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Abstract

Peroxisome proliferator-activated receptor-gamma (PPARγ) has been implicated in the pathology 

of numerous diseases involving diabetes, stroke, cancer or obesity. It is expressed in diverse cell 

types, including vessels, immune and glial cells, and neurons. PPARγ plays crucial roles in the 

regulation of cellular differentiation, lipid metabolism, or glucose homeostasis. PPARγ ligands 

also exert effects on attenuating degenerative processes in the brain, as well as in peripheral 

systems, and it has been associated with the control of anti-inflammatory mechanisms, oxidative 

stress, neuronal death, neurogenesis, differentiation, and angiogenesis. This review will highlight 

key advances in the understanding of the PPARγ-related mechanisms responsible for 

neuroprotection after brain injuries, both ischemia and traumatic brain injury, and it will also cover 

the natural and synthetic agonist for PPARγ, angiotensin receptor blockers, and PPARγ 
antagonists, used in experimental and clinical research. A better understanding of the pleiotropic 

mechanisms and applications of these drugs to improve the recovery and to repair the acute and 

chronic induced neuroinflammation after brain injuries will pave the way for more effective 

therapeutic strategies after brain deficits.
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Introduction

Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription 

factors that regulate genes essential on various metabolic processes and cell differentiation, 

but also exert anti-inflammatory properties after brain injury or neurodegenerative diseases 

(Kapadia et al. 2008; Yonutas and Sullivan 2013). PPARs are members of the nuclear 

hormone receptor superfamily of ligand-inducible transcription factors that heterodimerize 

with the retinoid X receptor (RXR), interact with cofactors and act on specific DNA 

sequences to cause transcriptional activity (Moreno et al. 2004). After interaction with 

specific ligands, PPARs are translocated to the nucleus, where they change their structure 

and regulate gene transcription. In addition to transcriptional transactivation, PPARs can 
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repress gene transcription by negatively interfering with other transcription factor pathways 

independent of DNA binding (Abdelrahman et al. 2005). PPARs are transcription factors 

that belong to the superfamily of nuclear receptors, and the members PPARα (NR1C1), 

PPARβ/δ (NR1C2), and PPARγ (NR1C3) represent the family of PPARs (Ehrmann et al. 

2002). They are expressed in different tissues and have central roles in the homeostasis and 

energy metabolism, regulating energy storage. PPAR-α is expressed highly in the liver, plays 

a role in fatty acids oxidation, which provides energy for peripheral tissues, lipoprotein 

metabolism, and has also a potential role in oxidant/antioxidant pathway. PPAR-δ/β 
promotes fatty acids metabolism and suppresses macrophage-derived inflammation. PPARγ 
is highly expressed in adipose tissue, where it is a regulator of adipogenesis, lipid 

metabolism and insulin sensitivity (Tontonoz and Spiegelman 2008). Also, PPARγ 
activation plays a crucial role in the regulation of proliferation, metabolism, differentiation, 

development, and inflammatory responses of the central nervous system (CNS) (Gurley et 

al. 2008), in this way PPARγ agonists have significant therapeutic potential in brain 

disorders.

The present review mainly discusses the effective neuroprotective role of PPARγ activation 

in the peripheral and brain inflammation, and the significant role for PPARγ agonist and 

antagonist in the regulation of neuroinflammatory processes following brain injuries. Also, 

its role in apoptosis, neurogenesis, differentiation, and angiogenesis that are triggered as 

consequence of brain damage.

Role of PPARγ in brain inflammation

In the peripheral organs as well as in the CNS, the regulation of inflammatory processes 

conduces to the reduction of the brain damage and improvement of motor and cognitive 

outcome. The mediators responsible for this process are the resident microglia and infiltrated 

inflammatory cells originating from the blood (Morganti-Kossmann et al. 2007; Woodcock 

and Morganti-Kossmann 2013). Effects on inflammation are regulated through mechanistic 

signaling pathways where multiples factors interfere and can be modulated by PPARs. The 

expression of PPARs was analyzed by immunohistochemistry and in situ hybridization in 

several rodent tissues, including the CNS. PPARγ is present in most cell types, vessels, 

neurons, and astrocytes (Figure 1), where it mediates multimodal function, whereas 

oligodendrocytes exclusively show PPAR-β/δ expression (Giannini et al. 2004; Moreno et 

