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Abstract

Black women suffer a disproportionately higher rate of obesity than their white counterparts. 

Reasons for this racial disparity may reflect underlying differences in the appetite suppressing 

peptide-YY (PYY). The PYY response to food is differentially influenced by macronutrient 

content but the effect of glycemic load on PYY response is unknown. This study examined 

whether glycemic load influences fasting and postprandial PYY levels and whether fasting and 

postprandial PYY levels are lower in obese black women compared to normal weight black 

women and to white women. Data were collected from 40 women (20 black, 20 white; 10 each 

normal weight vs. obese) at the University of North Carolina Clinical and Translational Research 

Center (CTRC). Participants completed in counterbalanced order two 4½-day weight-

maintenance, mixed macronutrient high vs. low glycemic load diets followed by a test meal of 

identical composition. Total PYY levels were assessed before and after each test meal. Results 

show no differences in fasting PYY levels but significantly less postprandial PYY area under the 

curve (PYYAUC) in the group of obese black women compared to each other group (race × obesity 

interaction, P < 0.04). PYYAUC was positively related to insulin sensitivity (P < 0.004) but was not 

affected by glycemic load (main and interactive effects, P > 0.27). These findings indicate that 

postprandial PYY secretion is not affected by glycemic load but is blunted in obese black women 

compared with normal weight black women and with white women; additionally, they begin to 

address whether blunted PYY secretion contributes uniquely to the pathogenesis of obesity in 

black women.
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INTRODUCTION

Race and obesity

Nearly 65% of US adults are overweight, >30% are obese and the prevalence of obesity is 

on the rise (1). Non-Hispanic blacks are disproportionately affected, with black women 

suffering the highest rates of obesity (~50%) overall (2). Compared with white women, 

black women gain weight at an earlier age, lose less weight with traditional diet and exercise 

modification, and are especially vulnerable to obesity-related cardiovascular and metabolic 

complications such as hypertension and diabetes (3–5). Reasons for increased risk of obesity 

and its comorbid conditions in black women are not fully understood; however, recent work 

by our group (6) and others (7,8) suggests differences in gastrointestinal peptides involved in 

short-term appetite regulation may play a role.

PYY and obesity

Peptide-YY (PYY) is a naturally occurring peptide secreted in the distal gastrointestinal 

tract in response to food intake (9–11). In circulation, PYY is found in two main forms, 

PYY3–36 and PYY1–36. PYY3–36 is the predominant circulating form and has been shown 

more clearly to affect food intake and appetite in humans by directly contributing to the 

achievement and maintenance of satiety during the intermeal period. There is keen interest 

in identifying factors that regulate PYY levels in the acute postprandial window and in 

understanding how individual differences in circulating PYY levels contribute to food 

consumption patterns and weight gain. Recent findings suggest that weight/metabolic status 

(12–15), dietary (and test meal) macronutrient composition (16–18), sex (19), and race (7,8) 

may be important factors to consider. For example, exogenous PYY3–36 infusions reduce 

food intake and ratings of subjective appetite independent of obesity status; yet the 

endogenous PYY response is diminished in obese compared with normal weight individuals 

(12,13). In obese subjects, greater PYY3–36 and total PYY (PYY1–36 and PYY3–36) 

responses have been observed following test meals with relatively higher protein (16,19,20) 

and fat (16,19) than carbohydrate content in some but not all (17) studies. A diminished 

nutrient-stimulated total PYY response has also been reported in women relative to men (19) 

and in blacks compared with whites (7,8). Notably, the findings of diminished nutrient-

stimulated total PYY in blacks have been limited to liquid glucose (8) and fat (7) loads, 

leaving open the question of race differences in endogenous PYY response to mixed 

nutrient, whole food meals. Also, unknown is whether race differences in PYY vary as a 

function of obesity.

Glycemic index reflects the direct effect of a given food at a given portion on blood glucose 

levels: a higher index indicates a higher blood glucose response. Glycemic load is a method 

of ranking foods based on their carbohydrate content, glycemic index, and portion size. 

