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Abstract

In 1935, the olfactory route was hypothesized to be a portal for virus entry into the central nervous 

system (CNS). This hypothesis was based on experiments in which nasophayngeal infection with 

poliovirus in monkeys was prevented from spreading to their CNS via transection of olfactory 

tracts between the olfactory neuroepithelium (ONE) of the nasal cavity and the olfactory bulb 

(OB). Since then, numerous neurotropic viruses have been observed to enter the CNS via 

retrograde transport along axons of olfactory sensory neurons whose cell bodies reside in the 

ONE. Importantly, this route of infection can occur even after subcutaneous inoculation of 

arboviruses that can cause encephalitis in humans. While the olfactory route is now accepted as an 

important pathway for viral entry into the CNS, it is unclear whether it provides a way for 

infection to spread to other brain regions. More recently, studies of antiviral innate and adaptive 

immune responses within the olfactory bulb suggest it provides early virologic control. Here we 

will review the data demonstrating that neurotropic viruses gain access to the CNS initially via the 

olfactory route with emphasis on findings that suggest the OB is a critical immunosensory effector 

organ that effectively clears virus.
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Viral infections of the central nervous system (CNS) are rare and often devastating, leading 

to death or permanent neurologic damage. Neurotropic viruses may gain access to the CNS 

via several routes including anterograde neuronal spread through sensory nerves,1 across the 

blood-brain barrier (BBB) as free virions, or via the entry of infected immune cells.2 

However, studies examining the kinetics of neurotropic viral invasion after peripheral routes 

of inoculation have identified the olfactory bulb (OB) as the earliest site of CNS infection.3 

Indeed, the most direct conduit from the periphery to the brain occurs at the level of the 

olfactory neuroepithelium (ONE) within the nasal cavity, where cell bodies of olfactory 

sensory neurons (OSNs) reside and send their axons into the CNS to synapse with dendrites 

of mitral neurons within the olfactory bulb (OB). This route of entry was first investigated in 

the early 1900s in the context of poliovirus infection. Faber and Gebhardt first demonstrated 

that virus establishes its initial focus in the OB.4 In 1936, Flexner reported that instillation of 

poliovirus into the nasal cavity, but not the stomach, leads to CNS manifestations of disease.
5 Faber and others later demonstrated that ablation of the ONE with zinc sulfate, which 

induces selective and rapid OSN necrosis,6 prevents CNS infection.5b Evidence from a 

variety of animal models and human cases has since indicated that many DNA and RNA 

viruses, including herpesviruses,7,7a rhabdoviruses including vesicular stomatitis and rabies 

viruses (VSV, RABV),8 neurotropic flaviviruses West Nile and Japanese encephalitis viruses 

(WNV, JEV),9 paramyxoviruses parainfluenza and measles viruses (PIV, MV),3f,10 

alphaviruses Venezuelan Equine Encephalitis and chikungunya viruses (VEEV, CHIKV),11 

Bunyavirus LaCrosse virus (LACV),12 and influenza A13 are detected first within the OB 

during neuroinvasive infection. Several authors have also shown that virus within the OB is 

quickly cleared.8a,14 This and the overall rarity of viral encephalitis suggests effective, 

neuroprotective immunity within the OB may quickly eliminate virus entering via this route, 

protecting the rest of the brain from infection. While the complete mechanisms of virologic 

control within the OB are unknown, studies demonstrate that innate immune mechanisms 

are specialized at this site, involving interactions between immune and neural cells and 

recruited leukocytes that influence viral infection and clearance at more distant brain 

regions. This Review will discuss the olfactory route of viral access to the CNS with 
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emphasis on evidence that OB innate immune response to viral infection of the CNS is an 

early event that controls viral entry and replication throughout the CNS.

ANATOMY AND VIRAL INFECTIONS OF THE OB

Viruses that utilize the olfactory nerve as entry into the CNS encounter many cell types 

progressing from the nasal cavity into the central olfactory nervous system. Cells of the 

ONE, which is located within the nasal cavity, include olfactory receptor neurons (ORN), 

supporting (sustentacular) cells, basal cells, microvillar cells, and Bowman’s glands.3j,14d,15 

ORNs are unique among these cells since they establish the connective conduit between the 

nasal cavity and the CNS. These specialized bipolar neurons extend a single dendrite from 

their neuronal cell body into the ONE and an axon that crosses the basement membrane of 

the ONE and passes through the cribriform plate, which separates the nasal and cranial 

cavities. These axons terminate in the OB where they converge to form glomeruli and form 

synaptic contacts with neurons resident in the OB. ORN axons are supported by olfactory 

ensheathing cells (OECs) (i.e., Schwann cell-like glial cells) and are surrounded by mucus-

secreting Bowman’s glands, connective tissue, and blood and lymphatic vessels.3j Within the 

olfactory glomeruli, ORN axon terminals convey information to projected neurons such as 

tufted cells and mitral cells, which transmit information deeper into the CNS primarily the 

ipsilateral primary olfactory cortex.

