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Abstract

Background—Morphometric analyses of biological features have become increasingly common 

in recent years with such analyses being subject to a large degree of observer bias, variability, and 

time consumption. While commercial software packages exist to perform these analyses, they are 

expensive, require extensive user training, and are usually dependent on the observer tracing the 

morphology.

New Method—To address these issues, we have developed a broadly applicable, no-cost ImageJ 

plugin we call ‘BranchAnalysis2D/3D’, to perform morphometric analyses of structures with 

branching morphologies, such as neuronal dendritic spines, vascular morphology, and primary 

cilia.

Results—Our BranchAnalysis2D/3D algorithm allows for rapid quantification of the length and 

thickness of branching morphologies, independent of user tracing, in both 2D and 3D data sets.

Comparison with Existing Methods—We validated the performance of 

BranchAnalysis2D/3D against pre-existing software packages using trained human observers and 

images from brain and retina. We found that the BranchAnalysis2D/3D algorithm outputs results 

similar to available software (i.e., Metamorph, AngioTool, Neurolucida), while allowing faster 

analysis times and unbiased quantification.
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Conclusions—BranchAnalysis2D/3D allows inexperienced observers to output results like a 

trained observer but more efficiently, thereby increasing the consistency, speed, and reliability of 

morphometric analyses.
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Introduction

Morphological features of biological surfaces are studied for data interpretation in several 

research fields. The process is generally performed by trained observers using stereological 

counting techniques, and thus is subject to intra- and inter-observer variability. Some 

commercial software packages exist to aid researchers in performing these analyses (e.g., 

Neurolucida, Imaris, Metamorph), but these packages are often expensive, require tracing of 

the contours of the surface being analyzed, and require extensive user training prior to use 

(Dickstein et al., 2001; Srivastava et al., 2011; Swanger et al., 2011). Open-source 

alternatives to commercial packages (i.e., AngioTool) are easier to use but only analyze one 

specific type of data (i.e., vasculature), often require user tracing of contours of the surfaces 

of interest, and only function in 2D images (Zudaire et al., 2011). Morphometric analyses 

are now often routinely performed on both 2D and 3D data sets, and the lack of 3D 

functionality severely limits the applicability of open-source software packages. As plugins 

have been developed previously for Fiji ImageJ (Schindelin et al., 2012), such as 

AnalyzeSkeleton 2D/3D and Local Thickness which function in both 2D and 3D data sets 

(Arganda-Carreras et al., 2010; Dougherty and Kunzelmann, 2007), we developed an open-

source algorithm capable of performing morphometric analyses of both 2D and 3D images 

with minimal user interaction. We validated our algorithm using images of Golgi-Cox 

stained brain slices (for spine visualization) in 2D and 3D data images, maximum intensity 

projections of brain tissue immunolabeled for primary cilia, and images of retinal 

vasculature. Together, these analyses show both the precision and efficiency of the 

algorithm, as compared to semi-automated analyses, when utilizing multiple test models 

with branching morphologies.

Materials and Methods

All experimental protocols were performed with approval from the Institutional Animal Care 

and Use Committees of Albany Medical College, Harvard Medical School, and Beth Israel 

Deaconess Medical Center, and complied with the National Institutes of Health Guide for 
the Care and Use of Laboratory Animals.

Explanation of the Branch Measure Computations

ImageJ currently supports methods of calculating the medial axis transform, local thickness, 

and longest-shortest path, but does not combine all three processes. A user must manually 

correlate the output of the three processes in a time intensive and error prone process. We 

have adapted the underlying mathematics of the three currently existing algorithms and 
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rewritten them to ensure their combined functionality in a new algorithm we call 

BranchAnalysis2D/3D.

Here, we provide a condensed explanation of the important mathematics utilized to write 

each of the steps of BranchAnalysis2D/3D. A brief explanation of the following steps is 

presented in Figure 1 and Tables 1 and 2 with explanations in the legend. A ‘thresholded’ 

image input is loaded into BranchAnalysis2D/3D and is first subjected to a medial axis 

transform giving a skeleton representation of the original input image (Lee et al., 1994). We 

have adapted the mathematics they present for use in ImageJ. The accuracy of this method 

depends on the resolution of the image acquisition system, and the derived transform will 

have a stochastic error corresponding to the dimension of one pixel. This medial axis 

transformed image (Fig. 1A, C) is then analyzed to determine branch points (defined as 

having more than two neighboring points) and end points (defined as having only one 

neighboring point).