al. 2004). PPARγ is also expressed in various immune related cell types, particularly in 

adipocytes, macrophages, dendritic cells, and microglia (Yuan et al. 2015). PPARγ regulates 

the alternative activation of immune cells by increasing anti-inflammatory related gene 

expression (Bouhlel et al. 2007), and down-regulation of pro-inflammatory mediators 

through their action on activated microglia/macrophages (Kapadia et al. 2008). PPARγ-

mediated CD36 upregulation has been involved in the modulation of microglia activation 

and phenotype, promoting phagocytosis of apoptotic cells and thus contributing to the 

resolution of inflammation after ischemia (Ballesteros et al. 2014). Also, PPARγ has the 

ability mainly to inhibit transcription factors, such as the transcription factors activator 

protein-1, Stat 1 and nuclear factor-kB (NF–κB) (Ricote et al. 1998). PPARγ also mediates 

down-regulation of pro-inflammatory genes such as cyclooxygenase-2 (COX-2), 

metalloproteinase-9 (MMP-9), scavenger receptor A, inducible nitric oxide synthase (iNOS), 
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as well as the production of pro-inflammatory cytokines, chemokines and interleukins 

(Heneka et al. 2000; Kapadia et al. 2008; Lenglet et al. 2013) (Figure 2). Thus, reducing 

PPARγ activation may contribute to the chronic inflammation. PPARγ agonists may 

modulate expression of inflammatory genes through PPARγ-independent mechanisms, as 

was demonstrated in PPARγ-null embryonic stem cells (Chawla et al. 2001; Moore et al. 

2001). The convenience of PPARγ agonists as a tool for down-regulation of brain 

inflammation that occurs after brain damage is an important area to be developed in the 

future.

Role of PPARγ in Peripheral Organs

In addition to the CNS, PPARγ activation also occurs in the peripheral organs. PPARγ is 

predominantly detected in adipose tissue, liver, and intestine, regulating adipocyte 

differentiation and promotes lipid storage (Akiyama et al. 2005; Berger et al. 2005). 

Macrophages polarization switch was associated with the interaction between PPARγ and 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signal pathway, and 

it was demonstrated that this disruption of PPARγ impaired alternative M2 macrophage 

activation/Kupffer cell polarization in a nonalcoholic fatty liver disease (Luo et al. 2017). 

PPARγ protein increases insulin sensitivity and decreases insulin resistance in adipose 

tissue, skeletal muscle, and liver (Heald and Cawthorne 2011; Hegarty et al. 2004; Lee et al. 

2016; Odegaard et al. 2007; Wang et al. 2009). In the vascular system, PPARγ confers anti-

atherosclerotic effects (Blaschke et al. 2006a; Blaschke et al. 2006b). PPARγ antagonizes 

the metabolic syndrome by downregulating peripheral inflammatory processes, including the 

suppression of pro-inflammatory cytokines and adhesion molecules (Delerive et al. 2001). 

Besides, PPARγ activation is considered necessary for inhibiting an intestinal inflammatory 

response and defending cells oxidative damage (Serra et al. 2016). Recently, it was 

demonstrated how a novel PPARγ modulator, GED-0507-34, ameliorated intestinal fibrosis 

in a model of chronic colitis in mice and regulated the major profibrotic cellular and 

molecular mechanisms (Speca et al. 2016). Recently studies have highlighted the PPARγ 
signaling association to the microbiota, a low grade of inflammation and host metabolism 

(Sohn et al. 2015; Wang et al. 2016). However, microbiota-induced PPARγ has also a role 

beyond the gut (Angelakis et al. 2012; Couvigny et al. 2015; Karrout et al. 2015; Peyrin-

Biroulet et al. 2010).

Role of PPARγ on oxidative stress and neuronal survival

The brain damage caused by oxidative stress induces a high rate of oxidative metabolic 

activity, and relatively low antioxidant capacity and insufficient neuronal cell repair activity. 

Overproduction of reactive oxygen species (ROS) results in oxidative damage, including 

lipid peroxidation, and DNA damage, which can lead to cell death (Lozano et al. 2015). 

