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Abstract

Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time 

domain measurement of the impulse response (the free induction decay, FID) consisted of 

sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier 

transform (DFT), the intervals are kept uniform, and the Nyquist theorem dictates the largest value 

of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling 

along an indirect time dimension, extension to multidimensional experiments employed the same 

sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable 

for processing via the discrete Fourier transform. The challenges of obtaining high-resolution 

spectral estimates from short data records using the DFT were already well understood, however. 

Despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect 

dimensions is limited by practical constraints on measuring time. The advent of non-Fourier 

methods of spectrum analysis capable of processing nonuniformly sampled data has led to an 

explosion in the development of novel sampling strategies that avoid the limits on resolution and 

measurement time imposed by uniform sampling. The first part of this review discusses the many 

approaches to data sampling in multidimensional NMR, the second part highlights commonly used 

methods for signal processing of such data, and the review concludes with a discussion of other 

approaches to speeding up data acquisition in NMR.
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1. Data sampling in NMR spectroscopy

Beginning with the development of Fourier Transform NMR by Richard Ernst and Weston 

Anderson in 1966, the measurement of NMR spectra has principally involved the 

measurement of the free induction decay (FID) following the application of broad-band RF 

pulses to the sample.1 The FID is measured at regular intervals, and the spectrum obtained 

by computing the discrete Fourier transform (DFT). The accuracy of the spectrum obtained 

by this approach depends critically on how the data is sampled. In multidimensional NMR 

experiments, the constraint of uniform sampling intervals imposed by the DFT incurs 

substantial burdens. The advent of non-Fourier methods of spectrum analysis that do not 

require data sampled at uniform intervals has enabled the development of a host of 

nonuniform sampling strategies that circumvent the problems associated with uniform 

sampling. Here, we review the fundamentals of sampling, both uniform and nonuniform, in 

one and multiple dimensions. We then survey nonuniform sampling methods that have been 

applied to multidimensional NMR, and consider prospects for new developments.

1.1. Fundamentals: Sampling in One Dimension

Implicit in the definition of the complex discrete Fourier transform (DFT)

(1)

is the periodicity of the spectrum, which can be seen by setting n to N in eq. (1). Thus the 

component at frequency n/NΔt is equivalent to (and indistinguishable from) the components 

at (n/NΔt) +/− (m/Δt), m= 1, 2, … This periodicity makes it possible to consider the DFT 

spectrum as containing only positive frequencies, with zero frequency at one edge, or 

containing both positive and negative frequencies with zero frequency near (but not exactly 

at) the middle. The equivalence of frequencies in the DFT spectrum that differ by a multiple 

of 1/Δt is a manifestation of the Nyquist sampling theorem, which states that in order to 

unambiguously determine the frequency of an oscillating signal from a set of uniformly 

spaced samples, the sampling interval must be at least 1/Δt. (For additional details of the 

DFT and its application in NMR, see Hoch and Stern2).

In eq. (1) the data samples and DFT spectrum are both complex. Implicit in this formulation 

is that two orthogonal components of the signal are sampled at the same time, referred to as 

simultaneous quadrature detection. Most modern NMR spectrometers are capable of 

simultaneous quadrature detection, but early instruments had a single detector, so only a 

single component of the signal could be sampled at a time. With so-called single-phase 

detection, the sign of the frequency is indeterminate. Consequently the carrier frequency 

must be placed at one edge of the spectral region and the data must be sampled at 1/2Δt to 

unambiguously determine the frequencies of signals spanning a bandwidth 1/Δt.

The detection of two orthogonal components permits the sign ambiguity to be resolved 

while sampling at a rate of 1/Δt. This approach, called phase-sensitive or quadrature 

detection, enables the carrier to be placed at the center of the spectrum. Simultaneous 
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quadrature detection was originally and for decades achieved by mixing a detected 

sinusoidal signal oscillating at a reference frequency and the same signal phase shifted by 

90° degrees. The output of the phase-sensitive detector is two signals, differing in phase by 

90°, containing frequency components of the original signal oscillating at the sum and 

difference of the reference frequency with the original frequencies. The sum frequencies 

were then typically filtered out using a low-pass filter. While quadrature detection enables 

the sign of frequencies to be determined unambiguously while sampling at 1/Δt, it requires 

just as many data samples as single-phase detection since it samples the signal twice at each 

sampled interval, whereas single-phase detection samples one at each sampled interval. In 

modern spectrometers, simultaneous quadrature is eschewed in favor of very high-frequency 

single-phase sampling. The data are down-sampled, filtered, and processed to emulate the 

results of simultaneous quadrature detection: a complex data record with the reference 

carrier frequency in the middle of the spectral range and an interval between samples 

corresponding to the chosen bandwidth (rather than the sampling interval of the very fast 

analog-to-digital converter). With some instruments the processing algorithms employed are 

considered proprietary and the raw primary are not saved, precluding the use of more 

modern signal processing algorithms or accurate correction of potential artifacts.

Oversampling—The Nyquist theorem places a lower bound on the sampling rate, but what 

about sampling faster? It turns out that sampling faster than the reciprocal of the spectral 

width, called oversampling, can provide some benefits. One is that the oversampling 

increases the dynamic range, the ratio between the largest and smallest signals that can be 

detected.3,4 Analog-to-digital (A/D) converters employed in most NMR spectrometers 

represent the converted signal with fixed binary precision, e.g. 14 or 16 bits. A 16-bit A/D 

converter can represent signed integers between −32768 and +32767. Oversampling by a 

factor of n effectively increases the dynamic range by √n. Another benefit of oversampling is 

that it prevents certain sources of noise that are NOT band-limited to the same extent as the 

systematic (NMR) signals from being aliased into the spectral window.

How long should one sample?—For signals that are stationary, that is their behavior 

doesn’t change with time, the longer you sample the better the sensitivity and accuracy. For 

normally-distributed random noise, the signal-to-noise-ratio (SNR) improves with the square 

root of the number of samples. NMR signals are rarely stationary, however, and the signal 

envelope typically decays exponentially in time. For decaying signals, there invariably 

comes a time when collecting additional samples is counter-productive, because the 

amplitude of the signal has diminished below the amplitude of the noise, and additional 

sampling only serves to reduce SNR. The time 1.3/R2, where R2 is the decay rate of the 

signal, is the point of diminishing returns, beyond which additional data collection results in 

reduced sensitivity5. It makes sense to sample at least this long in order to optimize the 

sensitivity per unit time of an experiment. But limiting sampling to 1.3/R2 results in a 

compromise. That’s because the ability to distinguish signals that have similar frequencies 

increases the longer one samples. Intuitively this makes sense because the longer two signals 

with different frequencies evolve, the less synchronous their oscillations become. Thus 

resolution, the ability to distinguish closely-spaced frequency components, is largely related 

to the longest evolution time sampled. In general, however, determination of the optimal 
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maximum evolution time involves tradeoffs that will depend on many factors, including 

sample characteristics and the nature of the experiment being performed. Some of these 

factors are considered below.

1.2. Sampling in Multiple Dimensions

While the FT-NMR experiment of Ernst and Anderson was the seminal development behind 

all of modern NMR spectroscopy, it wasn’t until 1971 that Jean Jeener proposed a strategy 

for parametric sampling of a virtual or indirect time dimension that formed the basis for 

modern multidimensional NMR6, including applications to magnetic resonance imaging 

(MRI). In the simplest realization, an indirect time dimension can be defined as the time 

between two RF pulses applied in an NMR experiment. The FID is recorded subsequent to 

the second pulse, and because it evolves in real time, its evolution is said to occur in the 

acquisition dimension. A single experiment can only be conducted using a given value of the 

time interval between pulses, but the indirect time dimension can be explored by repeating 

the experiment using different values of the time delay. When the values of the time delay 

are systematically varied using a fixed sampling interval, the resulting spectrum as a 

function of the time interval can be computed using the DFT along the columns of the two-

dimensional data matrix, with rows corresponding to samples in the acquisition dimension 

and columns the indirect dimension. Generalization of the Jeener principle to an arbitrary 

number of dimensions is straightforward, limited only by the imagination of the 

spectroscopist and the ability of the spin system to maintain coherence over an increasingly 

lengthy sequence of RF pulses and indirect evolution times.

Quadrature detection in multiple dimensions—Left ambiguous in the discussion 

above of multidimensional NMR experiments is the problem of frequency sign 

discrimination in the indirect dimensions. Because the indirect dimensions are sampled 

parametrically, i.e. each indirect evolution time is sampled via a separate experiment, the 

possibility of simultaneous quadrature detection is not available. Quadrature detection in the 

indirect dimension of a two-dimensional experiment nonetheless can be accomplished by 

using two experiments for each indirect evolution time to determine two orthogonal 

responses. This approach was first described by States, Haberkorn, and Ruben, and is 

frequently referred to as the States method7. Alternatively, oversampling could be used by 

sampling at twice the Nyquist frequency while rotating the detector phase through 0°, 90°, 

180°, and 270°, an approach called time-proportional phase incrementation (TPPI)8. A 

hybrid approach is referred to as States-TPPI.9 Processing of States-TPPI sampling is 

performed using a complex DFT, just as for States sampling, while TPPI employs a real 

DFT.

