, 

SNR showed the most promise with over 87% (threshold 5) or 97% (threshold 2) accuracy 

when compared to visual assessment. One limitation of this study is that the thresholds for 

the SNR criterion were determined empirically using solely preclinical tumor models, 

though over a wide range of tumor types. A second limitation is that the 25% threshold for 

the weight difference for assigning patterns to mixtures was also defined empirically.

The wider applicability of these settings to DCE-MRI data from other tumor sites 

(preclinical) and clinical tumors, including the impact of CNR, spatial resolution, temporal 

resolution and total acquisition time on the successful deconvolution of underlying patterns 

(Figure S3) and their interpretation and biological/physiological relevance will be the 

purpose of future research. Alone or in conjunction with other modalities assessing intra-

tumor heterogeneity (18,19,22), the visualization of intra-tumoral vascular heterogeneity 

with fully-automated, combined PCA/cNMF analysis may provide in preclinical models 

(24,39), and after successful clinical translation (40), prognostic information, and useful 

information for monitoring, therapy planning, and follow up in longitudinal studies without 

the need for extensive tracer-kinetic modeling, while potentially improving and reducing 
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computation time of tracer-kinetic modeling by using average signal-versus-time curves of 

assigned pattern areas.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Significance of selecting number of patterns (NPs)
(A) As shown for a representative HEK tumor slice (HEK #5), PCA produced 2 distinct PCs 

followed by higher-order PCs depicting noise. The first 2 PCs explain 97.92% of signal-

versus-time curves behavior in this tumor slice. (B) To the tumor slice depicted in (A) 

corresponding cNMF maps (left) with associated cNMF curves (right) for NPs set to 2 (top) 

and 3 (bottom), respectively. For NP = 2, two distinct cNMF patterns are identified; for NPs 

= 3 however, the second and third pattern are very noisy and show overlap due to data over-

fitting resulting in the inability to reproducibly/accurately assign a pixel to pattern 2 or 3. 

(C) In a second example, PCA on two slices of a heterogeneous HEK flank tumor (HEK 

#1), the first five PCs and their corresponding weight maps are displayed. The % variability 

of each PC to explain the contrast agent (CA) uptake behavior in their respective slice is 

shown below each PC. Despite the % contribution to the overall signal of the 3rd PC in slice 

1 and 2 being similar (0.19% and 0.15% respectively), the numbers of significant signal-

related PCs identified visually for slice 1 and slice 2 respectively are 2 and 3, as the signal in 

the 3rd PC in slice 1 is within twice the size of the noise and similar to higher-order PCs. The 

overall signal explained by the number of significant signal-related PCs is 98.08% in slice 1 

and 98.89% in slice 2. The varying NPs between slices attest to the vascular heterogeneity of 

this tumor across the thickness of the tumor.
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Figure 2. Processing steps for DCE-MRI data analysis. (Data; Masks)
Processed DCE-MRI images and manually contoured tumor region of interest (ROI) are up-

loaded to the program. A representative example (HEK #1) showing the 1H MR images of 

the 5 tumor slices overlaid (white line) with the manually outlined tumor region (ROI) in 

each slice (arrows); (S0) Automatic determination of the time point of contrast agent arrival 

at tumor from an average signal-versus-time curve over tumor slice ROI; (PCA) Automatic 

determination of the number of patterns (NPs) using Principal Component Analysis (PCA); 

(cNMF) Automatic assignment of ROI pixels to constrained Non-negative Matrix 
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Factorization (cNMF) pattern or pattern mixture. Note that three out of the four steps 

underwent automation.
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Figure 3. Automatic determination of number of patterns (NPs)
(A) Representative examples of each tested method for the automatic determination of NPs: 

HAUC (Eq. 1), SDTh (Eq. 2), SEnh (Eq. 3), and SNR (Eq. 4). The red horizontal lines 

represent the respective thresholds – 6000 for SEnh, 0.5×HAUC(1st PC) for HAUC, 4× 

standard deviation of the pre-contrast signal for SDTh, and either 5 or 2 (not shown) for SNR 

– as explained in the method section. The PCs are plotted along the x axis by decreasing 

amount of contribution to the total signal up-to the 8th PC. The red arrow denotes the 

occasional occurring PC above the defined threshold following one or more PCs below the 

defined threshold; these high-order PC contribute generally little (< 0.05%) to the total 
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signal. (B) Accuracy per tumor is displayed for each selection criterion and each tumor by 

the closed signs, with the open bars displaying the corresponding mean±standard error 

(±SE) averaged over the 21 tumors. Accuracy per tumor is calculated as the percentage of 

total slices for which the NPs determined by each selection criterion matches the manually 

determined NPs. The method SNR had the highest accuracy, which could be further 

improved for tumors with low CA uptake by lowering the threshold from 5 to 2. The 

accuracy for the selection criteria HAUC, SDTh and SEnh deviated significantly from the 

desired 100%, contrary to SNR for both thresholds (P < 0.0001 for HAUC and SDTh; P = 

0.0033 for SEnh, P = 0.0830 for SNRTh5, and P = 0.1864 for SNRTh2 – one sample t test 

with a theoretical mean of 100%, two-tailed P values).
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Figure 4. Visualization of tumor environmental heterogeneity
The red, green, and blue cNMF curves (left) from a representative tumor slice and their 

corresponding weight maps (center) show the spatial distribution and, as previously 

established (12,24) using similar experimental DCE-MRI acquisitions, represent the CA 

uptake behavior indicative of well-vascularized (Pattern 1), hypoxic (Pattern 2), and necrotic 

(Pattern 3) tumor areas, respectively. Decision Map 1 and 2 were determined as explained in 

the method section. In Decision Map 1, brown, orange, cyan reflect Pattern1 (indicative of 

well-vascularized tumor), Pattern 2 (indicative of hypoxia), and Pattern 3 (indicative of 

necrosis), respectively, while in Decision Map 2, Pattern 3 is displayed as dark blue, Pattern 

1 as yellow, Pattern 2 as cyan, and corresponding mixtures as mixture colors. While 

Decision Map 1 characterizes the spatial distribution of the dominant pattern across the 

tumor slice, Decision Map 2 improves upon this by characterizing tumor heterogeneity at 

sub-pixel resolution and separating out pixels following a single pattern from pixels 

composed of pattern mixtures. The latter is especially of importance for quantifying 
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pharmacokinetic parameters of a single (pure) pattern, as regional signal-versus-time curves 

of areas assigned to single patterns in Decision Map 1 may contain a noticeable contribution 

of pixels with pattern mixtures, affecting the signal-versus-time curve characteristic, and 

thus, the calculated pharmacokinetic parameter.
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