Consumption of a low glycemic load diet is purported to reduce appetite, and several studies 

have demonstrated that subjective appetite suppression is sustained longer following 

consumption of a meal with a low vs. a high glycemic load in obese individuals (21–23). 

The mechanisms linking low glycemic load with reduced appetite are not clear but may 

include alterations in appetitive hormones. Prior studies suggest glycemic load-dependent 

effects on ghrelin (24), and on glucagon-like peptide-1 and cholecystokinin (25,26). The 
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impact of glycemic load on postprandial PYY response is unknown. Therefore, in this study, 

we assessed fasting and postprandial PYY after ingestion of a high vs. low glycemic load 

mixed-macronutrient, high-carbohydrate meal in normal weight and obese black and white 

women.

Methods and Procedures

Subjects

Individuals were eligible to participate in the study if they were female, age 18 or older, and 

non-Hispanic black or white race. Race was assessed by self-report using a two-tiered 

questionnaire in which respondents first indicated their ethnicity (Hispanic, non-Hispanic) 

and then their race (white, black, or African American, Asian, Native Hawaiian, or other 

Pacific Islander, American Indian/Alaska Native). Only women who self-identified as non-

Hispanic black or non-Hispanic white were included in the study. Participants were recruited 

from the local community; most (35) were born in the United States (two each black and 

white were foreign born; one unknown). Women who were pregnant, planning to get 

pregnant in the next 6 weeks, or lactating; had existing diabetes or reported any other 

metabolic disorder; were currently using medications that influenced appetite or that had 

significant weight gain or loss side effects; were underweight BMI <18.5, overweight (BMI 

= 25–29.9) or morbidly obese (BMI >40); were unable or unwilling to eat animal-derived 

foods; or were currently exercising vigorously three or more times per week were excluded. 

Participants were stratified by BMI (normal weight vs. obese), and within each obesity 

subgroup black and white participants were matched for BMI (±2 kg/m2) and age (±2 

years). The Institutional Review Board of the University of North Carolina at Chapel Hill 

approved the protocol for this study, and each subject provided written consent before 

participating in the study.

Outpatient diets and test meals

Participants were evaluated at the University of North Carolina Clinical and Translational 

Research Center (CTRC) on two separate occasions in counterbalanced order, each 

following a 4½-day period of consuming a high vs. a low glycemic load, mixed 

macronutrient (55% carbohydrate, 30% fat, 15% protein) diet. A minimum 1-week washout 

period separated these two periods. At the conclusion of each outpatient period, participants 

completed an overnight stay in the CTRC followed by a test breakfast meal with blood 

samples obtained via indwelling intravenous catheter prior to the meal and thereafter at min 

30, 60, 120, and 180. Immediately after each blood draw, participants rated various aspects 

of subjective appetite (hunger, fullness, urge to eat, and specific food cravings) and meal 

palatability using 100 mm visual analog scales. Participants were allotted 20 min to 

complete a test meal and time zero of the postprandial period occurred at the conclusion of 

that 20-min period.

Meals consumed during each 4½-day lead-in period were designed by the CTRC research 

dietitian, prepared by the CTRC metabolic kitchen, and consumed by participants on an 

outpatient basis. Diets of either 2,000, 2,500 or 3,000 kcal were assigned to each subject 

according to kcal requirements that were based on the participant’s body size. Subjects’ 
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energy requirements were estimated using 35 kcal/kg when BMI <30 and 35 kcal/kg 

adjusted body weight when BMI >30; estimated energy requirements were then rounded to 

the nearest 500 kcal for all subjects. Glycemic values were derived using the Food Processor 

SQL (version 10.2.0.0, ESHA Research, Salem, Oregon) based on previously published 

values (27). Mean ± s.d. glycemic load was 212.5 ± 31.2 vs. 107.5 ± 25.2 for the high vs. 

low outpatient diet, respectively. The high and low glycemic load test meals were 

standardized to 625 kcal (~25% of the total daily intake), 86 g carbohydrate, 21 g fat, and 23 

g protein (ProNutra software version 3.2.1.0, Viocare Technologies, Princeton, NJ). Actual 

mean ± s.d. glycemic load was 59.1 ± 5.9 vs. 31.1 ± 3.6 for the high vs. low test meals, 

respectively.