Sampling-limited regime—An implication of the Jeener strategy for multidimensional 

experiments is that the length of time required to conduct a multidimensional experiment is 

directly proportional to the total number of indirect time samples (times two for each 

indirect dimension if States or States-TPPI sampling is used). In experiments that permit the 

spin system to return close to equilibrium by waiting on the order of T1 before performing 

another experiment, sampling along the acquisition dimension effectively incurs no time 

cost. Sampling to the Rovnyak limit10 (1.3/R2, or 1.3×T2*) in the indirect dimensions, 
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however, places a substantial burden on data collection, even for experiments on proteins 

with relatively short relaxation times. Thus a three dimensional experiment for a 20 kDa 

protein at 14 Tesla (600 MHz for 1H) exploring 13C and 15N frequencies in the indirect 

dimensions would require 2.6 days in order to sample to 1.3×T2* in both indirect 

dimensions. A comparable four-dimensional experiment with two 13C (aliphatic and 

carbonyl) and one 15N indirect dimensions would require 137 days. As a practical matter, 

multidimensional NMR experiments rarely exceed a week, as superconducting magnets 

typically require cryogen refill on a weekly basis. Thus, multidimensional experiments 

rarely achieve the full potential resolution afforded by superconducting magnets. The 

problem becomes more acute at very high magnetic fields. The time required for data 

collection in a multidimensional experiment to achieve fixed maximum evolution times in 

the indirect dimensions increases in proportion to the magnetic field raised to the power of 

the number of indirect dimensions. The same four-dimensional protein NMR experiment 

mentioned above but performed at 21.4 T (900 MHz for 1H), sampled to 1.3×T2*, would 

require about 320 days.

By reducing the sampling requirements, nonuniform sampling (NUS) approaches have made 

it possible to conduct high-resolution 4D experiments that would be impractical using 

uniform sampling. In its most general form, NUS refers to any sampling scheme that does 

not employ a uniform sampling interval. The sampling can occur at completely arbitrary 

times, however the classes of NUS that have been mainly used in multidimensional NMR 

typically correspond either to a subset of the uniformly-spaced samples or to uniform 

sampling along radial vectors in time. These approaches are called on-grid and off-grid 

NUS, respectively, and are described in greater detail below. The most important 

characteristic of any NUS approach is that it enables sampling to long evolution times 

without requiring the number of samples overall that would be required by uniform 

sampling.

While there are methods of spectrum analysis capable of super-resolution, that is, methods 

that can achieve resolution greater than 1/tmax, the most common ones, (e.g. linear prediction 

(LP) extrapolation) have substantial drawbacks. LP extrapolation and related parametric 

methods that assume exponential decay of the signal can exhibit subtle frequency bias when 

the signal decay deviates from the ideal11. This bias can have detrimental consequences for 

applications that require the determination of small frequency differences, such as 

determination of residual dipolar couplings (RDCs).

Sensitivity-limited regime—While the majority of extant applications of NUS in 

multidimensional NMR have focused on achieving high resolution with lower sampling 

requirements than those posed by uniform sampling, it is possible to utilize NUS to increase 

sensitivity per unit measuring time. This notion has not been without controversy, because 

the nonlinearities inherent in most of the methods of spectrum analysis employed with NUS 

complicate the validation of gains in SNR as true gains in sensitivity.12 A number of 

investigators have turned their attention to this problem, notably Wagner13 and colleagues 

and Rovnyak and colleagues.14,15 Theoretical and empirical investigations of the attainable 

sensitivity improvements with NUS indicate that gains on the order of two-fold over uniform 

sampling for an equivalent time are achievable for exponentially decaying signals.5,14 This 
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improvement at no time cost contrasts with the four-fold increase in signal averaging that 

would be required to achieve the same improvement in SNR.

1.3. “DFT” of NUS data and point-spread functions

From the definition of the DFT, it is clear that the Fourier sum can be modified by evaluating 

the summand at arbitrary frequencies, rather than at uniformly spaced frequencies. 

Kozminksi and colleagues have proposed this approach for computing frequency spectra of 

NUS data16, however strictly speaking it no longer is properly called a Fourier 

transformation of the NUS data. Consider the special case where the summand in eq. 1 is 

evaluated for a subset of the normal regularly-spaced time intervals. An important 

characteristic of the DFT is the orthogonality of the basis functions (the complex 

exponentials),

(2)

When the summation is carried out over a subset of the time intervals, that is, some of the 

values of n indicated by the sum in eq. 2 are left out, the complex exponentials are no longer 

orthogonal. A consequence is that frequency components in the signal interfere with one 

another when the sampling is nonuniform (see also section 2.5.1).

Consider now NUS data sampled at the same subset of uniformly spaced times, but 

supplemented by the value zero for those times from the uniformly-spaced set that are not 

sampled. Clearly the DFT can be applied to this zero-augmented data, but it is not the same 

as “applying the DFT to NUS data”. It is a subtle distinction, but an important one. What is 

frequently referred to as the DFT spectrum of NUS data is not the spectrum of the NUS 

data, but the spectrum of the zero-augmented data. The differences between the DFT of the 

zero-augmented data and the spectrum of the signal are mainly the result of the choice of 

sampled times, and hence are called sampling artifacts. While the DFT of zero-augmented 

data is not the spectrum we seek, it can sometimes be a useful approximation if the sampled 

times are chosen carefully to diminish the sampling artifacts.

The application of the DFT to NUS data has parallels in the problem of numerical 

quadrature on an irregular mesh, or evaluating an integral on a set of irregularly-spaced 

points17. The accuracy of the integral estimated from discrete samples is typically improved 

by judicious choice of the sample points, or pivots, and by weighting the value of the 

function being integrated at each of the pivots. For pivots (sampling schedules) that can be 

described analytically, the weights correspond to the Jacobian for the transformation 

between coordinate systems (as for the polar FT, discussed below). For sampling schemes 

that cannot be described analytically, for example those given with a random distribution, 

the Voronoi area (in two dimensions; the Voronoi volume in three dimensions, etc.) can be 

used to estimate the appropriate weights18. The Voronoi area is the area occupied by the set 

of points around each pivot that are closer to that pivot than to any other pivot in the NUS 

set.
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Under certain conditions the relationship between the DFT of the zero-augmented NUS data 

and the true spectrum has a particularly simple form. If the sampling is restricted to the 

uniformly-spaced Nyquist grid (also referred to as the Cartesian sampling grid) and there 

exists a real-valued sampling function with the property that when it multiplies a uniformly 

sampled data vector, element-wise (i.e. the Hadamard product of the data and sampling 

vectors), resulting in the zero-augmented NUS data vector, then the DFT of the zero-

augmented NUS data is the convolution of the DFT spectrum of the uniformly sampled data 

with the DFT of the sampling vector. The sampling vector, or sampling function, has the 

value 1 for times that are sampled and zero for times that are not sampled. The DFT of the 

sampling function is variously called the point-spread function (PSF), the impulse response, 

or the sampling spectrum.

The PSF provides insight into the locations and magnitudes of sampling artifacts that result 

from NUS, and it can have an arbitrary number of dimensions, corresponding to the number 

of dimensions in which NUS is applied. The PSF typically consists of a main central 

component at zero frequency, with smaller non-zero frequency components. Because the 

PSF enters into the DFT of the zero-augmented spectrum through convolution, each non-

zero frequency component of the PSF will give rise to a sampling artifact for each 

component in the signal spectrum, with positions relative to the signal components that are 

the same as the relationship of the satellite peaks in the PSF. The amplitudes of the sampling 

artifacts will be proportional to the amplitude of the signal component and the relative height 

of the satellite peaks in the PSF. Thus the largest sampling artifacts will arise from the 

largest-amplitude components of the signal spectrum. The effective dynamic range (ratio 

between the magnitude of the largest and smallest signal component that can be 

unambiguously identified) of the DFT spectrum of the zero-augmented data can be directly 

estimated from the PSF for a sampling scheme as the ratio between the amplitude of the 

largest non-zero frequency component to the amplitude of the zero-frequency component, 

called the peak-to-sidelobe ratio (PSR).19 Note, however, that this does not account for 

interference between artifacts produced by signals at different frequencies.

The simple relationship between the DFT spectrum of zero-augmented NUS data and the 

DFT spectrum of the corresponding uniformly-sampled data holds as long as all the 

quadrature components are sampled for a given set of indirect evolution times. If they are 

not all sampled, the sampling function is complex, and the relationship between the DFT of 

the NUS data, the DFT of the sampling function, and the true spectrum is no longer a simple 

convolution, but a set of convolutions19.

1.4. Nonuniform sampling: A brief history

The Accordion—It was recognized soon after the development of multidimensional NMR 

that one way to reduce sampling requirements in multidimensional NMR is to avoid 

collecting the entire Nyquist grid in the indirect time dimensions. The principal challenge to 

this idea was that methods for computing the multidimensional spectrum from nonuniformly 

sampled data were not widely available. In 1981 Bodenhausen and Ernst introduced a means 

of avoiding the sampling constraints associated with uniform parametric sampling of two 

indirect dimensions of three-dimensional experiments, while also avoiding the need to 
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compute a multidimensional spectrum from an incomplete data matrix, by coupling the two 

indirect evolution times20. By incrementing the evolution times in concert, sampling occurs 

along a radial vector in t1–t2, with a slope given by the ratio of the increments applied along 

each dimension. This effectively creates an aggregate evolution time t = t1 + α*t2 that is 

sampled uniformly, and thus the DFT can be applied to determine the frequency spectrum. 

According to the projection - cross-section theorem21, this spectrum is the projection of the 

full t1–t2 spectrum onto a vector with angle α in the f1–f2 plane. Bodenhausen and Ernst 

referred to this as an “accordion” experiment. Although they did not propose reconstruction 

of the full f1–f2 spectrum from multiple projections, they did discuss the use of multiple 

projections for characterizing the corresponding f1–f2 spectrum, and thus the accordion 

experiment is the precursor to more recent radial sampling methods that are discussed below. 

Because the coupling of evolution times effectively combines dimensions, the accordion 

experiment is an example of a reduced dimensionality (RD) experiment (discussed below).