The longest-shortest path is then computed to determine the shortest continuous path that 

traverses the maximum number of branch and end points using the Floyd-Warshall 

algorithm (Skiena, 2008). We have again adapted the Floyd-Warshall algorithm for use in 

ImageJ to compute the branch positions from the medial axis transform previously described 

and present the salient mathematics used. The Floyd-Warshall algorithm computes the 

transitive closure of a set of a graph by defining the problem as the sum of the shortest paths 

between each pair of vertices or branch points. Transitive closure is defined as a matrix of all 

reachable paths wherein reachable implies existence of a direct path from vertex A to vertex 

B. Hence, for a kth iteration of the algorithm, the path from vertex A to B can be determined 

using intermediate vertices within the range of [1,k] by a path directly through all points A 

to k−1:

and also by a path from A to k and from k to B by:

To generate a matrix for transitive closure, the recurrence relating the elements of R(k) to 

R(k−1) can be defined as:

The kth iteration of the Floyd algorithm determines the shortest paths between every pair of 

vertices A,B that use only vertices among [1,k] as intermediates by:
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Once the longest-shortest path is determined by the method described above, all branches 

extending from a branch point to an end point, and not part of the longest shortest path, are 

subsequently called spines.

We then use a local thickness algorithm (Fig. 1A, E) to determine the thickness at each point 

along each of the branches (Hildebrand and Rüegsegger, 1997). We have adapted the 

mathematics they present for use in conjunction with the previously described medial axis 

transform and Floyd-Warshall algorithm. A summary of the relevant mathematics we 

employed is presented below. To achieve a manageable computation of local thickness, the 

process is done in two steps. The first step calculates the distance map by calculating the 

Euclidean distance from each point (q) in the structure to the nearest background point. This 

distance is equivalent to the radius of the largest sphere centered at the point and still 

completely self-contained within the structure. This transformation is defined as:

where Dmap(q) is the distance map of q, r is the radius of the sphere, and Ω all points within 

the structure. This defines the local thickness as:

where the set X(p) represents the set of center points of all circles with radii equal to their 

corresponding distance value including the point p:

Using this definition of local thickness leads to a massive computational overhead, and 

instead it is easier to define the distance map as the set of center points of all non-redundant 

circles:

then it is only necessary to check for the corresponding circles in these points by redefining 

the set X(p) as:

This necessary additional calculation of the distance ridge can be done efficiently on discrete 

data by making the inclusion test local for the neighbor pixels only. Like the method we 

used to calculate the medial axis transform, the accuracy of this method depends on the 

resolution of the image acquisition system, and the local thickness will have a stochastic 

error corresponding to the dimension of one pixel.
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Algorithm Development

The algorithm was developed using the Integrated Design Environment Eclipse Neon v3.0 

(The Eclipse Foundation) with Java version 1.8.0.11. Images were analyzed by two trained 

observers (Obs. A, B) to determine inter-observer variability, and one observer on separate 

days (Obs. A1, A2) to determine intra-observer variability.

Code Availability

Both the source code and compiled version of the algorithm are available at GitHub (https://

github.com/ferlandlab/BranchAnalysis2D-3D.git).

Algorithm Workflow

A flowchart of this process and the interpretation of the output is provided in Figure 1 and in 

the sample data sets provided with the compiled version of BranchAnalysis2D/3D.

Golgi-Cox stained brain tissue and image acquisition

Brains from mice were removed and processed using the Golgi-Cox staining method 

(Ferland et al., 2005). All brains were immersed in a solution of 5% potassium dichromate, 

5% mercuric chloride, and 4% potassium chromate for 5–6 weeks. The brains were then 

dehydrated, infiltrated, and embedded in nitrocellulose. The sections were cut under an 80% 

alcohol drip, transferred to water, blackened in a 5% solution of sodium carbonate, 

dehydrated in ethanol and cleared in trepineol. Sections were then rinsed in xylene, mounted 

and coverslipped.

Images of dendrites and spines were acquired using a Zeiss Imager.M2 microscope with a 

40x or a 63x objective (Zeiss Plan-Achromat 40x/0.75 or 63x/1.4, respectively). Dendrites 

were chosen with no specific criterion to test the algorithm’s performance across a wide 

variety of conditions with variable noise.

