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Abstract
Immunoassays are antibody-based analytical methods for quantitative/qualitative analysis. Since the principle of immunoas-
says is based on specific antigen–antibody reaction, the assays have been utilized worldwide for diagnosis, pharmacokinetic 
studies by drug monitoring, and the quality control of commercially available products. Berson and Yalow were the first to 
develop an immunoassay, known as radioimmunoassay (RIA), for detecting endogenous plasma insulin [1], a development for 
which Yalow was awarded the Nobel Prize in Physiology or Medicine in 1977. Even today, after half a century, immunoas-
says are widely utilized with some modifications from the originally proposed system, e.g., radioisotopes have been replaced 
with enzymes because of safety concerns regarding the use of radioactivity, which is referred to as enzyme immunoassay/
enzyme-linked immunosorbent assay (ELISA). In addition, progress has been made in ELISA with the recent advances in 
recombinant DNA technology, leading to increase in the range of antibodies, probes, and even systems. This review article 
describes ELISA and its applications for the detection of plant secondary metabolites.
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Introduction

Since the development of radioimmunoassay (RIA) in 1960, 
there has been a rapid increase in immunoassay techniques 
using radioactive labels [1]. However, radioactive labels 
have been gradually replaced with enzyme labels because of 
safety concerns associated with radioactivity since the study 
by Avrameas in 1969, who coupled antigens or antibodies 
and enzymes using glutaraldehyde [2]. Currently, ELISA 
has a higher number of immunoassays compared to RIA.

Plant secondary metabolites are plant-produced organic 
compounds that play an important role in the defense of 
plants against herbivores, pests, and pathogens, as well as 
in their adaptation to the environment, although they are not 
directly involved in the growth and development of organ-
isms [3, 4]. Because of their diverse functions, there has 
been a dramatic increase in their demand in pharmaceu-
ticals, cosmetics, and pesticides, as well as in food addi-
tives [5]. Quality control of these commercial products 
containing secondary metabolites is crucial as the quality 
directly affects their potential activity. In addition, Cragg 
and Newman recently reported that 34% of the currently 
used drugs originate from natural products [6]. Meanwhile, 
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simple, selective, and sensitive analytical techniques are also 
required in pharmacodynamic studies for monitoring effec-
tive concentration, side effects, and metabolism, leading to 
a better quality of life for patients. Thus far, various analyti-
cal methods have been developed for such purposes, mainly 
based on high-performance liquid chromatography (HPLC). 
However, ELISA exhibits several advantages over such tech-
niques because of its simplicity, selectivity, and sensitivity.

The basic facts about ELISA and its practical use for 
measuring plant secondary metabolites are described in 
this review.

General principle of ELISA

ELISA is based on the concept of antigen–antibody reac-
tions, representing the chemical interaction between anti-
bodies produced by the B cells of leukocytes and antigens. 
This specific immune response plays an important role in 
protecting the body from invaders such as pathogens and 
toxins. Hence, by exploiting this reaction, ELISA permits 
the highly sensitive and selective quantitative/qualitative 
analysis of antigens, including proteins, peptides, nucleic 
acids, hormones, herbicides, and plant secondary metabo-
lites. To detect these molecules, an antigen or antibody is 
labeled using enzymes, the so-called enzyme immunoas-
say, in which alkaline phosphatase (ALP) [7], horseradish 
peroxidase (HRP) [8], and β-galactosidase [9–11] are com-
monly used. The antigen in the fluid phase is immobilized 
on a solid phase, such as a microtiter plate constituting 
rigid polystyrene, polyvinyl chloride, and polypropylene. 
Subsequently, the antigen is allowed to react with a specific 
antibody, which is detected by an enzyme-labeled second-
ary antibody. The development of color using a chromog-
enic substrate corresponds to the presence of the antigen. 
For instance, ALP hydrolyzes p-nitrophenyl phosphate to 

produce p-nitrophenol, which can be detected at 405 nm 
(yellow color), and HRP catalyzes the conversion of chro-
mogenic substrates, e.g., 2,2′-azino-bis(3-ethylbenzothia-
zoline-6-sulfonic acid) diammonium salt, 3,3′,5,5′-tetra-
methylbenzidine, and o-phenylenediamine into colored 
products. By using chemiluminescent substrates such as 
chloro-5-substituted adamantyl-1,2-dioxetane phosphate 
and luminol for ALP and HRP, respectively, and fluoro-
genic substrates such as 4-methylumbelliferyl galactoside 
and nitrophenyl galactoside for β-galactosidase, even more 
sensitive detection can be achieved. These enzyme–sub-
strate reactions are typically completed within 30–60 min, 
and the reaction stops with the addition of an appropriate 
solution, e.g., sodium hydroxide, hydrochloric acid, sul-
furic acid, sodium carbonate, and sodium azide, for indi-
vidual reactions [12, 13]. Finally, colored or fluorescent 
products are detected using a microtiter plate reader.