Bioassays

We used commercially available radioimmunoassays (Linco, St Charles, MO) to measure 

total PYY (PYY1–36 and PYY3–36) and insulin (assay sensitivities = 5 pg/ml and 1.3 

μIU/ml, respectively). Plasma glucose was determined by Ortho Clinical Diagnostics Vitros 

950 analyzer (University of North Carolina Hospitals). Due to funding constraints, PYY 

assays were performed in two phases and in two different laboratories: phase 1, University 

of North Carolina Endocrine lab (N = 17: 9 black (5 obese), 8 white (3 obese)); phase 2, 

New York Obesity Research Center Hormone and Metabolite Core (N = 23: 11 black (5 

obese), 12 white (7 obese)). Total PYY assay variability was computed separately by each 

laboratory (intra-assay coefficient of variation ranged from 2.7 to 4.4%; interassay 

coefficient of variation ranged from 5.1 to 9.3%).

Statistics

Missing data due to sampling and/or assay error (<2%) were estimated using within-diet 

multiple regression and then imputed prior to analysis. The primary outcome variable was 

PYY area under the curve (PYYAUC), which was calculated with the trapezoidal method. 

Race (black, white), obesity (yes, no), and test meal (high, low glycemic load) main and 

interactive effects on total PYYAUC were assessed by mixed-model ANOVA. Secondary 

analyses focused on assessing group (race, obesity) and glycemic load main and interactive 

effects on PYY and subjective appetite levels using repeated measures ANOVA. In both sets 

of analyses, significant interactive effects were followed by post hoc comparison of least 

squares means for interpretation. Preliminary analyses indicated significant mean total PYY 

differences by assay phase and significant between-group differences in age; thus, these 

variables were included as covariates. Participants were encouraged but not forced to eat the 

entire test meal, resulting in small magnitude individual differences in the macronutrient 

percentages actually consumed. Thus, to evaluate the influence of individual differences in 

these factors on total PYYAUC, models were subsequently tested while controlling for actual 

test meal glycemic load, total kcal, and percentages of protein, carbohydrate, and fat. Insulin 

sensitivity was determined on the basis of fasting insulin and glucose levels obtained prior to 

each test meal and was calculated using the quantitative insulin sensitivity check index (28). 

Pearson correlations, controlling for assay phase and age, were used to examine the relation 

between total PYYAUC and insulin sensitivity. All analyses were carried out using SAS 

software (version 9.13, SAS Institute, Cary, NC) and P < 0.05 was considered statistically 

significant.
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Results

Baseline measures

Characteristics of the study sample are presented in Table 1. Compared to normal weight 

subjects, obese subjects were older and they had higher fasting glucose and insulin levels 

and lower insulin sensitivity (obesity main effect, P < 0.05). Blacks and whites were 

comparable on all measures (race main effects and race × obesity interaction effects, P > 

0.41). Fasting glucose (P < 0.0005) and insulin (P < 0.02) levels decreased during study 

participation. These changes did not differ as a function of diet (P > 0.81 and 0.98, 

respectively) or race (P > 0.09 and 0.60, respectively), and were significant among obese but 

not normal weight participants (P < 0.0003; see Table 2). Furthermore, all interactions were 

nonsignificant (diet × race × obesity interactions, P > 0.47; race × obesity interactions, P > 

0.36), suggesting that fasting insulin and glucose levels did not decrease to a greater extent 

in any one of the four subgroups. Within subgroup analyses for fasting insulin revealed a 

greater decrease in normal weight white women on the low vs. high glycemic load diet (P < 

0.05). In addition, a trend (P < 0.06) toward a race × diet effect was observed, with blacks (n 
= 20) tending to show a greater decrease on the high glycemic load diet (−6.9 ± 17.4 vs. 