Several PPARγ agonists have been shown to exert protective activity against oxidative 

damage, mitochondrial dysfunction, and apoptosis protecting neurons and glial cells in 

various animal models. Activation of PPARγ induces expression of antioxidant catalase and 

copper/zinc superoxide dismutase (SOD), two enzymes capable of alleviating oxidative 

stress, and inhibiting NADPH oxidase (Dunning et al. 2013; Eslami et al. 2014; Zarzuelo et 

al. 2013). The PPARγ antagonist GW9662, blocked the increase of PPARγ DNA binding 
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activity and antioxidant enzymatic activities (SOD and CAT) abolishing the protection of 

PPARγ activation in OGD-exposed neurons (Zeng et al. 2012). Other mechanisms by which 

these PPARγ agonists prevent oxidative stress include a decrease in iNOS activity, NFκB 

blockade, inhibition of TNF-α release, or activation of nuclear factor (erythroid-derived 2)-

like 2 (Nrf2) (Heneka and Landreth 2007; Park et al. 2004) (Figure 2).

The role of PPARγ in neurogenesis and differentiation

Neuronal stem cell (NSC) and progenitors following brain injury are thought to proliferate, 

migrate to and differentiate at injury sites, affecting variable degrees of structural and 

functional recovery. Endogenous stem cells and stem cell transplant therapy supported by 

their local vasculature, are promising for new therapeutic strategies in the chronic 

neuroinflammatory environment that accompany brain damage, stroke or other 

neurodegenerative diseases (Ormerod et al. 2013; Prakash and Kumar 2014; Qi et al. 2010). 

PPARγ is essential in regulating the early brain development and post-injury brain repair 

(Eriksson et al. 1998). PPARγ activation promotes neurite outgrowth in mature neurons 

significantly contributing to a proper neuronal connectivity in neuronal networks (Miglio et 

al. 2009). Also, it has been demonstrated that PPARγ-mediated pathways can be involved in 

the proliferation and differentiation of NSCs (Cimini and Ceru 2008; Wada et al. 2006). 

PPARγ activation by PPARγ agonists stimulated NSC proliferation and inhibited 

differentiation into neurons, furthermore abundant activation of PPARγ with higher levels of 

agonists resulted in cell death (Wada et al. 2006). Oligodendrocytes are required for myelin 

formation and maintenance (Griggs et al. 2017). PPARγ has a role in the differentiation and 

function of oligodendrocytes (Roth et al. 2003), being these effects blocked by the PPARγ 
antagonist GW9662 (Wan Ibrahim et al. 2013). It was demonstrated that GW9662 could also 

inhibit the differentiation towards neurons and astrocytes induced by pioglitazone and 

rosiglitazone in neurospheres from adult rat brains (Morales-Garcia et al. 2011). A transient 

immune response stimulated by lipopolysaccharide (LPS) compromised hippocampal 

neurogenesis and impaired hippocampus-dependent spatial memory, and PPARγ agonist 

activity protects neurogenesis and memory from the effects of LPS-produced transient 

illness (Ormerod et al. 2013). The blockade of PPARγ was able to significantly straight 

cannabidiol effects on reactive gliosis and subsequently on neuronal damage. Moreover, 

cannabidiol -mediated activation of PPARγ is associated with a significant neurogenic 

activity in the granule cell layer of the hippocampus (Esposito et al. 2011).

Role of PPARγ in angiogenesis

Angiogenesis is the formation of new blood vessels around the injured brain restoring the 

damaged regions and inducing neurovascular repair (Arai et al. 2009). PPARγ activation 

increases vascular endothelial growth factor (VEGF) expression in human vascular smooth 

muscle cells (Yamakawa et al. 2000). PPARγ coactivator, (PGC)-1α, is a transcriptional co-

activator that powerfully regulates oxidative and mitochondrial metabolism, but also 

angiogenesis activities in the brain. (PGC)-1α is a known regulator of VEGF gene 

transcription (Arany et al. 2008), and it was found elevated in the cortex during the chronic 

hypoxic exposure (Ndubuizu et al. 2010).
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Rosiglitazone was found that induce the endothelial cells proliferation, endothelial NOS 

expression benefiting angiogenesis, preserving the cerebral blood flow and limiting of 

neurological loss and functional recovery (Chu et al. 2006). By another hand, resveratrol 

was attributed to its role as an intracellular antioxidant, an anti-inflammatory agent, its 

ability to induce sirtuin 1 (SIRT1) activity, NOS expression and angiogenesis (Annabi et al. 