Advantages and disadvantages of ELISA

Advantages and disadvantages of ELISA are summarized 
in Table 1. ELISA exhibits the following advantages: 
(i) Simple procedure. (ii) High specificity and sensitiv-
ity, because of an antigen–antibody reaction. (iii) High 
efficiency, as simultaneous analyses can be performed 
without complicated sample pre-treatment. (iv) Gener-
ally safe and eco-friendly, because radioactive substances 
and large amounts of organic solvents are not required. 
(v) Cost-effective assay, as low-cost reagents are used. 
However, ELISA exhibits the following disadvantages: 
(i) Labor-intensive and expensive to prepare antibody 
because it is a sophisticated technique, and expensive cul-
ture cell media are required to obtain a specific antibody. 
(ii) High possibility of false positive or negative results 

Table 1   Advantages and disadvantages of ELISA

Advantages Disadvantages

Simple procedure Labor-intensive and expensive to prepare antibody
 Easy to perform with simple procedure Sophisticated techniques and expensive culture media are required

High specificity and sensitivity High possibility of false positive/negative
 ELISA is based on antigen–antibody reaction Insufficient blocking of immobilized antigen results in false results

High efficiency Antibody instability
 Simultaneous analysis can be performed without complicated 

sample pre-treatment
Refrigerated transport and storage are required as an antibody is a protein

Generally safe and eco-friendly
 Radioactive substances and large amounts of organic solvent are not 

required
Cost-effective assay
 Reagents are relatively low cost
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because of insufficient blocking of the surface of microtiter 
plate immobilized with antigen. (iii) Antibody instability 
because an antibody is a protein that requires refrigerated 
transport and storage.

Types of ELISA

Direct ELISA

In 1971, Engvall and Perlmann [14] and Van Weemen and 
Schuurs [15] were the first to develop direct ELISA (Fig. 1), 
which was the base style for other types of ELISA. Primar-
ily, an antigen or an antibody is immobilized on the surface 
of microtiter plate. After the surface is blocked with other 
proteins (e.g., albumin, gelatin, casein, and skimmed-milk 
[13]) to avoid the non-specific adsorption of other pro-
teins, the corresponding enzyme-labeled antibody or anti-
gen is allowed to react with the immobilized targets, fol-
lowed by color development with appropriate substrates. 
With an increasing amount of targets, the signal increases. 
Direct ELISA is suitable for the qualitative analysis of 
macromolecules.

Competitive ELISA

In 1973, Belanger developed competitive ELISA (Fig. 2) 
to detect rat α-fetoprotein, which involved the development 

of indirect ELISA and sandwich ELISA [16]. The key 
event of competitive ELISA is the competitive reaction 
between targets (antigen or antibody) in the sample and 
enzyme-labeled targets (antigen or antibody) against cor-
responding immobilized antibody or antigen. To detect the 
antigen in competitive ELISA, an enzyme-labeled anti-
gen is used to compete with the target antigens against 
the immobilized antibody (Fig. 2b). Hence, the higher the 
amount of antigen in the sample, the lower the amount of 
enzyme-labeled antigen that binds to the antibody. That 
is, with an increasing amount of target antigen, the sig-
nal decreases. In this case, competitive ELISA is suitable 
for measuring macromolecules only because a labeling 
enzyme is required to measure the antigen. If the antigen 
is a low molecular weight compound (e.g., hapten), result-
ant hapten–enzyme conjugates are not recognized by the 
immobilized antibody, leading to failure of the analysis. 
To detect the antibody, the antigen is immobilized, and 
the competition between the antibody in the sample and 
enzyme-labeled antibody is observed (Fig. 2a). In this 
case, both macromolecules and hapten can be detected 
when hapten is exposed on the surface of the microtiter 
plate.