−5.7 ± 14.0) and whites (n = 20) tending to show a greater decrease on the low glycemic 

load diet (−3.7 ± 8.2 vs. −4.9 ± 8.3). However, in the absence of a significant diet × race × 

obesity effect or correction for multiple comparisons these within-subgroup observations 

should be viewed with considerable caution.

PYY effects

All main and interactive effects of glycemic load on fasting total PYY and total PYYAUC 

were not significant, indicating that glycemic load neither affected PYY directly (diet, P > 

0.27) nor differentially as a function of obesity (diet × obesity, P > 0.82) or race (diet × race, 

P > 0.29) (see Table 3). However, fasting total PYY and total PYYAUC differed across 

subgroups (race × obesity interactions, Ps < 0.03). Obese black women exhibited lower 

fasting total PYY levels compared to normal weight black women (age- and assay phase–

adjusted mean ± s.e.: 98.4 ± 5.0 pg/ml vs. 114.3 ± 5.1 pg/ml, respectively; P < 0.04) but 

neither group differed significantly from obese white (109.6 ± 4.9) or normal weight white 

(102.7 ± 4.9) women. Total PYYAUC was significantly lower in black compared to white 

women (race effect, P < 0.03) and in obese compared to normal weight women (obesity 

effect, P < 0.04), with obese black women having significantly lower total PYYAUC 

compared to all others (race × obesity interaction, P < 0.003); see Figure 1). The race × 

obesity interaction for total PYYAUC remained significant after controlling separately for 

individual differences in test meal kcal (P < 0.03), fat percent (P < 0.002) and carbohydrate 

percent (P < 0.005). As shown in Figure 2, PYY levels differed between obese black women 

and other women at all postprandial time points (overall main group effect, P < 0.002). Total 

PYYAUC was associated with insulin sensitivity (r = 0.33, P < 0.004; Figure 3), but there 

were no clear differences in this association by race/obesity subgroup.

Subjective appetite effects

Participants rated visual appeal, taste, and palatability higher for the high vs. the low 

glycemic load meal (test meal main effect, Ps < 0.02), but otherwise there were no consistent 
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main or interactive effects of race, obesity, or glycemic load on ratings of subjective appetite 

(data not shown).

Discussion

PYY provides a signal for the achievement and maintenance of satiety following acute 

feeding episodes. Deficits in PYY have been demonstrated in obese compared to normal 

weight individuals (12) as well as in blacks compared to whites (7,8). Based on these 

observations, diminished PYY secretion has been implicated as a potential factor in race 

differences in obesity risk. This is the first study, to our knowledge, to explicitly test for 

PYY deficits in obese black women relative to age- and BMI-matched obese white women 

and to normal weight black and white women. Results indicate significantly lower 

postprandial PYY secretion in obese black women compared to all others. Thus, our results 

confirm previous findings of race- and obesity-related deficits in PYY secretion and extend 

these findings in an important way. Specifically, the current study suggests that race 

differences in PYY secretion are largely due to the subset of blacks who are obese.

In our sample, PYYAUC was significantly related to insulin sensitivity—a finding that is 

consistent with some (14,29) but not all (8,17,30) prior reports. This may be due to 

differences in sample characteristics, specifically age of the participants (adolescents in the 

negative studies, adults in the present study). Increasing age is related to progressive 

decrements in glucose tolerance (31) and decrements in β-cell function (32). The mean ± 

s.d. fasting glucose/fasting insulin ratios were 6.5 ± 2.5 vs. 8.0 ± 5.3 in black vs. white 

children, respectively (8) but in the present study were 10.4 ± 8.2 vs. 12.1 ± 10.8 in black vs. 