Evidence of viral transmission along the olfactory route is based on studies in experimental 

animals and a few human cases. Entry into the CNS has been documented through detection 

of viral antigen within the olfactory mucosa and within the glomerular and mitral cell layers 

of the OB for many viruses including, influenza virus, HSV, poliovirus, paramyxoviruses, 

including canine distemper virus (CDV), Hendra virus, and Nipah virus, VSV, RABV, 

parainfluenza virus, adenoviruses, JEV, WNV, chikungunya virus, La Crosse virus, mouse 

hepatitis virus, and bunyaviruses which have been extensively reviewed previously3j,16 

(Table 1, Figure 1). Although rare, viral antigen has also been directly detected in ORNs 

within the olfactory mucosa following infection as is the case with influenza virus,1i,3b,17 

several herpesviruses, including HSV-1, bovine herpesvirus (BHV)-5, and equine 

herpesvirus (EHV)-1 and -9,16 CDV,18 VSV,3h and RABV,19 suggesting that these viruses 

are transported through the axons of ORNs to access the OB.

Several studies have concluded that the initial infection of influenza A occurs at the 

olfactory bulb (OB).17d,20 H5N1 is the most common form of influenza A virus detected in 

the olfactory bulb of patients and animal models.20a,21 More recently, studies of HPAI H5N1 

in animal models reported the entry of H5N1 virus primarily through the olfactory nerve 

with viral antigen detectable in the olfactory mucosa and olfactory receptor neuron.17b,20b 

Studies in H7N9-infected ferrets similarly detected viral antigen in the OB by 3 days 

postinfection.22 Additional studies have demonstrated that influenza A virus infection of the 

OB is not strain specific.3j,20c,21,22 Postmortem study of an immunocompromised human 

infant infected with H3N2 virus depicted the presence of viral load in the olfactory bulb with 

viral antigen detected in both neurons and glial cells.3j These studies strongly suggest that 

olfactory route is the primary route for CNS invasion in Influenza A mediated infection.
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Previous studies have demonstrated that HSV, RABV, VSV, and influenza viruses are 

capable of transaxonal transport.20a,23 Potentially viruses may also access the OB though 

direct infection of OECs or via channels in the cribriform plate. OECs are unique cells that 

form a continuous channel surrounding the axons of ORNs from the ONE as it passes 

through the cribriform plate and ends the OB. All together, numerous studies have shown 

that a variety of viruses are able to use the olfactory nerve as a shortcut into the CNS, 

however more comprehensive studies are necessary to define the mechanisms by which 

viruses use the olfactory nerve as a route of entry into the CNS.

INNATE IMMUNE RESPONSES OF THE OB DURING VIRAL INFECTION

Early studies examining transneuronal spread of viruses from the ONE to the OB reported 

that virus could no longer be detected at the latter site several days after infection. 

Investigators interpreted these findings as evidence that this brain region was unsatisfactory 

for growth, rather than postulating that it had specialized immune responses that efficiently 

cleared virus. In an early study, innate immune responses within the OB after application of 

VSV to the ONE included expression of nitric oxide and up-regulation of major 

histocompatibility antigens (MHC) I and II by infected astrocytes, microglia and endothelial 

cells.14a Additional studies utilizing viruses or pathogen associated molecular patterns 

(PAMPs) demonstrated OB expression of innate cytokines including interleukin 12,3h tumor 

necrosis factor (TNF)-α, TNFR1, interleukin (IL)-1β,14f and IkappaB.24 For instance, recent 

studies with the flavivirus, tick-borne encephalitis virus (TBEV), and the alphavirus, Sindbis 

virus (SINV), confirm that pattern recognition receptor (PRR) signaling within the OB 

results in the upregulation of the innate cytokine interferon (IFN), which restricts viral 

replication in the CNS. This upregulation of IFN leads to increased expression of interferon 

regulatory factors (IRFs), which enhance the ability of IFN to control viral replication.14e,25 

Indeed, the expression of innate immune molecules within the OB results in rapid antiviral 

responses and improved survival. Similarly, intranasal inoculation of H1N1 virus, leads to 

upregulation of cytokines within 5–7 h post infection.20c

The source of some of these innate immune molecules has been traced to the OECs that 

envelope the olfactory nerves throughout their trajectory from the ONE to the OB. OECs, 

which have significant roles in OB development and repair,26 are postulated to provide 

immunological protection against neutrotropic pathogens. Treatment of OECs with PAMPs 

or agonists of PRRs leads to production of iNOS,27 nuclear translocation of nuclear factor 

kB (NK-kB) with cytokine expression.28 Other studies implicate OB microglia in innate 

immune responses to PAMPs or damage associated molecular patterns (DAMPs) at this site.
29 The role of these innate immune molecules in the OB during viral infections is unclear. 