Furthermore, detectable targets (antigen or antibody) 
can be changed depending on the competitors. When free 
antigen is used as competitor instead of unlabeled antibody 
in Fig. 2a, competitive reaction between free antigen and 

Fig. 1   Direct ELISA to detect antigen (a) and antibody (b). (i) Attach 
antigen/antibody to solid phase. (ii) Incubate with enzyme-labeled 
antibody/antigen. (iii) Wash unbound enzyme-labeled antibody/anti-
gen out. (iv) Develop color with substrate

Fig. 2   Competitive ELISA to detect antigen (a) and antibody (b). (i) 
Attach antigen/antibody to solid phase. (ii) Incubate antibody/antigen 
with enzyme-labeled antibody/antigen. (iii) Wash unbound enzyme-
labeled antibody/antigen out. (iv) Develop color with substrate
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immobilized antigen against enzyme-labeled antibody can 
be observed, enabling the detection of free antigen (mac-
romolecules and hapten) in the sample in this competitive 
system, and vice versa when free antibody is used instead of 
unlabeled antigen in Fig. 2b.

Direct and competitive ELISA methods are simple 
because only one antibody is required. However, the labe-
ling step is required for each of the ELISA methods, possibly 
leading to inactivation of the antibody (Table 2).

Indirect ELISA

Indirect ELISA systems have been developed on the basis of 
direct ELISA to evaluate the presence of antibody in antisera 
(Fig. 3) [17, 18]. The key step of this system is the two-
binding process of the primary antibody and enzyme-labeled 
secondary antibody. That is, the target antigen is indirectly 
detected by the secondary antibody, which is labeled with 
the enzyme, or the so-called indirect ELISA. The antigen is 
primarily immobilized on the surface of the microtiter plate, 
which blocks the surface with blocking proteins as men-
tioned above. The primary antibody (in antisera) binding 
to the immobilized antigen is then allowed to react with the 
enzyme-labeled secondary antibody, followed by the devel-
opment of color. The signal increases with an increasing 
amount of the immobilized target antigen. Indirect ELISA 
is suitable for measuring macromolecules. With the use of 
antisera as the primary antibody, the presence of a disease-
associated antibody in the antisera can be evaluated; thus, 
indirect ELISA is effectively used to diagnose endocrine 
diseases [19, 20].

Indirect competitive ELISA

Indirect competitive ELISA (icELISA) involves the combi-
nation of indirect ELISA and competitive ELISA (Fig. 4). 

The target antigen is immobilized on a solid phase of the 
microtiter plate and is blocked. Subsequently, free target 
antigen and antibody are allowed to incubate and there is a 
competition between the immobilized antigen and free anti-
gen against antibodies. The primary antibody that binds to 
the immobilized antigen is detected by the enzyme-labeled 
secondary antibody. Similar to the case in competitive 
ELISA, in icELISA, the signal decreases with increasing 
amount of the free antigen. icELISA can be applied for 

Table 2   Characteristics of various types of ELISA

Direct ELISA Competitive ELISA Indirect ELISA Indirect competitive 
ELISA

Sandwich ELISA

Advantage Simple because only one antibody is used Higher sensitivity and versatility than direct 
methods owing to usage of PAb that recognizes 
different epitopes of primary antibody

High specificity as two 
antibodies possessing 
different epitopes are 
used

Disadvantage Labeling antibody is necessary for each ELISA, 
which may result in inactivation of antibody

Nonspecific signal is induced through cross-
reactivity of secondary antibody

To prepare two dif-
ferent antibodies is 
labor-intensive and 
expensive

Target Macromolecules Macromolecules 
(Hapten)

Macromolecules Macromolecules 
(Hapten)

Generally macromol-
ecules

Signal (as 
target antigen 
increase)

Increase Decrease Increase Decrease Increase

Fig. 3   Indirect ELISA to analyze antibody. (i) Attach antigen to solid 
phase. (ii) Incubate with primary antibody. (iii) Wash unbound pri-
mary antibody out. (iv) Incubate with enzyme-labeled secondary 
antibody. (v) Develop color with substrate
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measuring both the macromolecules and hapten when hapten 
is exposed on the surface of the microtiter plate.