Dendritic spine morphometry analysis

Dendritic spine length and head/neck diameter was measured using semi-automated 

methods present in ImageJ for calculating lengths and local thicknesses. The dendritic spines 

were grouped as either stubby, mushroom, or thin based on the descriptions below. The 

measurements below were adapted from multiple sources (Papa et al., 1995; Srivastava et 

al., 2011; Swanger et al., 2011).

Stubby: Length ≤ 2 μm,

Mushroom: 2 μm < Length ≤ 5 μm, Head/Neck Diameter ≥ 1.3 μm

Thin: 2 μm < Length ≤ 5 μm, Head/Neck Diameter ≤ 1.3 μm

Length was calculated as an average running length of the spine, and head/neck diameter 

was defined as the maximum local thickness value. For 3D stacks, spine morphometry for 

all indicated spines was calculated and total density determined as the sum of thin, 

mushroom, and stubby spines. Statistical comparisons were performed using one-way 

ANOVA using Tukey’s HSD tests for post-hoc analysis.
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Primary cilia immunolabeling in brain

Brains from mice were removed and processed for immunohistochemistry. Briefly, all 

animals were perfused transcardially with PBS followed by a 4% PFA solution, and the 

brains removed. Brains were incubated overnight in 4% PFA, washed with PBS, and 

cryoprotected in a 30% PBS-sucrose solution. Brains were then sectioned at 30 μm using a 

freezing microtome and processed for immunolabeling as free-floating sections. Tissue was 

permeabilized using 0.04% Triton X-PBS, blocked in 10% normal goat serum in PBS, and 

cilia immunolabeled using anti-adenylyl cyclase III (Santa Cruz, 1:1000). Sections were 

mounted and imaged with a confocal laser scanning microscope, Zeiss LSM TPMT. The 

resulting image stacks were converted to maximum intensity projections.

Primary cilia analysis

Primary cilia lengths were measured within Fiji ImageJ, and number of cilia determined 

from the number of measurements. The time of analysis was measured as previously 

described. Statistical comparisons were performed for time of analysis and number of cilia 

detected using Student Newman-Keul’s t-tests between the human consensus and algorithm. 

Statistical comparison for cilia length was performed using one-way ANOVA with Tukey’s 

HSD post-hoc tests.

Retina vasculature staining and analysis

Neonatal mice were euthanized at post-natal day 5. Whole eyes were harvested and then 

fixed overnight at 4°C with 3.7 % PFA. Flat mount retinas were prepared, immunostained 

with anti-CD31 (1:50, BD Pharminogen), and mounted, essentially as previously described 

(Pitulescu et al., 2010). Vasculature was analyzed using both AngioTool (Zudaire et al., 

2011) and our algorithm to assess total vessel length, which was defined as the sums of the 

vessel length between each branch point. Student’s t-test was used to determine if there was 

a significant difference between estimated vessel lengths. Vessel diameter was analyzed by 

our algorithm and by two observers as previously described. A one-way ANOVA with 

Tukey’s HSD post-hoc analysis was used to determine if any significant differences existed 

in estimated vessel diameter.

Image Analysis

Observers determined spine sub-types using Neurolucida, primary cilia length using Fiji 

ImageJ, vasculature total length using AngioTool, and vasculature vessel diameter using Fiji 

ImageJ (sample images of each type shown in Figure 2). Two trained observers performed 

the analysis, referred to as Observer A (Obs. A) and Observer B (Obs. B). Obs. A performed 

the analysis on two separate days to account for intra-observer variability. The Observers’ 

results were each compared to the output of the algorithm using one-way ANOVA 

(Statistica) and AngioTool was compared against the algorithm using the Student Newman 

Keul’s t-test. The average time of analysis per image, including pre-processing steps, was 

measured by each observer performing the analysis using pre-existing software packages 

(Neurolucida for dendritic spines, Fiji ImageJ for primary cilia, and AngioTool and Fiji 

ImageJ for retinal vasculature) and using the algorithm. Analysis times were measured using 

a computer with an Intel Core i7-4500U, 1.80 GHz processor.
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Results

The algorithm’s performance was validated with four data sets: 1) 2D dendrite images, 2) 