Studies using intranasal infection with lab adapted influenza A did not impact survival in 

mice deficient for iNOS, type I or II interferon (IFN) receptors, or transporter associated 

with antigen processing (TAP)1.3b However, persistent infection could be detected in 80% of 

surviving animals. These mice also had limited CNS recruitment of infiltrating lymphocytes 

suggesting that innate immunity in the OB limits viral persistence and induction of adaptive 

immunity within the CNS. The role of OB innate immune responses by neural and 

microglial cells in leukocyte trafficking and function is an active area of research.
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LEUKOCYTE TRAFFICKING INTO THE OB DURING VIRAL ENCEPHALITIS

Although most viruses that invade the CNS via the olfactory nerve cause an inflammatory 

response characterized by an influx of neutrophils and mononuclear cells, there are few in-

depth studies on their specific role. While it has been shown that type I IFN is critical for 

survival following intranasal infection with VSV it is also necessary for the induction of 

IL-12 by astrocytes and inflammatory monocytes.8a,30 Multiple studies have demonstrated 

that the expression of IL-12 decreases viral titer within the OB and is strongly correlated 

with the rapid infiltration of both CD4+ and CD8+ T cells as well as NK cells.8a,14a,b,30 

Lymphocyte infiltration into the OB has been shown to be instrumental in limiting viral 

replication and spread beyond the OB as has been shown following T lymphocyte depletion 

during VSV31 and MHV32 infection. In addition, TAP-1 deficient mice were used to 

demonstrate that the ability to present antigens within the context of MHCI was crucial for T 

lymphocytes to maintain viral control within the OB following MHV infection of mice.10 

Interestingly, a recent study demonstrated that dendritic cells infiltrate into the OB during 

VSV infection33 suggesting that these cells may play a role in the activation of recruited 

lymphocytes. In addition to T lymphocytes we recently observed that NK cell infiltration 

into the OB during WNV infection is crucial for viral control specifically within the 

hindbrain regions of the CNS (under review). Together these studies demonstrate the 

lymphocytic infiltration is instrumental in limiting viral replication and spread and that in 

their absence or inability to be full activated, viruses are able to spread from the OB into 

other regions of the CNS increasing damage.

CONCLUDING REMARKS

Many viruses are able to invade the CNS via the olfactory route. In general, if a viral 

infection is not contained locally (due to inefficient intrinsic and innate immune responses), 

it can spread to vital organs, causing severe pathologies. Viral spread within the CNS can be 

severe as well as deadly not only due to the fact that infected neurons may die, but also 

because of the immune-mediated pathology in the brain. The OB, although commonly 

recognized as a sensory organ for olfaction, also serves as an immunoeffector organ within 

the CNS. The CNS encounters an unknown number of pathogens primarily through the nasal 

cavity. Since this sensory organ is intimately exposed and particularly vulnerable it is likely 

there was high evolutionary pressure for neuroprotective mechanisms within the olfactory 

system. Use of genetic approaches to deplete OSNs34 via temporally controlled diphtheria 

toxin A expression or conditional deletion of innate immune signaling in response to type I 

or II IFNs35 will elegantly address the role of these neurons and innate immune responses in 

virologic control within the OB. In addition, the role of supporting cells, such as the OECs, 

during CNS viral infection is an area not well explored. It is unclear whether OECs are 

susceptible to certain viral infections or whether they have a definitive role in 

immunoprotection and spread of viruses from the OB to the rest of the CNS. As further 

studies are accomplished focusing on this vital yet vulnerable organ, it will become more 

clear that the OB is a complex sentinel immune organ that is instrumental in preventing 

passage of pathogens to other vital regions of the CNS preventing injury of neural cells 

and/or immunopathology.
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Figure 1. 
Viral entry via the olfactory neuroepithelium induces antiviral responses in the olfactory 

bulb. Depicted is a cartoon of a mouse brain in which viral particles enter the CNS via axons 

of olfactory receptor neurons within the neuroepithelium of the nasal cavity. Infection of 

neurons within the olfactory bulb (OB) leads to expression of innate cytokines and 

chemokines, which recruit lymphocytes and antigen presenting cells.
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