The use of enzyme-labeled secondary antibodies in indi-
rect methods (e.g., indirect ELISA and icELISA) exhibit 
advantages over direct methods (direct and competitive 
ELISA) with respect to sensitivity and versatility [16]. 
Polyclonal antibody is a type of enzyme-labeled secondary 
antibody that recognizes different epitopes of the primary 
antibody, leading to increased sensitivity as compared to 
direct methods. In addition, a universal secondary antibody 
can be used if the original animal species of the primary 
antibody are unified. Thus, the secondary antibody is com-
mercially available, leading to high versatility. Indirect 
ELISA clearly exhibits disadvantages with respect to the 
secondary antibody, i.e., the cross-reaction of the secondary 
antibody should be considered (Table 2).

Sandwich ELISA

In this system, the target antigen is detected via anchor-
ing between two antibodies, which recognize different 
epitopes, or the so-called sandwich system (Fig. 5) [16]. 
Sandwich ELISA starts from the immobilization of an 
antibody, called a capture antibody, on the microtiter plate. 
After blocking the plate surface to avoid non-specific 

adsorption of other proteins, the antigen in the sample is 
allowed to react with the immobilized capture antibody, 
and the antigen bound to the capture antibody is then sand-
wiched with an enzyme-labeled antibody for color devel-
opment. This direct system can be modified to the indirect 
system by using primary and enzyme-labeled secondary 
antibodies. The signal increases with increasing amount 
of antigen. As two antibodies containing different epitopes 
are required against the target antigen, sandwich ELISA 
is generally suitable for measuring macromolecules with 
some exceptions. Ciguatoxins, which are produced in the 
marine dinoflagellate Gambierdiscus toxicus, are the major 
causative toxins of ciguatera seafood poisoning. Cigua-
toxins are structurally classified as ladder-like polyethers 
with a molecular weight of 1111 Da. Oguri et al. divided 
these polyethers into two parts and prepared different 
monoclonal antibodies (MAbs) to individually recognize 
each part for constructing a sandwich ELISA system to 
measure ciguatoxins [21]. More recently, Boscolo et al. 
reported a sandwich ELISA method for marine biotox-
ins, e.g., palytoxins with a molecular weight of 2680 Da 
[22]. The sandwich was formed by using two antibodies 
obtained from the same antigen with different antibodies, 

Fig. 4   Indirect competitive ELISA to detect antigen. (i) Attach anti-
gen to solid phase. (ii) Incubate free target antigen with primary 
antibody. (iii) Wash unbound free target antigen and primary anti-
body out. (iv) Incubate with enzyme-labeled secondary antibody. (v) 
Develop color with substrate

Fig. 5   Sandwich ELISA for specific detection of antigen. (i) Attach 
capture antibody to solid phase. (ii) Incubate with target antigen. (iii) 
Wash unbound target out. (iv) Incubate with enzyme-labeled anti-
body. (v) Develop color with substrate
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i.e., MAb and PAb, which were used as the capture and 
primary antibodies, respectively.

A highly specific assay can be obtained via a sandwich sys-
tem because of the use of two antibodies. However, it is an 
expensive and labor-intensive process to prepare two antibod-
ies. In addition, one more step is required in the sandwich sys-
tem because immobilization is necessary for capture antibody, 
which increases the assay time (Table 2).

Open sandwich ELISA (OS‑ELISA)

Advances in DNA technology have enabled the develop-
ment of unique and interesting immunoassays based on the 
interaction of variable regions of heavy (VH) and light (VL) 
chains, which are binding regions for antigens [23]. In the 
presence of an antigen, the interaction between VH and VL 
regions is enhanced to form a ternary complex. In the afore-
mentioned report, OS-ELISA started from coating of a solid-
phase microtiter plate with streptavidin. After blocking, the 
VL region conjugated with biotin was allowed to react with 
streptavidin to immobilize the VL region. In the next pro-
cess, the phage-displayed VH region was incubated with hen 
egg lysozyme, which was used as an antigen. Finally, the 
phage-displayed VH regions forming a ternary complex were 
detected by the HRP-labeled antibody to develop color. The 
obtained signal increases with increasing amount of antigen. 
Currently, this OS-ELISA has been modified to be more 
easy and effective, and several studies on OS-ELISA for 
measuring both the macromolecule and hapten have been 
reported [24–27].