Random sampling—The 3D accordion experiment has much lower sampling 

requirements because it avoids sampling the Cartesian grid of (t1, t2) values that must be 

sampled in order to utilize the DFT to compute the spectrum along both t1 and t2. A more 

general approach is to eschew regular sampling altogether. A consequence of this approach 

is that one cannot utilize the DFT to compute the spectrum, so some alternative method 

capable of utilizing nonuniformly sampled data must be employed. In seminal work, Laue 

and collaborators introduced the use of maximum entropy (MaxEnt) reconstruction to 

compute the frequency spectrum from nonuniformly sampled data corresponding to a subset 

of samples from the Cartesian grid.22 While the combination of non-uniform sampling and 

MaxEnt reconstruction provided high-resolution spectra with dramatic reductions in 

experiment time, the approach was not widely adopted, no doubt because neither MaxEnt 

reconstruction nor nonuniform sampling (NUS) was highly intuitive. Nevertheless, a small 

cadre of investigators continued to explore novel NUS schemes in conjunction with MaxEnt 

reconstruction throughout the 1990’s.

The NUS explosion—Since the turn of the 21st century, there has been a great deal of 

effort to develop novel NUS strategies for multidimensional NMR. The growing interest in 

NUS is largely attributable to the development by Freeman and Kupče of a method 

employing back-projection reconstruction (BPR) to obtain three-dimensional spectra from a 

series of two-dimensional projections, in analogy with computer-aided tomography (CAT).23 

Although connections between BPR and the approach of Laue et al.22 or RD and other radial 

sampling methods (e.g. G-Transform FT24) were not initially recognized, the connections 

were later demonstrated by using MaxEnt to reconstruct 3D spectra from a series of radially-

sampled experiments25. The realization that all these fast methods of data collection and 

spectrum reconstruction belong to a larger class of NUS approaches ignited the search for 

optimal sampling strategies. Two persistent themes have been the importance of irregularity 

or randomness in the choice of sampling times to minimize sampling artifacts, and the 

importance of sampling more frequently when the signal is strong to bolster sensitivity. 

Approaches involving various analytic sampling schemes (triangular, concentric rings, 

spirals), as well as pseudo-random distributions (Poisson gap) have been described. These 
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will be considered after first discussing some characteristics of NUS that all these 

approaches share.

1.5. General aspects of nonuniform sampling

On-grid vs. off-grid sampling—NUS schemes are sometimes characterized as on-grid 

or off-grid. Schemes that sample a subset of the evolution times normally sampled using 

uniform sampling at the Nyquist rate (or faster) are called on-grid. In schemes such as radial, 

spiral or concentric ring, the samples do not fall on the same Cartesian grid (see also Fig 6). 

As pointed out by Bretthorst,26,27 however, one can define a Cartesian grid with spacing 

determined by the precision with which evolution times are specified. Alternatively, “off 

grid” sampling schemes can be approximated by “aliasing” (this time in the computer 

graphics sense) the evolution times onto a Nyquist grid, without greatly impacting the 

sampling artifacts.25

Bandwidth and aliasing—Bretthorst was the first to carefully consider the implications 

of NUS for bandwidth and aliasing27,28. Among the major points Bretthorst raises is that 

sampling artifacts accompanying NUS can be viewed as aliases. Consider the special case of 

sampling every other point of the Nyquist grid. This would effectively reduce the spectral 

window and result in perfect aliases such that a given signal would appear at its true 

frequency and again at a frequency shifted by the effective bandwidth (both with the same 

amplitude). If the sample points are now distributed in a progressively more random 

distribution, the intensity of the aliased peak is reduced whilst lower amplitude artifacts 

appear at different frequencies, making it possible to distinguish which of the two initial 

signals is the true signal and which is the aliasing artifact.

Since sampling artifacts are aliases, then they can be diminished by increasing the effective 

bandwidth. One way to do this is to decrease the greatest common divisor (GCD) of the 

sampled times.29 The GCD need not correspond to the spacing of the underlying grid. 

Introducing irregularity is one way to decrease the GCD to the size of the grid, and this helps 

to explain the usefulness of randomness for reducing artifacts from nonuniform sampling 

schemes.

Another way to increase the effective bandwidth is to sample from an oversampled grid. We 

discussed earlier that oversampling can benefit uniform sampling approaches by increasing 

the dynamic range. When employed with NUS, oversampling has the effect of shifting 

sampling artifacts out of the original spectral window30.

1.6. An abundance of sampling schemes

While the efficacy of a particular sampling scheme depends on a host of factors, including 

the nature of the signal being sampled, the PSF provides a useful first-order tool for 

comparing sampling schedules a priori. Fig. 1 illustrates examples of several common two-

dimensional NUS schemes, together with PSFs computed for varying levels of sampling 

coverage (30%, 10%, and 5%) of the underlying uniform grid. Some of the schemes are off-

grid schemes, but they are approximated here by mapping onto a uniform grid. The PSF 

gives an indication of the distribution and magnitude of sampling artifacts for a given 

Mobli and Hoch Page 9

Prog Nucl Magn Reson Spectrosc. Author manuscript; available in PMC 2018 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sampling scheme; schemes with PSFs that have very low values other than the central 

component give rise to weaker artifacts. Of course the PSF alone does not tell the whole 

story, because it does not address relative sensitivity. For example, while the random 

schedule has a PSF with very weak side-lobes, and gives rise to fewer artifacts than a radial 

sampling scheme for the same level of coverage, it has lower sensitivity for exponentially 

decaying sinusoids than a radial scheme (which concentrates more samples at short 

evolution times where the signal is strongest). Thus more than one metric is needed to assess 

the relative performance of different sampling schemes.

Random and biased random sampling—Exponentially-biased random sampling was 

the first general NUS approach applied to multidimensional NMR.22 By analogy with 

matched filter apodization (which was first applied in NMR by Ernst, and maximizes the 

SNR of the uniformly-sampled DFT spectrum), Laue and colleagues reasoned that tailoring 

NUS so that the signal is sampled more frequently at short times, where the signal is strong, 

and less frequently when the signal is weak, would similarly improve SNR. They applied an 

exponential bias to match the decay rate of the signal envelope; we refer to this as envelope-

matched sampling (EMS). Generalizations of the approach to sine-modulated signals, where 

the signal is small at the beginning, and constant-time experiments, where the signal 

envelope does not decay, were described by Schmieder et al.32,33 In principal EMS can be 

adapted to finer and finer details of the signal, for example if frequencies are know a priori 

(see beat-matched sampling below).

Triangular—Somewhat analogous to the rationale behind exponentially-biased sampling, 

Delsuc and colleagues employed triangular sampling in two time dimensions to capture the 

strongest part of a two-dimensional signal34. The approach is easily generalized to arbitrary 

dimension.

Radial—Radial sampling results when the incrementation of evolution times is coupled, 

and is the approach employed by GFT24, RD35, and BPR23 methods. When a 

multidimensional spectrum is computed from a set of radial samples (e.g. BPR, radial FT36, 

MaxEnt), the radial sampling vectors are chosen to span orientations from 0° to 90° at 

regular intervals (0°, 45° and 90° for 3 projections etc.). When the multidimensional 

spectrum is not reconstructed, but instead the individual one-dimensional spectra 

(corresponding to projected cross sections through the multidimensional spectrum) are 

analyzed separately, the sampling angles are sometimes determined using a knowledge-

based approach (HIFI, APSY37,38). Prior knowledge about chemical shift distributions in 

proteins is employed to sequentially select radial vectors to minimize the likelihood of 

overlap in the projected cross-section.

Concentric rings—Coggins and Zhou introduced the concept of concentric ring sampling 

(CRS), and showed that radial sampling is a special case of CRS36. They showed that the 

DFT could be adapted to CRS (and radial sampling) by changing to polar coordinates from 

Cartesian coordinates (essentially by introducing the Jacobian for the coordinate 

transformation as the weighting factor). Optimized CRS that linearly increases the number 

of samples in a ring as the radius increases and incorporates randomness was shown to 
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provide resolution comparable to uniform sampling for the same measurement time, but 

with fewer sampling artifacts than radial sampling. Coggins and Zhou also showed that the 

discrete polar FT is equivalent to weighted back-projection reconstruction.39

Beat-matched sampling—The concept of matching the sampling density to the signal 

envelope, in order to sample most frequently when the signal is strong and less frequently 

when it is weak, can be extended to match finer details of the signal. For example, a signal 

containing two strong frequency components will exhibit beats in the time domain signal 

separated by the reciprocal of the frequency difference between the components. As the 

signal becomes more complex, with more frequency components, more beats will occur, 

corresponding to frequency differences between the various components. If one knows a 
priori the expected frequencies of the signal components, one can predict the locations of the 

beats (and nulls), and tailor the sampling accordingly. The procedure is entirely analogous to 

EMS, except that the sampling density is matched to the fine detail of predicted time-domain 

data, not just the signal envelope. We refer to this approach as beat-matched sampling 

(BMS). Possible applications where the frequencies are known include relaxation 

experiments, and multidimensional experiments in which scout scans or complementary 

experiments provide knowledge of the frequencies. In practice, BMS sampling schedules 

appear similar to EMS (e.g. exponentially biased) schedules, however they tend to be less 

robust, as small difference in noise level or small frequency shifts can have pronounced 

effects on the locations of beats or nulls in the signal40.

Poisson gap sampling—It has been suggested that the distribution of the gaps in a 

sampling schedule is also important,41,42 which has led to the development of schedules 

optimized to be random yet with a non-Gaussian distributions. In Poisson gap sampling this 

is achieved by adapting an idea employed in computer graphics, where objects are 

distributed randomly whilst avoiding long gaps between objects. Similar distributions can be 

generated using other approaches, for example quasi-random (e.g. Sobolev) sequences43. A 

particularly useful property of Poisson gap sampling schedules is that they show less 

variation when randomly selecting schedules from the Poisson distribution than other 

sampling schemes. A potential weakness of Poisson gap sampling, however, is that the 

minimum distance between samples must not be too small, otherwise aliasing can become 

significant.

Burst sampling—In burst or burst-mode sampling, short high-rate bursts are separated by 

stretches with no sampling. It effectively minimizes the number of large gaps, while 

ensuring that samples are spaced at the minimal spacing when sub-sampling from a grid. 