3D dendrite image stacks, 3) primary cilia in the CA1 hippocampal region, and 4) retinal 

vasculature (Table 3; Fig. 2). For spine analyses of 2D dendrites, BranchAnalysis2D/3D was 

found to output similar spine densities as observers using Neurolucida (F 3,14 = 0.03, p = 

0.9929), as well as similar densities of stubby, thin, and mushroom spines (F3,14 = 0.04, p = 

0.9892; F3,14 = 0.2, p = 0.8960; F3,14 = 0.11, p = 0.9539, respectively). Observers using 

Neurolucida also outputted similar overall spine densities, stubby, thin, and mushroom spine 

densities as BranchAnalysis2D/3D for analyses of 3D dendrite image stacks (F3,4 = 0.03, p 

= 0.9927; F3,4 = 0.01, p = 0.9986; F3,4 = 0, p = 1; F3,4 = 0.2, p = 0.8948, respectively). The 

observers using Fiji ImageJ found similar primary cilia numbers and lengths as 

BranchAnalysis2D/3D in the hippocampal CA1 region (F3,9 = 0.01, p = 0.9986; F3,9 = 0.14, 

p = 0.9346, respectively). AngioTool and BranchAnalysis2D/3D outputted similar total 

vessel lengths (p = 0.3392), and observers using Fiji ImageJ determined similar vessel 

diameters as BranchAnalysis2D/3D (99.3% match between observer determined vessel 

diameter and BranchAnalysis2D/3D determined vessel diameter).

BranchAnalysis2D/3D was significantly faster than observers using other analysis tools in 

all four test data sets (2D Dendrite – F3,14 = 149.06, p < 0.0001, Tukey HSD p < 0.01 

(algorithm vs. observers); 3D Dendrite – F3,4 = 662.75, p < 0.0001, Tukey HSD p < 0.01 

(algorithm vs. observers); Primary Cilia – F3,9 = 251.49, p < 0.0001, Tukey HSD p < 0.01 

(algorithm vs. observers); F3,7 = 4956.18, p < 0.0001, Tukey HSD < 0.01 (algorithm vs. 

observers)).

Discussion

Although multiple software packages exist for morphometric analyses, we have developed a 

more broadly applicable and convenient analysis algorithm made available as an open-

source ImageJ plugin. BranchAnalysis2D/3D is different from already existing software 

packages such as Metamorph (Srivastava et al., 2011) and AngioTool (Zudaire et al., 2011) 

as BranchAnalysis2D/3D is not specialized for one data type, and can handle 3D data sets. 

BranchAnalysis2D/3D also has advantages over commercial software packages such as 

Neurolucida and Imaris since it is an open source project, and requires minimal user 

training.

BranchAnalysis2D/3D performs its comparisons at the pixel/voxel level. As a pixel/voxel is 

a continuous function, it is possible to compute morphometric measures, such as thickness, 

at a sub-pixel/sub-voxel level by profiling the pixel/voxel curve intensity using methods such 

as the full-width half-maximum method. By using only pixel/voxel level comparisons, there 

may be small errors in our morphometry measures when regarding the pixel as a discrete 

quantity with fixed intensity. Most widely used commercial software packages, i.e. 

Neurolucida and Imaris, also do not determine morphometric measures at sub-pixel and sub-

voxel accuracy (Peng et al., 2014; Yang et al., 2013). Consideration of sub-pixel and sub-

voxel measures would be important for future algorithm development especially since it 

could provide biologically relevant information for image processing. However, given that 
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observers using the industry standard software (Neurolucida) obtained similar results to our 

algorithm, the errors present within the algorithm are clearly not sufficient to bias the results 

with the sample images used here. Thus, our algorithm is as precise as other methodologies. 

Future work could introduce sub-pixel/sub-voxel calculation methods to improve the 

accuracy of BranchAnalysis2D/3D.