Types of antibody

In ELISA, any antibody can be used. In the first report of 
immunoassay developed by Berson and Yalow, PAb present 
in the antisera of immunized guinea pigs was used to detect 
human insulin [1]. However, issues related to the specificity 
of different batches were particularly concerning until the 
development of the MAb technology by Köhler and Milstein 
in 1975 [28]. In 1984, together with Niels Kaj Jerne, they 
were awarded the Nobel Prize in Physiology or Medicine. 
The emergence of MAb has helped in overcoming the issues 
with PAb. Since then, advances in DNA technology have 
enabled the production of recombinant antibodies, which 
include single-chain variable fragment (scFv) antibody, 
bispecific Bis-scFv, fragment antigen-binding (Fab) anti-
body, bispecific Fab2, trispecific Fab3, bivalent minibody, 
and multibody (diabody, triabody, and tetrabody) [29]. All of 
the aforementioned recombinant antibodies can be applied 
to ELISA, although the corresponding secondary antibodies 
need to be prepared.

ELISA for plant secondary metabolites

Specificity of antibody against hapten

Most of the useful plant secondary metabolites are low 
molecular weight compounds (i.e., hapten) with immense 
structural diversity, which are generally classified on the 
basis of their biosynthesis pathway [30, 31]. Hence, ELISA 
used for their analysis is the competitive type (competitive 
ELISA or icELISA) using MAb or PAb. When MAb is com-
pared with PAb against hapten, MAb tends to exhibit higher 
specificity because PAb recognizes several epitopes, while 
MAb recognizes only one epitope. In addition, hybridoma 
cells secreting MAb exhibiting desirable characteristics can 
be screened. Pongkitwitoon et al. have prepared PAb against 
bioactive isoflavonoids, daidzin (DZ), by immunizing rab-
bits with DZ–bovine serum albumin (BSA) conjugates to 
develop icELISA [32]. By comparing the cross-reactivity 
(CR), which is the factor of specificity calculated by the ratio 
of IC50 for DZ to that for the test compounds, of PAb with 
that of MAb obtained from the same DZ–BSA conjugates 
[33], the specificity of MAb to DZ was greater than that of 
PAb (Table 3).

Apart from the types of antibodies, the design of hapten-
carrier proteins considerably affects the specificity of the 
resultant antibody. The sodium periodate (NaIO4) oxidation 
method is the typical method for preparing the hapten-car-
rier protein conjugates for glycosides, which involves the 
oxidative cleavage of vicinal 1,2-diols of the sugar moie-
ties to form imides with the amino group of lysine residues 
in the carrier proteins. Therefore, several anti-glycoside 
antibodies are prepared by the conjugates obtained from 
the NaIO4 oxidation method, which include paeoniflorin 
[34], solamargine [35], bacopaside I [36], saikosaponin a 
[37], liquiritin [38], and DZ [32, 33]. However, they tend 
to exhibit broad CR, especially with compounds contain-
ing similar aglycone parts. To obtain an MAb specific to 
DZ, Yusakul et al. recently designed hapten-carrier protein 
conjugates using the Mannich reaction, leading to the pro-
duction of highly specific MAb to DZ (Table 3) [39]. Kitis-
ripanya et al. investigated the effect of difference between 
the conjugates prepared via the NaIO4 oxidation method and 
the Mannich reaction on the specificity of the resultant PAb 
against miroestrol, which is a strong estrogenic compound 
produced in Pueraria candollei [40]. The PAb obtained from 
the hapten conjugate derived from the Mannich reaction 
exhibits higher specificity to miroesterol than that of the PAb 
obtained via the NaIO4 oxidation method, suggesting that 
the Mannich reaction is an important reaction for obtaining 
specific anti-hapten antibodies.

In addition to the method to prepare hapten-carrier pro-
tein conjugates, the number of hapten molecules bound to 
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carrier proteins affects the specificity of antibodies. The 
hapten numbers are typically evaluated via matrix-assisted 
laser desorption/ionization time-of-flight mass spectrom-
etry (MALDI-TOF–MS) using sinapinic acid as the matrix 
[41]. The relationship between the number of hapten mol-
ecules and antibody specificity has been investigated using 
a mercaptopropionic acid derivative of atrazine: high anti-
body titers with moderate antibody specificity are induced 
from 15–30 hapten molecules per carrier protein, while 
a lower number of hapten molecules exhibits a slower 
immune response with higher specificity [42]. This obser-
vation was also supported by the PAb against miroesterol 
reported by Kitisripanya et al. [40]. Recently, MAbs against 
the Cephalotaxus alkaloid harringtonine and pyrrolizidine 
alkaloid monocrotaline have been independently produced 
from their BSA conjugates using the NaIO4- and N,N′-
carbonyldiimidazole-mediated methods, respectively, for 
their determination in plants. Both of the resultant MAbs 
exhibit extremely high specificity to both targets with high 
sensitivity, although only two hapten molecules are bound 
to BSA [43, 44].