Burst sampling has found application in commercial spectrum analyzers and 

communications gear. In contrast to Poisson gap sampling, burst sampling ensures that most 

samples are separated by the grid spacing to suppress aliasing29.

Nonuniform averaging—The concept of biasing the sampling distribution to mirror the 

expected signal envelope (e.g. EMS or BMS) can be applied to uniform sampling by varying 

the amount of signal averaging performed for each sample. This can be useful in contexts 

where a significant number of transients must be averaged to obtain sufficient sensitivity. An 
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early application of this idea to NMR employed uniform sampling with nonuniform 

averaging, and computed the multidimensional DFT spectrum after first normalizing each 

FID by dividing by the number of transients summed at each indirect evolution time44. 

Although the results of this approach are qualitatively reasonable provided that the SNR is 

not too low, a flaw in the approach is that noise will not be properly weighted. A solution is 

to employ a method where appropriate statistical weights can be applied to each FID, e.g. 

MaxEnt or maximum likelihood reconstruction45. More generally, the idea of nonuniform 

averaging can also be applied to NUS.

Random phase detection—We’ve seen how NUS artifacts are a manifestation of 

aliasing, and how randomization can mitigate the extent of aliasing. There is another context 

in which aliasing appears in NMR, and that is determining the signs of frequency 

components (i.e. the direction of rotation of the magnetization). As discussed earlier the 

approach widely used in NMR to resolve this ambiguity is to simultaneously detect two 

orthogonal phases (simultaneous quadrature detection). Single-phase detection using 

uniform sampling with random quadrature phase (random phase detection, RPD) is able to 

resolve the frequency sign ambiguity without oversampling, as shown in Fig. 246. This 

results in a factor of two reduction in the number of samples required, compared to 

quadrature or TPPI detection methods, for each indirect dimension of a multidimensional 

experiment. For experiments not employing quadrature or TPPI detection, it provides a 

factor of two increase in resolution for each dimension.

Optimal sampling?—Any sampling scheme, whether uniform or nonuniform, can be 

characterized by its effective bandwidth, dynamic range, resolution, sensitivity, and number 

of samples. Some of these metrics are closely related, and it is not possible to optimize all of 

them simultaneously. For example, minimizing the total number of samples (and thus the 

experiment time) invariably increases the magnitudes of sampling artifacts. Furthermore, a 

sampling scheme that is optimal for one signal will not necessarily be optimal for a signal 

containing frequency components with different characteristics. Thus the design of efficient 

sampling schemes involves tradeoffs. Simply put, no single NUS scheme will be best suited 

for all experiments. However, if a particular metric for quantifying the quality of a sampling 

scheme is defined it is possible to optimize a given sampling scheme by random search 

methods.47,48 Peak-to-sidelobe (PSR) ratio (the ratio of the intensity of the zero-frequency to 

the intensity of the largest non-zero frequency component) of the PSF is one useful metric.49 

While a high PSR correlates with low amplitude sampling artifacts it does not reflect the 

overall distribution of artifacts.14 Thus the challenge remains to define such a metric for 

spectral quality that would be universally applicable.

The use of nonuniform sampling in all its guises is transforming the practice of 

multidimensional NMR, most importantly by lifting the sampling-limited barrier to 

obtaining the potential resolution in indirect dimensions afforded by ultra high-field 

magnets. Nonuniform sampling is also beginning to have tremendous impact in magnetic 

resonance imaging, where even small reductions in the time required to collect an image can 

have tremendous clinical impact. For all of the successes using NUS, our understanding of 

how to design optimal sampling schemes remains incomplete. A major limitation is that we 
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lack a comprehensive theory able to predict the performance of a given NUS scheme a 
priori. This in turn is related to the absence of a consensus on performance metrics, i.e., 

measures of spectral quality. Ask any three NMR spectroscopists to quantify the quality of a 

spectrum and you are likely to get three different answers. Further advances in NUS will be 

enabled by the development of robust, shared metrics. An additional hurdle has been the 

absence of a common set of test or reference data, which is necessary for critical comparison 

of competing approaches. Once shared metrics and reference data are established, we 

anticipate rapid additional improvements in the design and application of NUS to 

multidimensional NMR spectroscopy.

2. Signal processing methods in NMR spectroscopy

In the first part we discussed how different sampling strategies can lead to vastly different 

spectral representations. But what about the influence of the methods used to process the 

NUS data? Ever since the introduction of FT-NMR in the mid 1960s NMR spectroscopists 

have been investigating methods of accurately and efficiently transforming the measured 

time series data into a frequency spectrum.1 Early efforts were aimed at overcoming some of 

the shortcomings inherent in the DFT and achieving efficient computation and robust 

application to noisy signals.50 The introduction of two-dimensional (2D) NMR in the 1970s 

introduced a separate problem, as these experiments were very time-consuming.51 Research 

was therefore focused on reducing the number of time samples required in 2D experiments, 

resulting in approaches that could speed up data acquisition by a factor of 2–4 (see Hoch et 

al.52 and references therein). The poor SNR achievable at the time proved a severe limitation 

to further progress. In the 1990s, however, several key advances resulted in a dramatic boost 

in the sensitivity of multidimensional NMR experiments at the same time that isotopic 

labelling of proteins resulted in the design of 3D and 4D experiments with unprecedented 

sensitivity.53,54 These 3D and 4D experiments had some very important properties: (1) They 

were often very sparse, meaning that spectra consisting of tens or hundreds of thousands of 

data values only contained a few hundred up to a few thousand signals; (2) The available 

sensitivity was in many cases much higher than that required to produce an accurate spectral 

representation. These two conditions resulted in a situation where data acquisition was 

limited by the required resolution rather than sensitivity, a reversal of earlier conditions. 

Thus, since the turn of the millennium there has been an explosion of methods attempting to 

use the improved SNR to produce accurate multidimensional spectra of NMR signals.25,55,56 

Considering that the number of signal and post-processing techniques employed in 

multidimensional NMR has nearly doubled in less than 10 years (see Figure 3), and that 

each has its own associated terminology, it is no wonder that this area of NMR is 

bewildering even to the most experienced NMR spectroscopists. Fortunately, most of these 

new methods rely on a common set of basic principles. Understanding these principles helps 

to illuminate the relationships between the various methods, and makes signal processing in 

NMR more “coherent”.

NUS and non-Fourier methods of spectrum analysis are inextricably linked. Here we will 

discuss the most successful methods for speeding up the acquisition of multidimensional 

NMR data. The focus will be on introducing the key concepts that link the various methods 

to one another and discussing their relative strengths and weaknesses. Although a direct 
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comparison of all these methods applied to a common set of data would be the most 

informative approach, such a critical comparison remains technically beyond reach, 

primarily because (as in critical comparison of sampling schemes) no common set of test 

data yet exists that includes data sampled using all of the different sampling regimens 

employed by the different approaches. Similarly, there is not yet a broad consensus on 

metrics for characterizing the quality of multidimensional NMR spectra. For this reason, 

very few studies that compare available fast acquisition methods have been conducted.25 

Thus, practical benchmarks or guidelines for the practicing spectroscopist are currently in 

short supply. Through this review we aim to partially compensate for this lack of guiding 

principles, by providing the spectroscopist with the information needed to make informed 

decisions regarding the potential utility of the many methods available, and also to provide 

sufficient insight to allow a critical assessment of the use of these methods for solving 

problems encountered in applications of NMR spectroscopy.

2.1. Limitations of the DFT

Data acquired using pulsed experiments results in a time-varying response, the FID, that can 

be approximated as sum of sinusoids, with each sinusoid representing an excited resonance. 

The interpretation of an FID directly in the time domain is clearly impractical when it 

contains more than one sinusoid. The chorus of spins represented can be resolved into its 

components by converting the time-domain response into a spectral representation, 

indicating the amount of energy contained in the signal as a function of frequency. The use 

of FT for this conversion is so intimately associated with the development of modern pulsed 

NMR that the technique as a whole is often labelled FT-NMR.1 Although the application of 

the continuous FT to time domain data theoretically produces an accurate frequency domain 

spectrum, its application is impractical. Instead, the continuous NMR signal is sampled at 

discrete time intervals at a fixed rate. The discrete Fourier transform (DFT) can be applied to 

this data to obtain a frequency spectrum. The DFT is, however, only an approximation of the 

continuous FT, and the accuracy of the result depends on how well the approximation is 

satisfied. The two main differences between the FT and the DFT, and hence the sources of 

errors when applying the DFT, are the discrete sampling and the finite data length.52 

Sampling less frequently than mandated by the Nyquist criterion leads to the appearance of 

signals in the spectrum at incorrect frequencies, referred to as aliasing or folding (see also 

section 1.1).29 Short data records (i.e. too few samples) leads to poor digital resolution of the 

frequency domain spectrum and can result in baseline distortions. The digital frequency 

resolution can be increased through “zero filling”, which involves adding zeroes to the end 

of the time domain data. This operation invariably results in a discontinuity of the time 

domain data, which in turn results in the appearance of additional unwanted signals in the 

spectrum, commonly referred to as truncation artifacts or sinc wiggles. To resolve this 

problem one must either collect longer datasets, or multiply the FID with a “window” or 

“apodization” function that smoothly reduces the amplitude of the signal near the end of the 

data record. While this improves digital resolution and reduces truncation artifacts, it also 

results in line broadening.

This act of balancing sensitivity and resolution provides much of the motivation behind 

signal processing of NMR data. Ultimately the aim is to resolve signals with similar 
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frequencies without introducing artifacts that could mask weaker signals. In 1D NMR 

experiments one can often collect a very long data record to improve resolution, but this is 

not true for multidimensional (nD) NMR experiments, because of the parametric manner in 

which the additional indirect dimensions are sampled. As can be appreciated from the above, 

adding a time point in the indirect dimension of a two-dimensional experiment requires the 

acquisition of an additional one-dimensional dataset. By extension, adding another time 

point to the second indirect dimension of a three-dimensional experiment requires the 

acquisition of another two-dimensional experiment (each 2D plane is a time point along the 

third dimension). Thus, overcoming the inability of the DFT to provide high-resolution 

spectra from short data records becomes more burdensome with each added dimension.