2012). It was also demonstrated how resveratrol, exerts pharmacological preconditioning by 

activating (PGC)-1α, reducing the extent of ischemia/reperfusion injury (Tan et al. 2008) 

(Figure 2). Treatment with PPARγ agonists exerts direct protective action on cerebral 

glucose and glutamate metabolism, disrupting the regulation of neuronal glucose transporter 

(GLUT-3) expression and glial glutamate transporter EAAT-2 (Garcia-Bueno et al. 2007).

Natural or physiological PPARγ agonists

Fatty acids are natural modulators of PPARγ; however, their connection with the receptor 

does not always lead to PPARγ activation and target gene transcription. A physiological 

PPARγ agonist is the 15-Deoxy-Delta12,14-prostaglandin J2 (15dPGJ2), a reactive 

membrane lipid metabolite and anti-inflammatory downstream product of prostaglandin D2. 

(Kimura et al. 2008). In basal conditions, physiological PGJ2 closes a negative feedback 

loop on COX-2, whereas, in stress conditions, COX-2 is activated by enhanced levels of 

PGJ2 (Behl et al. 2016; Liu et al. 2012; Napimoga et al. 2013). Thus, PGJ2's anti-

inflammatory effect is more potent in stressful conditions due to induction of endogenous 

PGJ2 production, when is combined with exogenous 15dPGJ2 (Mouihate et al. 2004).

Pharmacological agonists for PPARγ: Thiazolidinediones

PPARγ agonists have been demonstrated to show a benefit in multiple CNS injury models 

including spinal cord injury (SCI) (Park et al. 2007), TBI (Yi et al. 2008), and stroke 

(Collino et al. 2008). PPARγ agonist have been reported to be protective after experimental 

brain trauma in rodents, reduction mitochondrial dysfunction, cognitive impairment, tissue 

loss and inflammation (Sauerbeck et al. 2011b; Yi et al. 2008). PPARγ possesses a high 

number of pharmacological or synthetic high-affinity ligands as thiazolidinediones (TZDs), 

which include troglitazone, rosiglitazone, pioglitazone, and ciglitazone (White and Murphy 

2010). The kinetics of intraperitoneal TZDs are unknown. However, the haft-life of oral 

TZDs is 4 to 9 hours (Chapelsky et al. 2003) and so it is plausible that they are present 

during the alteration of PPARγ activation and expression after brain injury. The TZDs have 

the capacity to reduce the expression of proteins that contribute to the inflammatory damage 

observed in after brain injuries (Arai et al. 2009; Culman et al. 2007), such as the pro-

inflammatory cytokine TNF-α and iNOS, gelatinase B (MMP-9) and COX-2 in LPS-

stimulated macrophages, glial cells and neurons (Heneka and Landreth 2007) (Figure 2). It 

was also found that PPARγ agonist attenuates ischemia-induced activation of microglia and 

neutrophil infiltration in mice (Tureyen et al. 2007). Troglitazone was the first drug approved 

by the Food and Drug Administration (FDA) for clinical use, followed by rosiglitazone and 

pioglitazone (Sood et al. 2000). They were introduced on the market in the early 1990s, and 

are currently in clinical use to regulate the blood glucose levels in patients with type II 

diabetes. PPARγ activation enhances the expression of proteins involved in glucose and 

lipid metabolism, improving insulin resistance by mitigating the effect of TNF-α in 
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adipocytes (Tyagi et al. 2011). Besides decreasing insulin resistance, TZDs positively affect 

the vasculature, reducing the high blood pressure and its associated risks, such as 

atherosclerosis, cardiovascular diseases, and stroke. It was demonstrated that Pioglitazone 
mitigates the severity of radiation-induced cognitive impairment in a well-characterized rat 

model (Zhao et al. 2007). It also attenuates dopaminergic cell death in a Parkinson’s disease 

model (Breidert et al. 2002), induces upregulation of SOD (Shimazu et al. 2005), COX-2 

and TNF-α expression (Zhao et al. 2006) and microglia and macrophage activation (Zhao et 

al. 2005) in a rat model of stroke, and reduces lesion volume and cerebral inflammation in a 

murine model of TBI (Thal et al. 2011). A single dose of Pioglitazone administered early 

following lateral fluid percussion injury (LFPI), decreased the cortical lipid and protein 

oxidative damage, edema, increased the GSH-Px activity, and reduced microglial activation 