white adults, respectively. Thus, it is plausible that the wider range of insulin sensitivity 

exhibited by subjects in the present study facilitated detection of an insulin sensitivity-PYY 

association. Low circulating PYY levels have been linked to insulin resistance in healthy 

humans with increased familial risk of type 2 diabetes (14), and PYY knockout mice 

hypersecrete insulin in response to glucose challenge (33). These findings suggest that PYY 

deficits may contribute to hyperinsulinemia and insulin resistance. Furthermore, 

postprandial PYY secretion is diminished in healthy humans with vs. without increased 

familial risk of type 2 diabetes (29). Women in this study were relatively young and 

exhibited normal fasting insulin and glucose levels, but their familial history of diabetes was 

not assessed. Further, prospective studies that incorporate more rigorous assessments of 

insulin/glucose regulation and family history of type 2 diabetes are needed to understand 

whether PYY deficits contribute to increased rates of insulin resistance and diabetes 

observed in black compared to white women (34,35).

Low glycemic load diets are thought to support weight maintenance and/or loss through 

several mechanisms including lowering postprandial insulin and glucose responses (21), 

increasing postprandial time to subsequent food intake (21), improving body composition 

(23), and reducing hunger (23). However, the clinical utility of low glycemic load diets 

remains controversial in light of long-term studies indicating no advantage in terms of initial 

weight loss (36) or weight-loss maintenance (37) as well as recent contradictory findings of 

greater satiety, desire to eat, and prospective food consumption following high vs. low 

glycemic load challenges (38,39). In this study, manipulating glycemic load had no 
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appreciable effect on total PYY, nor did it appear to influence total PYY to any greater or 

lesser extent as a function of obesity or race, suggesting the potential appetite and weight 

regulation benefits of a low glycemic load diet are not mediated via alterations in total PYY.

Fat digestion is critical for stimulation of PYY (40) and postprandial PYY secretion in 

humans is sensitive to macronutrient content (16,17,19,20). Whereas high-protein intake is 

generally more satiating than high fat or high carbohydrate intake (41–43), the PYY 

response to macronutrient manipulation is less straightforward. In a sample of 18 obese 

adults (14 women), total PYYAUC was greater following a high fat/low carbohydrate meal 

vs. a high carbohydrate/low fat meal (19). In eight obese women, PYYAUC was not assessed; 

instead, PYY3–36 level was consistently greater after a high fat vs. a high carbohydrate 

liquid meal (16). In this same study, the high-carbohydrate meal evoked an immediate and 

sustained postprandial increase in PYY3–36, whereas the high-protein meal evoked a 

delayed increase in PYY3–36. In a third study of obese and lean men (20), PYY3–36AUC 

was greatest overall after a high-protein meal as well as significantly greater after a high fat 

compared to a high-carbohydrate meal in normal weight males but not in obese males. 

Lastly, in a recent study of adolescent girls, PYY3–36 responses differed (were lower) 

between obese and lean girls after a high fat meal but not after a high protein meal or high-

carbohydrate meal (17). Thus, the macronutrient stimulus-PYY response is complex and 

apparently influenced by multiple factors including meal composition (i.e., whole food vs. 

liquid), obesity, sex, and age. To the extent that these complex relations replicate in future 

studies, they may justify further investigations of glycemic load effects on PYY that involve 

males, younger participants, and liquid meal challenges. Liquid meals, in particular, may be 

useful in circumventing potential confounding due to subjective differentiation of taste and 

palatability of low vs. high glycemic load meals. Like other appetitive hormones (44), PYY 

may demonstrate cephalic phase activity (45); thus, individual differences in perceived taste 

and palatability may influence observed group differences in PYY response.

Strengths of this study are the close matching of black and white participants within obesity 

subgroups on BMI and age. Limitations of the study include the small sample size; the 

potential for individual variability in actual consumption across test meals; reliance on BMI 

as our sole measure of obesity risk; lack of consideration of psychological factors that may 

affect appetite hormone responses; our focus on total PYY given that PYY3–36, in 

particular, has been linked to subjective satiety; lack of control for menstrual cycle; and lack 

of assessment of meal-stimulated PYY response before each 4½ day outpatient diet period. 