2.2. Accelerating multidimensional NMR experiments

Multidimensional NMR experiments are essential for resolving individual nuclear 

resonances for complex biomolecules, and are so ubiquitous that any advance in speeding up 

the traditionally slow process of acquiring multidimensional NMR data would impact the 

whole field. It is therefore not surprising that the problem has been attacked by a multitude 

of novel experimental and computational methods. The need for speed in NMR has become 

even more urgent recently with the advent of genetic and biochemical tools that enable high-

throughput production of biomolecules for structural analysis. In particular, the global effort 

toward structural genomics has led to new technological developments in the past decade.57

The approaches taken to speed up multidimensional NMR experiments can be broadly 

categorised in two main groups: (i) methods that employ signal processing methods capable 

of high resolution using short or incomplete data records and (ii) methods that employ 

alternatives to time evolution along indirect time dimensions to elicit multidimensional 

correlations. Those in group (i) typically utilize novel post-acquisition processing methods 

and these will be covered in Sections 2.3–2.5, whereas those in group (ii) involve more 

dramatic changes to the pulse sequence and/or the hardware and these will be covered in 

Section 3. Group (i) is where the majority of recent work has been done to overcome the 

time-barrier imposed by the DFT (Figure 4). The signal processing methods in group (i) can 

be further categorized according to the sampling regimens that they are compatible with. 

Typically, the least restrictive processing methods are capable of producing spectra from any 

type of data record, and include methods such as MaxEnt reconstruction (red in Figure 4). 

Methods that restrict the sampling method can be further split into those that are applicable 

to traditional uniformly-sampled data, including extrapolation methods such as linear 

prediction (black in Figure 4), and those that are not. The final category of processing 

methods utilise non-uniform sampling but with a deterministic or coherent distribution of 

samples in the time domain (green in Figure 4). Such data can either be directly used to 

produce a multidimensional spectrum, or each component (e.g. radial projection) can be 

analysed using post-processing methods to generate information about the position of the 

signals in the multidimensional spectrum (the latter are underlined in Figure 4). Typically 

methods in the first two groups sample on a grid defined by the Nyquist condition, whilst the 

deterministic sampling methods sample outside this grid (see also Figure 6). In addition, 

signal processing methods can be characterized as parametric (italic in Figure 4) or 
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nonparametric, depending on whether or not they model the signal and estimate the 

spectrum by refining parameters of the model.

The division according to sampling strategy shown in Figure 4 reveals that methods for 

speeding up data acquisition applicable to uniform Nyquist sampling are frequently (but not 

always) parametric (italic). Conversely those applicable to NUS data are commonly non-

parametric. Furthermore it can be seen that most methods applicable to radially sampled 

data are post-processing methods (underlined).

2.3. Uniform (Nyquist) Sampling

The methods in this section are generally only applicable to conventional uniform or Nyquist 

sampling. These methods can all be considered as extrapolating the time domain NMR 

signal beyond the measured interval. The resulting extended data record can then be zero-

filled and Fourier transformed to produce high-resolution spectra, or the spectrum can be 

reconstructed from the parameters fitted to the model. The assumption common to most of 

these methods is that the signal d can be described as a sum of exponentially decaying 

sinusoids:

(3)

where L is the number of sinusoids, Aj, ϕj, τj and ωj are the amplitude, phase, decay time, 

and frequency respectively, of the jth sinusoid sampled at a time kΔt, with Δt the sampling 

interval determined by the Nyquist condition. Signals that decay exponentially have 

Lorentzian lineshapes. Under certain circumstances some of the parameters in eq. 3 may be 

known a priori, simplifying the problem of fitting eq. 3 to measured data. An example is data 

acquired in constant-time experiments, where the signal decay is known (i.e. there is no 

decay). There is no analytical method for fitting the parameters in eq. 3. Most methods rely 

on matrix approaches to determine best-fit values in a least-squares sense. Although there 

are many different approaches to fitting the parameters, the common reliance on the model 

described by eq. 3 means that the different approaches frequently have similar behaviour. A 

common feature of methods based on eq. 3, which does not explicitly account for noise, is 

that they become unreliable when the data is very noisy or the noise is not randomly 

distributed.

2.3.1. LP and related methods—Linear prediction (LP) extrapolation extends the 

measured data by assuming that the signal can be described at any time as a linear 

combination of past values:

(4)
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where a sample (dk) in the time series can be predicted using m past values (dk−j) given a set 

of aj weights. This turns out to be equivalent to modelling the signal as a sum of exponential 

sinusoids58,59. Appropriate choice of the number of coefficients m (referred to as the order) 

and their values, aj (referred to as LP coefficients), is not a trivial matter, in particular since 

NMR data in addition to sinusoids include noise and other imperfections that render eq. 4 

only approximate. Functions that obey eq. 4 are called autoregressive and include the class 

of signals described by Eq. 3. Importantly, the coefficients aj are related to the parameters of 

eq. 3. Thus, instead of using the LP equations to explicitly extrapolate the FID, it is possible 

to use the LP coefficients to solve for the parameters of the corresponding model. The zeroes 

of the characteristic polynomial formed from the LP coefficients yield the frequencies and 

decay rates.2 By using nonlinear fitting against the measured data, the remaining parameters 

(amplitudes and phases) can be determined. The result is a table of peak data, rather than a 

spectrum. A number of closely related methods (HSVD60, LPSVD61, LPQRD62) employ 

this approach, and have been shown to be especially useful for signals with a modest number 

of resonances. These approaches obviate the need for subsequent analysis employing a peak 

picker (these and other related methods are discussed in detail elsewhere52,58).

Using methods such as LPSVD that explicitly compute the parameters of Eq. 3, the 

spectrum can be computed from the model. In LP extrapolation, only the weights aj are 

determined, and the FID is explicitly extrapolated beyond the measured interval using Eq. 4. 

The spectrum is obtained by conventional FT of the numerically extrapolated FID. This 

lessens the need to window the data so that it has very small values near the end of the 

measured interval to avoid truncation artifacts, and thus also avoids the concomitant line 

broadening.

In practice, the value of m is determined by the user, bounded by ½ the available number of 

data samples. The “correct” value is never known a priori, and depends not only on the 

number of expected sinusoids but also on the noise level. Since the coefficients aj are 

approximate and the measured signal contains random noise (which can’t be extrapolated), 

the prediction error will always increase as the length of the predicted interval increases. 

Consequently, a conservative and common practice is to limit extrapolation to a doubling of 

the length of the measured data. The value of m is chosen to be significantly less than the 

number of measured samples yet larger than the number of expected signals63. Values of m 
smaller than the number of sinusoids leads to bias and inaccurate predictions, whereas 

values of m that are too large can result in false peaks.

Another use of LP in NMR data processing is backward LP extrapolation, when the initial 

data points have been corrupted or cannot be measured.64 In these cases the corrupt or 

missing information can lead to severe baseline distortion or phase errors. Finally, if the data 

has a known phase (e.g. sinusoidal or cosinusoidal), it is possible to apply “mirror image 

LP” in which the number of “measured” samples is doubled by reflection (with or without 

sign inversion, depending on the phase) resulting in substantially improved numerical 

stability of the LP extrapolation64.

2.3.2. Maximum Likelihood and Bayesian Analysis—While LP methods explicitly 

assume an autoregressive model for the signal, they implicitly are consistent with modelling 
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the signal as a sum of decaying sinusoids. Hybrid parametric LP methods generally compute 

the LP expansion coefficients as a first step, and then use these to compute the model 

parameters (amplitudes, phases, frequencies, decay rates). Maximum likelihood and 

Bayesian methods take a more direct approach to computing the model parameters. Also, the 

need for a priori estimation of the number of signals with LP methods makes them poorly 

suited for unsupervised processing. The approach taken by the maximum likelihood method 

(MLM)26,45,65,66 and Bayesian analysis (BA)26,67 is to determine the number of sinusoids in 

the model using statistical methods. Broadly speaking, by assuming that NMR signals 

follow the form of eq. 3 they attempt to find a set of parameters that define a model that 

when subtracted from the experimental data leaves only random noise. MLM and BA differ 

mainly in the criterion used to determine the best model. In MLM the aim is to maximize the 

likelihood that the signal was generated by a system with the parameters given by the model. 

In BA, the posterior probability that the model is correct, which includes the likelihood as 

well as a priori probability, is maximized. Depending on the nature of the assumed prior 

probability distribution, the results of MLM and BA can be quite similar, if not identical. We 

refer the reader to the work of Bretthorst26 for detailed derivations of the two approaches. 

However, a broad overview of MLM helps to illuminate the differences between LP methods 

and MLM or BA.

In the MLM implementation described by Chylla and Markley45, the measured data is zero-

filled (and possibly augmented with zeroes to replace missing samples from the Nyquist 

grid) and subjected to FT. In the frequency domain a peak picker identifies the signal having 

the maximum amplitude, and the parameters describing this signal (amplitude, phase, 

frequency, and decay rate) are determined by least-squares. The model described by Eq. 1 is 

then populated with a single sinusoid with the determined parameters, and the time-domain 

signal corresponding to the model is subtracted from the measured data. The residual is then 

subjected to FT, and the peak picker again finds the largest magnitude signal and its 

parameters are estimated. Another sinusoid with the parameters for this signal is added to 

the model, and the time-domain signal for the new model is subtracted from the zero-filled/

augmented data. This procedure is repeated until the residual is indistinguishable from noise. 