(Pilipovic et al. 2015). Troglitazone reduces cell death in cultured cerebellar granule neurons 

following glutamate exposure, suggesting that it interferes with downstream consequences 

of glutamate activation (Uryu et al. 2002), and cell death in rat cerebellum exposed to 

bacterial LPS and interferon-γ (Heneka et al. 2000). Another PPARγ agonist, rosiglitazone, 

has been studied after cerebral ischemia in rats. Rosiglitazone induced brain repair 

promoting white matter restoration (Han et al. 2015), and found to decrease secondary 

neuronal damage, gliosis, myelin loss, and neuropathic pain in animal models of SCI while 

improving motor function recovery (Li et al. 2013; Zhang et al. 2010). It was also found to 

reduce neuroinflammation, inhibit pro-apoptotic caspase-3, and attenuate both intercellular 

adhesion molecule 1 (ICAM-1), myeloperoxidase (MPO) activity, and cytokine expression 

in mouse models of transient cerebral ischemia (Collino et al. 2006; Luo et al. 2006; 

Sundararajan et al. 2005; Victor et al. 2006a). Rosiglitazone has also been shown to interfere 

with NF-κB activation in an experimental model of autoimmune encephalomyelitis 

(Iruretagoyena et al. 2006).

Furthermore, two non-thiazolidinedione PPARγ agonists, L-796 and L-449, have been 

shown to decrease middle cerebral artery occlusion (MCAO)-induced infarct size, inhibits 

NF-κB signaling and improves neurological scores (Pereira et al. 2005). GW1929 treatment 

ameliorated cognitive deficits, cerebral ischemic-reperfusion, and hippocampal neuronal 

damage (Kaundal and Sharma 2011a; Kaundal and Sharma 2011b).

PPARγ agonist activity of Angiotensin Receptors blockers

Angiotensin II type 1 (AT1R) receptor blockers (ARBs) have selective PPARγ agonist 

activity in the stress response to injury (Pang et al. 2012a; Pang et al. 2012b). The net result 

of the AT1R blockade and PPARγ activation is to improve energy balance and blood flow to 

the brain with relevant neuroprotective properties after brain injuries (Villapol and Saavedra 

2015). ARBs improve stroke outcome, at least in part, through activation PPARγ and 

blockade of the AT1R in cerebral ischemia models (Jung et al. 2007; Schmerbach et al. 

2008). Candesartan and telmisartan are ARBs that induce activation of PPARγ and were 

studied in ischemic animal models showing neuroprotective features (Schmerbach et al. 

2008; Zeng et al. 2013). Telmisartan was demonstrated that suppresses brain injury 

following ischemia and improves outcome, at least in part, through activation of PPARγ 
(Kasahara et al. 2010). We have previously demonstrated that candesartan treatment reduced 

lesion volume, apoptosis and microglia activation, improving performance in the motor and 
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learning and memory behavior test in a mouse model of traumatic brain injury (TBI) 

(Villapol et al. 2012), and both drugs, candesartan and telmisartan, decreased lesion volume, 

apoptosis, gliosis and protected cerebral blood flow after TBI (Villapol et al. 2015). 

However, we have demonstrated the neurorestorative effects of both ARBs with dual AT1R 

blocking and PPARγ activation (Figure 3) (Villapol et al. 2015).

PPAR antagonists

PPAR antagonists were used in animal models of brain injury to test whether 

neuroprotection after damage is mediated by PPARγ activation (Victor et al. 2006b). This 

widely used pharmacologic antagonist has been shown to bind covalently to the Cys313 

residue of PPARγ and induce conformational changes that block the recruitment of 

transcriptional cofactors to the PPARγ/RXR heterodimer (Lee et al. 2002). Contrarily to 

PPARγ agonist by TZDs, the PPARγ blockage increases lesion size after ischemia. PPARγ 
antagonist, GW9662, reduces the protective effects of LPS preconditioning against organ 

damage caused by endotoxemia or ischemia/reperfusion (Collin et al. 2006; Sivarajah et al. 

2005). Other studies have shown how a novel PPARγ antagonist, T0070907, blocks and 

promotes recruitment of nuclear receptor corepressors to PPARγ (Lee et al. 2002). 