Utilization of antibody in icELISA depending 
on specificity

Antibodies exhibiting broad CR sometimes act as a useful 
and effective tool for recognizing a bioactive skeleton or a 
group of bioactive compounds because of the simultaneous 
determination by icELISA using the antibodies. Ginseno-
sides are the major compounds produced in ginseng and 
are classified into two groups according to their structure: 
20(S)-protopanaxadiol and 20(S)-protopanaxatriol [45]. As 
they are considered as active compounds that exert various 
pharmacological activities of ginseng, such as tonic, immu-
nomodulatory, antimutagenic, and anti-aging activities, they 
are focused as a target for quantitative/qualitative analysis 
in ELISA. With respect to 20(S)-protopanaxadiol, MAbs 
against G-Rb1 [46] and Rg3 [47] have been produced, while 
those against G-Re [48], G-Rg1 [49], and Rh1 and Rg2 [50] 
have been produced as representatives of 20(S)-protopanaxa-
triol for their specific determination. Interestingly, Morinaga 
et al. have produced MAb against G-Re exhibiting broad CR 
with G-Rd (76.2%) and G-Rg1 (70.9%) in addition to G-Re 
(100%) itself, enabling the development of icELISA for the 

Table 3   Chemical structures of representative isoflavonoids and 
cross-reactivities (CRs) of PAb [32], MAb [33] produced from DZ–
BSA conjugates prepared by NaIO4 oxidation method, and MAb [39] 
produced from DZ–cBSA conjugates obtained by Mannich reac-
tion

Isoflavonoids R1 R2 R3

Daidzin (DZ) H Glc– H
Daidzein H H H
Genistin H Glc– OH
Genistein H H OH
Puerarin Glc– H H

Compound CRs of PAb [32] (NaIO4 oxidation) CRs of MAb [33] (NaIO4 oxidation) CRs of MAb [39] 
(Mannich reac-
tion)

Diadzin (DZ) 100 100 100
Daidzein 93.4 16.2 1.6
Genistin 49.0 82.4 0.044
Genistein 45.1 24.4 < 0.015
Puerarin 0.1 3.4 < 0.015
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simultaneous determination of the total ginsenosides in plant 
samples (Table 4) [51, 52].

Sandwich ELISA

Sandwich ELISA has been widely accepted to exhibit higher 
specificity and wider working range as compared to the other 
types of ELISA. However, it is difficult to prepare two anti-
bodies possessing different epitopes, especially for haptens 
because steric hindrance may disturb the antigen–antibody 
reaction because of the small size of the haptens. Therefore, 
true sandwich assays for hapten can be rarely developed, 
except for tacrolimus [53], angiotensin II [54], and naringin 
(Nar; which is a major flavonoid glycoside found in citrus 
fruits) [55]. Among these haptens, Nar is the smallest hap-
ten with a molecular weight of 580 Da and the only plant 
secondary metabolite. Two hybridoma cell lines secreting 
different antibodies have been carefully screened, which ena-
bled construction of a sandwich for Nar [55]. Interestingly, 

specificity to Nar in sandwich ELISA using two MAbs dra-
matically increases as compared with that in icELISA using 
a single MAb.