A number of statistical tests have been employed as stopping criteria (for determining the 

number of sinusoids in the model), including the Akaike Information Criterion (AIC) and 

minimum description length (MDL).45

2.3.3. Filter Diagonalization Method—Another method used in NMR data processing 

capable of super-resolution is the filter diagonalization method (FDM), which was first 

introduced to NMR by Mandelstahm and Taylor.68 The FDM method was initially applied to 

quantum dynamics, where the problem of solving eq. 3 is also of interest. The basic idea 

behind FDM is to recast eq. 3 into a problem of diagonalizing small matrices. The filtering 

refers to breaking up the spectrum into small pieces to reduce the computational burden; the 

algorithm constructs a matrix where the off-diagonal elements represent the interference 

between resonances. Diagonalizing this matrix allows one to extract the parameters of eq. 3. 

We refer the reader to the review by Mandelshtam for details.69 One of the advantages of 

FDM is that all the available data in a multidimensional experiment is used to derive the 

parameters in eq. 3. For example, if a 2D spectrum has N data points in the direct dimension 
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and M points in the indirect dimension, N × M points are used to solve the linear equations 

of FDM (generating a N × N matrix). As long as N × M is large enough, accurate spectral 

estimates and parameters can be obtained. In theory a value of M = 2 should be enough to 

derive an accurate 2D spectrum having k signals, so long as N × M is larger than 3k. 

Unfortunately, this is only true for data of very high SNR and where the frequencies of 

signal components are not overlapped. The resolving power of FDM is very sensitive to both 

noise and overlap and much of the current development of FDM is focused on improving the 

stability of the method for noisy data and in finding efficient methods for removing spurious 

peaks. Like other parametric methods, the output of FDM is a list of the parameters 

describing the spectrum, rather than a spectrum. The spectrum can be generated as in BA by 

using the output parameter values to construct an FID which is then subjected to DFT. 

Alternatively, the closely-related regularized resolvent transform (RRT) can be used, which, 

using the principles of FDM, performs a transform resulting in a frequency domain 

spectrum.69 In situations where the assumptions of the method (shared by FDM and RRT 

alike) are not realized the resulting parameters or the spectral estimate can include spurious 

peaks or baseline distortions. This method has not achieved wide penetration, but is finding 

interesting applications to sampling-limited experiments such as diffusion-ordered 

spectroscopy (DOSY)70, and holds considerable promise.

2.4. Radially Sampled Data

The utility of radial sampling derives from the projection - cross-section theorem71, which 

states that Fourier transformation of data collected along a radial time vector with a given 

angle in the t1–t2 plane is equivalent to the projection of the 2D spectrum onto a frequency-

domain vector with the same angle. Most spectroscopists are familiar with looking at 

orthogonal projections of multidimensional experiments (onto a frequency axis) to assess 

spectral quality, since these projections are equivalent to simply running a 2D experiment 

without incrementing the missing (orthogonal) dimension.

2.4.1. Reduced Dimensionality—The first RD experiment was the accordion 

experiment introduced by Bodenhausen and Ernst in 1981.20,72 In this approach a 3D 

experiment was reduced to two dimensions by coupling the evolution of the two indirect 

dimensions. In the original accordion experiment one indirect dimension represented 

chemical shift evolution while the second indirect dimension encoded a mixing time 

designed to measure chemical exchange. Although this experiment established the 

foundation for all future RD experiments, most of which deal exclusively with chemical 

shift evolution, its utility for measuring relaxation rates and other applications is still being 

developed.73,74 Even though it was clear from the initial description of the accordion 

experiment that the method was applicable to any 3D experiment, it was nearly a decade 

before it was applied to an experiment where both indirect dimensions represented chemical 

shifts.35,75 This application emerged as a consequence of newly-developed methods for 

isotopic labelling of proteins that enabled multinuclear, multidimensional experiments, with 

reasonable sensitivity, for sequential resonance assignment and structure determination of 

proteins. The acquisition of two coupled frequency dimensions, however, introduces some 

difficulties. The main problem is that the two dimensions are mixed and must somehow be 

deconvoluted before any useful information can be extracted.
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Since the joint evolution linearly combines the two dimensions, the corresponding 

frequencies are also linearly “mixed”. The number of resonances observed in the lower 

dimensionality spectrum depends on the number of linked dimensions. Thus, if two 

dimensions are linked, the RD spectrum will contain two peaks per resonance of the higher 

dimensionality spectrum, whereas if three dimensions are coupled each of the two peaks will 

be split by the second frequency resulting in four resonances, and so on. The position of the 

peaks in the RD spectrum can be used to extract the true resonance frequency. The problem 

obviously becomes more complicated as the number of resonances is increased. If overlap 

can be avoided, however, it is possible to drastically reduce experimental time using this 

approach.

2.4.2. GFT NMR—An extension of RD was presented by Kim and Szyperski24 in 2003 in 

which they used a “G-matrix” to appropriately combine hypercomplex data of arbitrary 

dimensionality to produce “basic spectra” (see Figure 5. These spectra are much less 

complicated than the RD projections, and the known relationship between the various 

patterns can be used to extract true chemical shifts (via nonlinear least-squares fitting). 

Combination of the hypercomplex planes enables recovery of some sensitivity that is 

otherwise lost in RD approaches due to peak splitting. A disadvantage is that the data is not 

combined in a higher dimensional spectrum, so that the sensitivity is related to that of each 

of the lower dimensional projections rather than the entire dataset. GFT-NMR was 

developed contemporaneously with advances in sensitivity delivered by higher magnetic 

fields and cryogenically cooled probes, providing sufficient sensitivity to make GFT 

experiments feasible

2.4.3. Back-Projection Reconstruction—GFT-NMR did much to revitalize interest in 

RD methods (after a decade of sporadic application), but did not go as far as providing a 

heuristic link between the coupled dimensions and their higher dimensional (three or higher) 

equivalents. This was instead done in a series of publications by Kupče and Freeman, who 

exploited the relationship between a time-domain cross-section and its frequency-domain 

projection, through the projection - cross-section theorem.76 The appeal of this approach 

was that it reconstructed the higher dimensional spectrum using back-projection 

reconstruction (BPR), analogous to the methods used in computerized axial tomography 

(CAT).77 It simplified visual interpretation of RD data, making it far more accessible to the 

broader NMR spectroscopy community. The principle of BPR is rather simple and involves 

projecting the lower dimensional data onto the higher dimensional plane at the appropriate 

projection angle (see shaded lines in Figure 5E). By combining multiple projection angles 

the ridges caused by the peak information from each projection will intersect at the correct 

frequencies of the higher dimensional object. The accuracy of the reconstruction improves as 

the number of projections is increased. An important connection is that filtered BPR (fBPR) 

has been shown to be equivalent to radial FT.78 In fBPR a ramp function (an apodization 

function ranging from 0-1 from the beginning of the FID to the end) is applied to each 

projection prior to adding it to the higher dimensional spectrum. The fBPR procedure 

drastically reduces the weight of the high SNR portion of the FID (the beginning where the 

filter values are low). This helps because the data at short evolution times is greatly 

oversampled if a very large number of projections are accumulated (this in itself can lead to 
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excessive line-broadening if fBPR is not applied). The method has the advantage that the 

chemical shifts no longer need to be deconvoluted but can instead be directly extracted from 

the reconstructed spectrum. The major disadvantage is that as the spectral complexity and 

dynamic range increase, small features may be masked by strong ridges from projections of 

other peaks or by accidental intersections that cause false peaks to appear. Several methods 

have been developed to ameliorate the problems associated with these artifacts. These all 

attempt to remove the sampling related “ridge” artifacts in the BPR spectrum, and include 

the simple lowest value algorithm and the CLEAN algorithm.79 Each has strengths and 

weaknesses, but there is currently no consensus on the best approach to post-processing of 

BPR spectra.

2.4.4. Post-Processing of Projections—RD, GFT and BPR stimulated interest in fast 

acquisition techniques in multidimensional NMR and established the experimental 

framework for many other approaches to processing such data. The rising interest was in 

part due to the impressive results that were demonstrated, but another factor is that the 

analogy to computer-aided tomography (made explicit by BPR) provided a clear heuristic 

framework for understanding precisely how NUS works. Another factor was the increased 

demand for efficient NMR data collection imposed by structural genomics initiatives and by 

the advent of ultra-high magnetic fields (where the sampling problem is exacerbated by the 

shorter sampling interval imposed by greater shift dispersion). Thus, soon after the initial 

findings of Szyperski, Kupče, Freeman and colleagues were reported, a number of new 

methodologies were proposed for enhancing coupled-evolution approaches.

PRODECOMP: The PRODECOMP (projection decomposition) method was introduced as 

a method for analysing GFT-type spectra, but instead of using least squares to extract the 

correct chemical shifts from the chemical shift multiplets, PRODECOMP employs 

multiway-decomposition (MDD, described in Section 2.5.7) to disentangle the projected 

spectra into separate resonances80.

APSY: APSY (automated projection spectroscopy)38 is a method used to directly analyse 

projection data, rather than reconstruct the full dimensionality spectrum. APSY uses the 

information from the projection angle to interpret the peak information in the projected 

spectrum. Datasets for a number of projection angles are acquired and the projected spectra 

are analysed to generate a peak list for each projection angle. Since the projection angles are 

known, the true peak frequency can be determined in the higher dimensionality spectrum. 

Thus, even though the peak position will change in each projection spectrum the calculated 

true frequencies can show that the peak represents the same position in the “full” spectrum. 