T0070907 is highly specific for PPARγ having an 800-fold preference for PPARγ, over 

PPARα and PPARδ (Lee et al. 2002). The beneficial neuroprotective effects of telmisartan 

were reduced by concomitant administration of GW9662, a PPARγ antagonist on ischemia/

reperfusion injury (Kasahara et al. 2010), suggesting that PPARγ activation may contribute 

to part (or all) of the neuroprotective effects of candesartan or telmisartan after TBI (Villapol 

et al. 2015; Villapol et al. 2012) (Figure 3). In agreement with our studies, PPARγ agonist 

rosiglitazone reduced infarction volume around 75% in an MCAO rodent model and its 

protection was completely lost when T0070907 was given along with rosiglitazone (Sobrado 

et al. 2009).

PPARγ activation after brain injury

Brain damage also induces detrimental secondary damage and neuroinflammatory response 

(Aronowski and Zhao 2011). There are multiple implicated pathways for inducing central or 

peripheral inflammation. Neuroprotection merely reduces cell death or lesion volume after 

brain injury. However, neurorestorative approaches can promote endogenous neurogenesis, 

axonal sprouting, synaptogenesis, oligodendrogenesis or angiogenesis, which enhance 

neuroplasticity and improve repair and functional recovery (Xiong et al. 2009). PPARγ 
agonists confer neuroprotection on the injured brain and PPARγ antagonists reverse the 

PPARγ activation effects in animal models of ischemia or TBI (Figure 4). PPARγ presents 

lower levels of expression in the normal adult brain, limited to the hippocampal dentate 

gyrus, thalamus, basal ganglia, the piriform cortex, and expression in the rat cerebral frontal 

cortex, mainly in the neurons of layer II (Moreno et al. 2004). Also, PPARγ is expressed in 

microglia and astrocytes, both important cell types involved in the neuroinflammatory 

activity in neurological diseases and brain damage (Bernardo and Minghetti 2006; Bernardo 

and Minghetti 2008). PPARγ activation can simultaneously weaken or reprogram the 

immune response, death of neurons and glia following CNS injury (Mandrekar-Colucci et al. 

2013). Reduction of lesion volume might be associated with anti-inflammatory activities 

Villapol Page 7

Cell Mol Neurobiol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



related to PPARγ agonist activity of TZDs in the ischemic region and improve neurological 

function (Sundararajan et al. 2005; Zhao et al. 2005). Recent studies indicate that PPARγ 
agonists attenuate ischemia-induced activation of microglia, expression of ICAM-1 and 

neutrophil infiltration in C57BL/6mice (Luo et al. 2014; Tureyen et al. 2007). However, 

PPARγ is also implicated in the differentiation of monocytes to macrophages in the 

periphery, and PPARγ agonist can inhibit the expression of iNOS, TNF-α, and IL-1β from 

macrophages (Ricote et al. 1998). The PPARγ antagonist increased infarction size in the 

absence of exogenous agonist, suggesting that even the low level of PPARγ activation that 

occurs during ischemia is protective. There are several studies in murine brain ischemia, 

which showed neuroprotective effects of pioglitazone in transient focal ischemia (Tureyen et 

al. 2007; Victor et al. 2006a) and brain trauma (Sauerbeck et al. 2011b). However, PPARγ 
activation and expression increased following brain damage and when the inflammatory 

response is developing. Mainly, pioglitazone was showing protection of mitochondrial 

function, reducing inflammation and cortical lesion, and improving cognitive function 

following TBI (Sauerbeck et al. 2011b). Furthermore, the natural agonist 15dPGJ2 decreases 

the neurological deficits after experimental intracerebral hemorrhage. Both pioglitazone and 

rosiglitazone share similar protective efficacy after cerebral damage, and both were 

described that decrease the infarct volume and improve functional recovery from stroke in 

rats (Sundararajan et al. 2005; Sundararajan and Landreth 2004). However, pioglitazone 

passes through the blood-brain barrier (BBB), while rosiglitazone is known not to penetrate 

the BBB (Gemma et al. 2004; Maeshiba et al. 1997). Pioglitazone and troglitazone reduced 

the release of ROS, disrupting the BBB, microglia activation, damaging endothelial cells, 

and enhancing leukocyte infiltration (Culman et al. 2007; Ji et al. 2009; Lee et al. 2015; 

Sauerbeck et al. 2011a; Thal and Neuhaus 2014). Moreover, treatment with PPARγ agonists, 

either rosiglitazone or pioglitazone significantly reduced oxidative stress, COX-2 protein 

expression and activation of p38 and p42/44 mitogen-activated protein kinases (MAPKs) 

and NF-κB, in a rat model of ischemia/reperfusion injury by inhibiting oxidative stress and 

excessive inflammatory response (Collino et al. 2006).