Whole food challenges such as the one used in this study have the benefit of ecological 

validity but are vulnerable to individual variability in actual caloric and macronutrient 

consumption. In this study, these factors did not likely account for diminished PYYAUC 

observed in obese black women. Compared to obese white women, for example, obese black 

women consumed relatively the same average number of calories (627.8 vs. 625.8) and % 

fat (29.2 vs. 28.2). It should be acknowledged, however, that our approach differed from 

others’ who adjusted test meal caloric content on the basis of body size or metabolic 

requirements (7,17,19). The impact that such an approach might have on our findings 

warrants further investigation. Recent findings suggest that postprandial release of the 

appetite-stimulating hormone, cholecystokinin, is greater following a high vs. a low 

glycemic load meal and moderated by the psychological factors of cognitive dietary restraint 
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and disinhibition, with cholecystokinin being blunted in participants reporting both high 

cognitive restraint and high disinhibition (38). Future studies designed to replicate or extend 

the present study might benefit by including measures of psychological attributes related to 

eating. PYY3–36 infusion reduced appetite and food consumption 2 h later at a buffet meal 

by ~30% in obese subjects (12,13), whereas PYY1–36 increased the postprandial insulin 

response but had no appreciable effect on energy intake (15). Notably, however, the effect of 

PYY1–36 on subjective appetite was dependent on dose and body composition: low dose 

PYY1–36 reduced hunger and perceived ability to eat in lean subjects but had the opposite 

effect in obese subjects; high dose PYY1–36 increased hunger and decreased satiety before 

food intake but had the opposite effect after food intake. Although intriguing, these findings 

are difficult to interpret because obese vs. lean subjects were defined on the basis of BMI 

(rather than body composition) and because there were disproportionately more obese 

subjects who received the high dose treatment. Further studies are needed to understand how 

endogenous levels of PYY1–36 vs. PYY3–36 relate to subjective appetite and subsequent 

energy intake and how these relationships differ as a function of obesity and race. In light of 

findings suggesting that the ovarian hormone milieu influences the food-inhibition effect of 

PYY (46), PYY3–36 receptor binding (47), energy consumption patterns (48), and food 

transit (49), future studies should control for menstrual cycle effects, preferably by limiting 

testing to the follicular phase. Finally, although we did not observe group differences in 

fasting PYY, it is still possible that our findings were influenced by the 4½-day outpatient 

diets. Future studies should consider evaluating meal-stimulated PYY response both before 

and after dietary manipulation to delineate the precise nature and extent of PYY deficiency 

in obese black women.

So far, race differences in PYY have been demonstrated only in studies of black and white 

adult women and children. Moreover, there is some indication that obesity-related deficits in 

PYY are limited to adults (8,12). Larger studies, which also include men, other race/ethnic 

minorities, and children, are needed to determine whether diminished PYY activity plays a 

unique role in the pathogenesis of obesity among black women. Studies that include adult 

participants and their offspring may be helpful in addressing potential genetic and gene-

environment contributions to race differences in PYY. Finally, because PYY is sensitive to 

variations in macronutrient content and to acute exercise (50), studies that closely measure 

daily food intake and physical activity in individuals in their natural environments may be 

instrumental in understanding how PYY is regulated and ultimately relates to individual risk 

for obesity.
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Figure 1. 
Total PYY area under the curve by race and BMI status. Age- and assay phase–adjusted 

mean total PYYAUC (s.e.), collapsing across glycemic load, in black (solid bar) vs. white 

(open bar) obese and normal weight women (black (n = 20) < white (n = 20), P < 0.02; 

obese (n = 20) < normal weight (n = 20), P < 0.05; *obese black < each other group, Ps < 

0.003).
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Figure 2. 
Total PYY levels in black obese vs. other women. Change in postprandial total PYY levels 

(age- and assay phase–adjusted mean values ± s.e.) in obese black women (n = 10; closed 

circles) vs. others (n = 30; obese white, normal weight white and black combined). Data are 

collapsed across glycemic load conditions. Overall group effect, P < 0.002; *within time 

point group difference, P < 0.001.
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Figure 3. 
Relation between total PYYAUC and insulin sensitivity. Scatter plot of residuals depicting 

significant relation between total PYYAUC and insulin sensitivity (r = 0.33, P < 0.004).