The algorithm then calculates how many intersections are present in the spectrum (see also 

Figure 5 for illustration of an intersection), by comparing the peak position in the various 

projections after translation to the higher dimensional object. It then ranks the number of 

intersections (which are multidimensional peak candidates) and removes the peak with the 

highest rank (most intersections), removing with it all of the contributing peaks from the 

lower dimensional projections (i.e. from the peak lists). This has two effects, one of which is 

the desired effect of eliminating artifacts by removing any artifactual peaks that are 

coincident with the position of a real peak to produce accidental intersections. Conversely, 
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the procedure may also remove support for a real peak if it is truly overlapped in several 

dimensions. The procedure is repeated, removing a real peak at each iteration, until the 

number of intersections at the remaining highest ranked peak candidate falls below a user 

defined threshold. The list of peaks that have been removed is now the true peak list and the 

remaining peak candidates are discarded. The procedure is repeated a number of times to 

reduce the likelihood of accidental removal of redundant (overlapped) peaks. The peak 

positions are then averaged and recorded.

HIFI NMR: HIFI NMR was introduced soon after BPR and addressed the question of the 

optimal choice of projection angles.37 HIFI NMR uses a statistical approach similar to those 

described in Section 2.3 to find the projection angle most likely to resolve all the resonances. 

The best projection angle is determined from likely shift distributions, derived from average 

chemical shift data contained in the Biological Magnetic Resonance Data Bank81 (BMRB) 

and the known amino acid composition of the protein, as well as peak positions. In this sense 

HIFI is an adaptive method, because the projection angle chosen depends on the results 

obtained from prior projections. The algorithm (acquiring and analysing data at a specified 

projection angle) is repeated until no additional information can be extracted.

2.5. Irregular Sampling

In contrast to non-uniform sampling that results from coupling two or more evolution 

periods, the first application of nonuniform sampling (Figure 1) in multidimensional NMR 

utilized a random sampling scheme.22 This sampling is not only less regular than the radial 

sampling employed by RD methods (including BPR and GFT), but it also requires a method 

for computing the spectrum from time domain data that does not require uniformly-spaced 

samples. Barna et al.22 employed maximum entropy (MaxEnt) reconstruction to compute 

spectra from irregularly-spaced data. For a long time the different methods used for spectral 

analysis obscured both the differences and the similarities between different approaches that 

are fundamentally all nonuniform sampling methods. More recently it was shown that 

MaxEnt reconstruction is capable of performing back projection, and more importantly, that 

when applied to the same data, MaxEnt and BPR yield essentially equivalent results.25 This 

implied that the differences in the magnitude and nature of artifacts encountered when 

reconstructing a multidimensional spectrum from data collected using different sampling 

schemes (e.g. radial or random) are attributable mainly to the sampling scheme, and not the 

method used to compute the spectrum from the nonuniformly sampled data. The problem of 

estimating frequency spectra from irregularly-spaced data is one that has been encountered 

in a host of other fields in science and engineering, and a similarly large number of methods 

have been developed. In this section we describe the main methods that have been applied to 

multidimensional NMR.

2.5.1. nuDFT—As discussed in section 1.3 it is in principle possible to reconstruct a 

spectrum from a set of arbitrarily-distributed time domain samples by estimating the 

continuous Fourier Transform. Computing the Fourier integral is an exercise in numerical 

quadrature on an irregular grid.82 Provided that the samples fall on a regular grid, however, 

one can use the DFT to compute the spectrum. One simply inserts zeroes where data has not 

been sampled and treats this as a normal uniformly sampled dataset. Inserting zeroes at the 
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grid points not sampled is, however, equivalent to leaving the corresponding basis functions 

out of the Fourier sum. In the absence of these lost basis functions, the remaining basis 

functions no longer comprise an orthonormal basis set. A consequence is that the sampled 

basis functions interfere with one another.30

The result of applying the DFT to NUS data can be seen as the convolution of the DFT 

spectrum for the uniformly sampled data with the DFT of the sampling function (i.e. the 

point spread function). Sampling functions must be real-valued for the simple convolution 

relation between the DFT of zero-augmented NUS data and PSF to hold (for nonuniform 

sampling hypercomplex sampling that does not acquire all components of the hypercomplex 

datum for a given set of evolution times, the relationship becomes a family of 

convolutions19). As seen in the first part of this review, PSFs are valuable for estimating a 
priori the characteristics of the sampling artifacts associated with a sampling scheme. PSFs 

typically consist of a major component at zero frequency, with a number of smaller non-zero 

frequency components. The width of the zero-frequency component conveys the amount of 

signal broadening, while the non-zero frequency components reflect the magnitudes and 

relative locations of sampling artifacts. In the DFT of zero-augmented NUS data, every 

signal component will give rise to artifacts that have the same amplitudes relative to the 

parent signal as the ratio of the amplitudes of the zero-frequency component and the non-

zero components. Deconvolution of these artifacts from the spectrum is the primary 

motivation behind non-Fourier methods such as MaxEnt and compressed sensing. Thus 

spectral estimates based on DFT of zero-augmented NUS data can be considered to 

represent the upper bounds on artifacts associated with NUS (see Figure 7).

2.5.2. Lagrange Interpolation—A completely different approach to spectral estimation 

for nonuniformly sampled data is to attempt to approximate what the data would have 

looked like if it had been sampled uniformly, using the information obtained from a set of 

nonuniformly sampled data; the DFT can then be applied to the modified dataset. One way 

to do this is to fit a continuous function to the nonuniformly sampled data, then interpolate 

using this function to estimate the data values at uniform intervals. Marion and colleagues83 

described the use of Lagrange interpolation to perform this re-sampling onto a regular grid. 

In contrast to LP, where the data is extrapolated beyond the measured interval, only short 

stretches of data must be reconstructed and the errors therefore do not propagate in the same 

way they do in LP extrapolation. Another feature of the method is that since the Nyquist grid 

can be defined post-acquisition one can avoid some of the problems of aliasing when 

spectral windows are set inappropriately.

2.5.3. Multidimensional FT—More recently, a method called multidimensional FT 

(MFT)16 was proposed which involves computation of Fourier-like sums on an arbitrary 

mesh, possibly including weights. When applied to NUS data corresponding to a subset of 

uniformly sampled data, the sums can be evaluated using the FFT (with elements not 

sampled set to zero); otherwise the sums are computed by brute-force summation. 

Unfortunately the name is something of a misnomer, as it is not truly a Fourier 

transformation of NUS data. Whether the time domain samples are selected from a uniform 

grid or are collected off-grid, the orthogonality condition that applies to the Fourier basis on 
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a complete, uniform grid is not satisfied, and so the NUS artifacts that result can be viewed 

as interference between frequency components. When NUS is restricted to a uniform grid, 

the artifacts correspond to convolution of the FT of the sampling function (possibly 

including weights) with the uniformly-sampled FT spectrum. Because no attempt is made to 

deconvolve the sampling artifacts, this approach works best when the NUS scheme is 

carefully constructed to minimize the artifacts.

MFT contrasts with regular DFT processing where the FT sums are evaluated one dimension 

at a time. The method was initially proposed for processing of projection data and shown to 

be equivalent to the inverse Radon Transform. However, the method is more general than 

this and its real strength is that it allows for a small spectral window to be reconstructed in 

cases where a very large spectral window has been acquired. As was discovered for 

Lagrange interpolation, and explained more generally by Bretthorst84, the effect of 

increasing the spectral window (i.e. reducing the distance between sample points) when 

sampling non-uniformly is to push sampling-related artifacts to very high frequencies. For 

multidimensional data the very large spectral windows would eventually produce very large 

datasets if high digital resolution were to be maintained. MFT would therefore aid in 

accessing only regions of interest with high resolution. The method relies heavily on the 

assumption that the sampling related artifacts are reduced to such an extent as to not 

interfere with the signal components, and can therefore be ignored. On the other hand, 

sampling at time points other than those stipulated by the Nyquist condition invariably 

results in oversampling (e.g. see Figure 7 of Mobli & Hoch30). For time equivalent sampling 

from an exponentially decaying distribution, oversampling in turn leads to line broadening 

and then one must assume that limited signal overlap is present in the higher dimensional 

object being reconstructed.

2.5.4. CLEAN—In contrast to the DFT of nonuniformly sampled data, there are a number 

of methods that attempt to deconvolve the sampling spectrum to arrive at a more accurate 

spectral estimate. One such method, known as CLEAN, takes a heuristic, iterative approach 

to deconvolving the PSF from the spectral estimate.79,82 The algorithm begins by identifying 

the largest peak in the spectrum and attempts to deconvolve all artifacts associated with that 

peak. It does this by: (i) fitting the peak to some function (generally a Lorentzian line 

shape); (ii) creating a mock FID containing only the modelled peak but having the same 

spectral properties as the original spectrum (e.g. spectral window etc); (iii) discarding the 

points in the FID that do not exist in the sampling schedule; (iv) applying the Fourier 

transform; and (v) subtracting the resulting spectrum from the experimental spectrum. 

Following this procedure the peak and its associated artifacts are identified and removed, 

and the operation is repeated until a pre-determined threshold is reached (note the similarity 

to the procedures used in APSY and MLM). The major problem with this approach is that 

each peak must be accurately identified, modelled and removed from the data individually; 

errors in this process can propagate reconstruction artifacts. The algorithm requires a user-

defined threshold for determining the level at which remaining peaks are not significant. 

Extensions to the heuristic ideas underlying CLEAN have led to improvements in the ability 

to suppress NUS artifacts85 (Figure 8), but the ad hoc nature of the approach remains an 

obstacle to deeper understanding of why the method works, what the possible failure modes 
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are, or how to improve on the method. The SCRUB method used in the right-most panel of 

Fig. 8 differs from the original iterative subtractive CLEAN algorithm by grouping peaks 

and keeping track of the location of signal peaks from prior iterations, enabling the threshold 

to achieve lower values closer to the intrinsic noise level.85

2.5.5. Maximum Entropy Reconstruction—Maximum entropy reconstruction 

(MaxEnt) was first introduced to NMR signal processing in the early 1980s.86 MaxEnt 

reconstruction treats signal processing as an inverse problem. Starting with a trial frequency 

spectrum, a mock data set is generated via the inverse FT; the resulting time series is then 

compared to the empirically measured data. The trial spectrum is iteratively improved by 

applying constraints in both the frequency and time domains. In the frequency domain the 

constraint is to maximize the entropy, a measure of the absence of information (details of the 

entropy functional and the iterative algorithm are given in2,87). In the time domain the mock 

data is constrained to minimize the difference from the experimental data. The level of 

agreement between the mock FID and the measured data is generally determined by the 

user, but to avoid over-fitting it should be comparable to the noise level in the measured data. 