Conclusion

Brain damage is associated with secondary injury, oxidative stress, and inflammation, 

generating neurodegeneration and neuropathology (Nizamutdinov and Shapiro 2017). These 

phenomena could be prevented, mitigated or treated by a combination of therapeutic 

approaches that involve a neurorestorative process. However, brain injuries have no effective 

treatment at the present. For this reason, development of effective treatments for brain 

injuries is a pressing medical necessity. Current therapies, designed to target single 

pathogenic mechanisms, or on a singular cell type, have not been effective and are likely to 

fail in clinical trials. PPARγ agonist activity acts as a powerful agent for inducing 

antioxidant/anti-inflammatory mediated pathways (Mandrekar-Colucci et al. 2013). This 

beneficial proprieties of PPARγ agonist has the potential for rapid transfer to clinical 

therapies for brain injuries and peripheral organs damaged. There is a strong rationale to 

consider novel neuroprotective treatments using pleiotropic drugs that target several 

neuropathologies. In conclusion, it is essential we continue to search for novel 

neuroprotective and neurorestorative treatments for brain injuries with high clinical impact; 
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the pleiotropic effects of PPARγ activation are a promising efficacious candidate. Given the 

findings presented in this review, the field should continue to focus on elucidating novel 

targets and therapies that directly, or indirectly, can restore the damaged brain.
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Figure 1. PPARγ expression in different cell types
A. Microglia/macrophages cells (Iba-1, green) express PPARγ (red) at the border of the 

lesion after brain injury in vacuolated cells with amoeboid morphology (high magnification 

images in A, right side) or hypertrophy microglia morphology (high magnification images in 

A, bottom side). B. Blood vessels in the injured brain (Collagen IV (Colg IV), green) 

express PPARγ (red). A few PPARγ positive cell are extending processes around and along 

a capillary (green) in the cortex of a mouse (high magnification images in B). C. Astrocytes 

(GFAP, green) collate around PPARγ positive cells (red) in the injured cortex, with a little 

co-localization with PPARγ. Nuclei (dapi, blue).
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Figure 2. Schematic representation of the PPARγ signaling in nervous cells in the injured brain
PPARγ acts as an anti-inflammatory factor, pro-differentiating transcription factor, and anti-

oxidant after brain injury. PPARγ activation also induces angiogenesis and glucose and 

lactate production in astrocytes. PPARγ ligands are known to inhibit or repress the activity 

of a number of transcription factors important in neuroinflammation. PPARγ also binds 

RXR and actives target gene expression through the recruitment of coactivators (PGC)-1a. 

PPARγ interacts with transcription factors such NF-κB, Stat-1/-3/-6 or C/EBP, and represses 

their target genes transcription. A variety of endogenous (15dPGJ2) and exogenous 
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(Thiazolidinediones (TDZs)) compounds, as, have been identified as PPARγ ligands. 

15dPGJ2 promotes direct binding of PPARγ to Stat-3, and TDZ induces repression of target 

genes, preventing transactivation of pro-inflammatory cytokines in a PPARγ-dependent 

manner.
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Figure 3. Angiotensin II receptor blockers effectiveness after brain injury is partially dependent 
on PPARγ activation
Effects on lesion volume at 3-days after traumatic brain injury, candesartan (0.1 mg/Kg) and 

telmisartan (1 mg/Kg) treatment, significantly reduced the lesion volume, and PPARγ 
antagonist (T0070907, 2 mg/Kg) administration alone, or combined with candesartan or 

telmisartan, reverses this effect. Data are mean±SEM, n= 8–15. ***P<0.001, **P<0.01 

candesartan or telmisartan versus vehicle; #P<0.05 groups versus PPARγ antagonist. 

Adapted from (Villapol et al. 2015; Villapol et al. 2012).
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Figure 4. Multiple roles of PPARγ agonist and antagonist effects in the injured brain
PPARγ agonists confer neuroprotection on the injured brain at several operational levels, 

such as at the anti-inflammatory response, differentiation, or stabilization of vascular 

processes levels. PPARγ antagonists reverse the PPARγ activation effects such as increasing 

lesion volume or neuroinflammation in animal models of ischemia or traumatic brain injury.
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