ELISA using a recombinant antibody

DNA recombinant technology has enabled the production 
of antibodies in Escherichia coli [56] and other organisms 
[57–60]; currently, recombinant antibodies (rAbs) have been 
reported to exhibit several advantages over conventional 
MAb and PAb in terms of production speed, the ability to 
modify properties through mutagenesis, and information on 
antibody–target interaction. Among rAbs, scFv and antigen-
binding fragment (Fab) of an antibody are structurally inde-
pendent units containing antigen-binding sites (Fig. 6). scFv 
consists of VH and VL chains with a flexible peptide linker 
of Gly and Ser, where the C-terminus of VH is linked to the 
N-terminus of VL and vice versa. Thus, their size decreases 
approximately to one-sixth of the original parental IgG 

Table 4   Chemical structures of representative ginsenosides and cross-reactivities (CRs) of MAb 4G10 and scFv used for simultaneous determi-
nation of total ginsenosides in plant samples by icELISA [51, 52, 62]

Ginsenosides R1 R2 R3

Protopanaxatriol
 G-Re H Rha1–2Glc–O– Glc–
 G-Rg1 H Glc–O– Glc–

Protopanaxadiol
 G-Rb1 Glc1–2Glc– H Glc1–6Glc–
 G-Rc Glc1–2Glc– H Ara(f)1–6Glc–
 G-Rd Glc1–2Glc– H Glc–

Compound CRs of MAb 4G10 [51] CRs of 
GRe-scFv 
[62]

Protopanaxatriol
 G-Re 100 100
 G-Rg1 70.9 67.2

Protopanaxadiol
 G-Rb1 < 0.009 < 0.009
 G-Rc < 0.009 < 0.009
 G-Rd 76.2 73.5
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molecule. Fab consists of a two-binding arm containing VH 
and VL chains, in addition to the constant regions of heavy 
(CH1) and light (CL) chains. They have become popular as a 
probe for ELISA because the original affinity and specificity 
of the original IgG molecule are maintained (Table 4).

A secondary antibody is required to detect rAbs in 
icELISA. The Fc region of immunoglobulin (MAb/PAb) 
is typically used as the epitope of secondary antibody for 
high versatility, while tags such as poly His-tag, T7-tag, and 
E-tag are commonly used as epitopes of secondary antibod-
ies for rAb because they can be genetically incorporated into 
genes without disturbing the tertiary structure and activity 
of the rAb. Thus far, various scFvs against plant secondary 
metabolites have been constructed and expressed in E. coli 
to develop icELISA, including plumbagin [61], G-Re [62], 
DZ [63], wogonin glucuronide [64], and paclitaxel [65]. Simi-
larly, Fab-based icELISA has been reported for artemisinin, 
which is produced from traditional Chinese herbal medicines, 
e.g., Artemisia annua L. and wogonin glucuronide, for their 
determination [66, 67]. They can be genetically engineered; 
therefore, fluorescent single-domain antibodies (fluobodies), 
chimera proteins of a green fluorescent protein (GFP), and an 
scFv also have been utilized in immunoassays. This combina-
tion always results in a 1:1 ratio between the fluorochrome and 
scFv, which overcomes the disadvantage of direct methods in 
immunoassays, i.e., deactivation of the antibodies with labe-
ling enzymes. Furthermore, immunoassays using fluobodies 
enabled skipping of the time-consuming secondary antibody 
step with high sensitivity. Some studies have focused on these 
useful fluobodies to develop rapid and sensitive fluorescent-
linked immunosorbent assays (FLISA) for plant secondary 
metabolites, including plumbagin [68] and G-Re [69]. In these 
reports, the fluobodies fusing scFv at the C-terminus of GFP 

were found to exhibit better affinity and sensitivity than those 
fusing at the N-terminus of GFP.

Conclusion

To date, various methods for the quantitative or qualitative 
analysis of plant secondary metabolites have been developed 
because a lot of marketed drugs are generated from plant 
secondary metabolites, such as morphine (analgesic drug), 
vinblastine (antineoplastic drug), paclitaxel (antineoplastic 
drug), quinine (antimalarial drug), digitoxin (cardiotonic 
drug), and so on, and the accurate, sensitive, and selective 
evaluation of these drugs leads to safe clinical and general 
usages.

In this review, ELISA has been discussed in detail; it is 
representative of various analytical methods because of its 
several advantages over other analytical methods in terms 
of simplicity, cost efficiency, and selectivity. However, all 
types of ELISA exhibit more or less advantages and disad-
vantages. A barrier for further development of ELISA is the 
preparation of specific antibodies against the target hapten. 
Even in this advanced era, there are many important plant 
secondary metabolites for which antibodies are not avail-
able. ELISA would be more familiar to us if the antibody 
or antibody-mimicking probes that are alternatively used in 
ELISA could be obtained more easily.
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