In addition, adding automated ‘thresholding’ processes to BranchAnalysis2D/3D will 

increase its future functionality by removing any user interaction with input images from the 

analysis process and significantly increase the speed of processing. Thus, 

BranchAnalysis2D/3D provides significant advantages to both trained and untrained 

observers performing morphometric analyses by providing a widely available, rapid, and 

consistent algorithm that outputs results equivalent to already existing software.
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Highlights

• An open-source algorithm for analysis of branching structures is presented

• Algorithm output matches output from human observers using existing 

analysis tools

• The algorithm is faster than human observers using other analysis tools

• BranchAnalysis2D/3D automation decreases investigator bias

• BranchAnalysis2D/3D can be used to measure any branching structure
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Figure 1. Schematic of the Algorithm Workflow
A simplified explanation of the algorithm workflow is presented above. The user manually 

pre-processes the input image into a ‘thresholded’ binary image. This binary image is then 

used as the input to BranchAnalysis2D/3D which then returns the results of the analysis 

(termed output). The output shows the original image (A) followed by the ‘thresholded’ 

binary image (B). The optimal skeleton is presented in white (C) and is overlaid on the 

original image (D). The local thickness is shown as a heat map with darker colors 

corresponding to smaller local thicknesses (E), and an overlay of the local thickness onto the 

original image (F). The tagged skeleton is also shown with branch points labeled in purple 

(G). The main dendritic shaft as calculated by the algorithm is shown in red (H), and all 

spines as calculated by the algorithm are shown in red (I). Overlaid images are not shown by 

the algorithm, but are presented here to allow for visual confirmation of the results.
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Figure 2. Sample Dataset Images
Representative images used in the analyses of dendrite and spines (A), primary cilia (B), and 

retinal vasculature (C) are shown. One primary cilium is enclosed within the white circle in 

panel B. Scale bars = 2 μm (A),5 μm (B), and 80 μm (C).
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Table 3

The algorithm outputs similar results to human observers, but requires less analysis time.

Image Type Obs. A, Day 1 Obs. A, Day 2 Obs. B Algorithm

2D Dendrite Spines/μm 0.196 ± 0.0289 0.203 ± 0.0282 0.196 ± 0.0289 0.206 ± 0.0180

2D Dendrite Stubby Spines/μm 5.4 ± 0.815 5.533 ± 0.848 5.267 ± 0.176 5.667 ± 0.500

2D Dendrite Thin Spines/μm 0.4 ± 0.227 0.533 ± 0.185 0.667 ± 0.293 0.533 ± 0.132

2D Dendrite Mushroom Spines/μm 0.4 ± 0.227 0.267 ± 0.199 0.267 ± 0.176 0.267 ± 0.101

2D Dendrite Analysis Time (min) 2.386 ± 0.0628 2.518 ± 0.501 2.518 ± 0.0329 1.236 ± 0.0265*

3D Dendrite Spines/μm 0.354 ± 0.0515 0.355 ± 0.0514 0.356 ± 0.0513 0.368 ± 0.0557

3D Dendrite Stubby Spines/μm 0.233 ± 0.0484 0.238 ± 0.0491 0.250 ± 0.0461 0.250 ± .0503

3D Dendrite Thin Spines/μm 0.0142 ± 0.0127 0.0142 ± 0.0127 0.0163 ± .0100 0.0163 ± .0100

3D Dendrite Mushroom Spines/μm 0.107 ± 0.163 0.102 ± 0.0188 0.0928 ± 0.0166 0.0926 ± 0.0161

3D Dendrite Analysis Time (min) 5.525 ± 0.0165 5.563 ± 0.246 5.498 ± 0.0599 3.593 ± 0.00783*

Primary Cilia Number 27.9 ± 3.553 28.2 ± 3.572 27.4 ± 3.197 27.4 ± 3.339

Primary Cilia Length (μm) 5.633 ± 0.195 5.691 ± 0.201 5.730 ± 0.201 6.005 ± 0.195

Primary Cilia Analysis Time (min) 4.363 ± 0.0438 4.334 ± 0.0468 4.353 ± 0.0520 2.794 ± 0.0327*

Retinal Vasculature Vessel Diameter (μm) 5.201 ± 0.0235 5.355 ± 0.0276 5.149 ± 0.024 5.196 ± 0.023

Retinal Vasculature Analysis Time (min) 59.061 ± 0.117 59.220 ± 0.063 59.191 ± 0.100 21.018 ± 0.479*

AngioTool Algorithm

Retinal Vasculature Total Length (mm) 20.575 ± 1.523 23.186 ± 1.936

Values represent average ± SEM.

*
Indicates significant differences (p < 0.01) from observers
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