Brownley et al. Page 14

Obesity (Silver Spring). Author manuscript; available in PMC 2018 January 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brownley et al. Page 15

Table 1

Characteristics of the study sample

White normal White obese Black normal Black obese

N 10 10 10 10

Age (years)** 29.4 (7.9) 34.1 (10.5) 26.5 (6.1) 35.6 (7.6)

BMI (kg/m2)*** 22.9 (1.4) 34.2 (2.8) 22.8 (1.4) 35.1 (2.8)

Fasting glucose (mg/dl)* 84.9 (7.4) 90.4 (16.1) 83.7 (8.8) 96.5 (10.8)

Fasting insulin (μU/ml)** 7.1 (4.1) 18.9 (17.4) 8.5 (5.3) 25.2 (27.2)

Insulin sensitivity*** 0.16 (0.02) 0.14 (0.01) 0.16 (0.02) 0.14 (0.02)

Data are expressed as mean (s.d.).

Obese (n = 20) vs. normal weight (n = 20):

*
P < 0.05,

**
P < 0.01,

***
P < 0.001.

Black vs. white: all Ps > 0.44. Obesity × Race interactions: Ps > 0.40.
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Table 2

Effect of glycemic load on fasting glucose and insulin

White normal White obese Black normal Black obese

N 10 10 10 10

Fasting glucose (mg/dl)*

 High GL 84.1 (8.7) 85.6 (9.4) 80.8 (5.4) 86.9 (7.8)

 Low GL 82.8 (9.0) 87.2 (14.9) 79.8 (6.8) 88.2 (7.2)

Δ Fasting glucose (mg/dl)

 High GL −0.8 (4.0) −4.8 (8.6) −2.9 (7.8) −9.6 (6.9)

 Low GL −2.1 (4.0) −3.2 (5.8) −3.9 (7.9) −8.3 (7.0)

Fasting insulin (μU/ml)**

 High GL 8.2 (4.6) 13.3 (8.9) 9.6 (3.1) 14.0 (7.8)

 Low GL 5.6 (2.9) 13.0 (7.9) 9.6 (5.3) 18.6 (12.6)

Δ Fasting insulin (μU/ml)

 High GL −0.8 (2.9) −6.6 (10.8) −0.6 (6.4) −13.2 (22.5)

 Low GL −2.7 (2.5) −7.2 (11.3) −0.9 (5.9) −10.5 (18.2)

Δ = Change relative to level at study entry (Table 1). Data are expressed as mean (s.d.).

GL, glycemic load.

Obese (n = 20) vs. normal weight (n = 20):

*
P < 0.02,

**
P < 0.0003.

Blacks (n = 20) vs. whites (n = 20): Ps > 0.09. Obesity × Race interactions: Ps > 0.36. Diet × obesity × race interactions: Ps > 0.47.
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Table 3

Effect of glycemic load on fasting PYY and PYYAUC

White normal White obese Black normal Black obese

N 10 10 10 10

Fasting PYY (pg/ml)

 High GL 95.0 (6.9) 106.8 (6.9) 116.5 (7.0) 95.9 (7.0)

 Low GL 110.4 (6.9) 112.4 (6.9) 112.1 (7.0) 100.9 (7.0)

PYYAUC(pg/ml)

 High GL 26,358 (11,101) 27,105 (11,104) 26,565 (11,107) 21,667 (11,104)

 Low GL 26,812 (11,101) 26,910 (11,104) 27,007 (11,107) 21,843 (11,104)

Data are expressed as least squares mean (s.e.), adjusted for assay phase and age.

AUC, Area under the curve, collapsed across assay phase; GL, glycemic load.

All main and interactive effects are nonsignificant (Ps > 0.27).
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