Following this principle the selection of reconstruction parameters can be made 

automatically, based on the noise level and trial reconstructions.88,89

Since the algorithm works in an inverse manner, sampling the FID is uncoupled from the 

mock FID, and computation of the level of agreement can be restricted to sample times in 

common between the experimental and mock FIDs. Thus MaxEnt readily supports 

essentially arbitrary nonuniform sampling, provided that the samples fall on the Nyquist grid 

corresponding to the mock FID. Another important consequence of the inverse nature of the 

algorithm is that one can use it to perform deconvolution in a very stable manner. In contrast 

to linear methods where the FID is divided by a convolution kernel, using MaxEnt one 

multiplies the mock FID by the kernel prior to comparison with the experimental FID, thus 

avoiding divide-by-zero instabilities or noise amplification. This approach can be used to 

deconvolve unwanted J modulation (to achieve virtual decoupling) or signal decay (to 

achieve line narrowing).87,90

The reduction in sampling artifacts by MaxEnt (see Figure 7) is in part due to the 

nonlinearity of the entropy functional. This nonlinearity is not without disadvantages. While 

the nonlinearity can be minimized by appropriate choice of reconstruction parameters or 

compensated by calibration91,92, the nonlinearity means that MaxEnt should only be applied 

to the last dimension to be sequentially processed in a multidimensional dataset, so as not to 

compound nonlinearities. Thus, in order to process two indirect dimensions (for example in 

a 3D experiment) using MaxEnt, the algorithm should be applied to both dimensions 

simultaneously. In principle MaxEnt can be applied to data with arbitrary dimensionality, but 

so far the largest number of dimensions that have been simultaneously reconstructed using 

MaxEnt is three (the three indirect dimensions of a 4D spectrum).93 Though not 

insignificant, the computational demands of MaxEnt are easily amenable to parallelization, 

for example using a loosely-coupled cluster. MaxEnt reconstruction in one or two 

dimensions simultaneously can be readily performed using a laptop computer.
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2.5.6. Forward maximum entropy and maximum entropy interpolation—MaxEnt 

reconstruction is a nonlinear method, and the nature and extent of the nonlinearity depends 

on the data. This presents challenges for quantitative applications, for example quantifying 

nuclear Overhauser effects or relaxation rates. One approach is to generate a calibration 

curve by adding synthetic signals spanning a range of amplitudes to the experimental data. 

Alternatively, the parameters controlling MaxEnt reconstruction can be adjusted to minimize 

the nonlinearity. Constraining the inverse DFT in the MaxEnt reconstruction to more tightly 

match the measured data reduces the nonlinearity. Hyberts and Wagner proposed taking this 

approach to its logical extreme for NUS data, devising an algorithm called Forward 

Maximum Entropy (FM) that uses the entropy to regularize the reconstruction so that the 

inverse DFT exactly matches the measured data for those samples collected.91 In essence the 

entropy is used only to determine the values of “missing” data not sampled by the NUS 

scheme. The results are highly linear, and suitable for quantitative applications. The power 

of FM is readily apparent from Fig. 9, which compares two-dimensional cross sections from 

3D HNCO spectra using 1250 samples in the indirect dimensions sampled uniformly and 

processed using the DFT (left), and sampled nonuniformly and processed using FM (right).
94

Because no constraint is used to enforce agreement between the inverse DFT of the FM 

spectrum with the measured data, orthogonality of the gradients for the entropy and the 

constraint cannot be used as a convergence criterion. Instead convergence is assumed when 

the step size becomes sufficiently small. As with many fixed-point methods (see IST, 

below), this can result in false convergence, if the step size becomes too small before the 

optimum is reached. Polenova and colleagues devised a similar strategy, maximum entropy 

interpolation (MINT)15, that employs conventional MaxEnt codes while setting the 

constraint parameter to a small value, much smaller than the estimated noise. Similar to FM, 

MINT yields highly linear spectra from NUS data, suitable for quantitative analysis, but 

takes advantage of highly efficient and robust MaxEnt code, ensuring both uniqueness of the 

solution and convergence.

2.5.7. Iterative Thresholding, Minimum l1-norm, and Compressed Sensing—
MaxEnt reconstruction uses a regularization functional – the entropy – to produce smooth 

spectral estimates with minimal artifacts. A number of different approaches to spectrum 

estimation that on the surface appear quite dissimilar have in common a reliance (either 

implicit or explicit) on a regularization functional that shares some of the properties of the 

entropy. The functional these approaches have in common is the l1-norm, or the sum of the 

absolute magnitudes of the elements of the spectrum. Regularizing spectral estimates by 

minimizing the l1-norm (note the sign difference from the entropy) is a characteristic of a 

class of fixed-point methods that use iterative thresholding, first applied to image processing 

problems95, in which spectral (image) values below a threshold are set to zero (hard 

thresholding) or scaled down (soft thresholding). Though the connection to the l1-norm is 

not obvious, it was shown that iterative soft thresholding with replacement minimizes the l1-

norm.96 More explicit uses of l1-minimization have become popular due to a remarkable 

theorem due to Logan97 that states that the spectrum of a signal can be perfectly recovered 

from an incomplete and noisy set of samples - provided that the signal is bandlimited, the 
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noise is below some threshold, and the spectrum to be recovered is sparse (i.e has few 

nonzero elements) - by minimizing the l1-norm.

The concept behind iterative thresholding methods, which have a rich history in the field of 

image processing95,98, is simple: starting with time domain data (which falls on a Nyquist 

grid), set the values for points not sampled to zero, then compute the DFT. In the frequency 

domain, choose a threshold that is below the value of the largest peak in the resulting trial 

spectrum, and scale down (iterative soft thresholding, or IST) values above the threshold by 

subtracting the threshold from their values, or set to zero99 all spectral values below this 

threshold (hard thresholding). Then compute the inverse DFT of the thresholded spectral 

estimate. These methods are called fixed-point methods because in general the same 

operation is repeatedly applied to the data until the changes become small, lowering the 

value of the threshold with each iteration. While iterative thresholding methods mainly have 

been developed ad hoc, formal results are possible for soft (but not hard) thresholding: the 

fixed point of soft thresholding minimizes the l1-norm of the spectrum100. IST is thus 

closely related to the compressed sensing approach (which explicitly seeks to minimize the 

l1- norm) recently applied in magnetic resonance imaging and subsequently to NMR.
47,101,102 A problem frequently encountered with fixed-point methods is that the step size 

with each iteration can become vanishingly small before the result has minimal l1-norm.96 

The choice of thresholding schedule can impact the convergence rate, for good or ill. 

Although utilitarian rules-of-thumb have been offered94, there appears to be little evidence 

to support the existence of an optimal or universal thresholding schedule.

A more fundamental question posed by compressed sensing and IST is whether the l1-norm 

functional is well-suited for regularizing NMR spectra. The assumptions attending Logan’s 

Theorem are that the signal is band-limited, sparse, and contains bounded noise. Lorentzian 

lineshapes, however, are not band-limited: their tails extend to infinite frequency (or wrap 

around in the case of the DFT). Furthermore, in contrast to MRI, where signals are typically 

confined to a single voxel in the image, NMR signals usually span multiple frequency 

values. Thus NMR spectra may not fully satisfy the requirements for robust recovery from 

sparse data. Anecdotal evidence that calls the suitability of the l1-norm into question is 

shown in Fig. 11.96 The top panel (A) show a one-dimensional spectrum computed using l1-

norm minimization, the bottom panel (B) shows the spectrum computed from the same data 

using MaxEnt reconstruction. Both are constrained to match the input time-domain data, 

with the same level of agreement. The peaks highlighted by the red oval correspond to a 

single synthetic exponentially-decaying sinusoid added to the experimental data. MaxEnt 

reconstruction correctly returns a single peak, while the l1-norm spectrum yields artifactual 

splitting of the single Lorenztian. It has been suggested that this is a result of IST-based 

methods not being suitable for extrapolation of the signal, i.e. where the time-domain data 

corresponding to the reconstructed spectrum contains data beyond the last experimentally-

sampled data point.103 This further restricts the design of sampling schedules where low 

sampling density at long evolution times may result in such instabilities.103 Other features of 

IST (l1-norm) spectra that remain unexplained include non-Gaussian noise distributions, 

which are for example readily apparent in Fig. 11.94 Similar non-Gaussian noise 

distributions can arise with MaxEnt reconstruction when the parameter def is too small.2 

Fundamentally the differences between IST and MaxEnt spectra are a manifestation of 
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nonlinearities inherent in these non-Fourier methods, which can depend not only on the 

methods themselves but also the nature of the signals to which they are applied. While this 

remains an active area of research, it is bears emphasizing that error analysis is important 

when utilizing non-Fourier methods of spectrum analysis.

2.5.8. Spectroscopy by Integration of Frequency and Time information—A 

predecessor to IST was a class of iterative hard thresholding algorithms devised for image 

processing by Papoulis98, Jansson104,105, van Cittert95, and others. The basic idea is to 

iteratively update an image (or spectral estimate) by suppressing information in “black” 

regions of the image (or blank regions of the spectrum) while replacing values in the 

conjugate Fourier domain with empirical data. Herzfeld and colleagues applied this idea to 

spectrum analysis by iteratively thresholding parts of the spectrum that are believed to be 

“blank”.106 While the results can be dramatic, the use of hard limits to the thresholded 

region makes it difficult to derive formal results that would elucidate the nature of the 

solution. As with other fixed-point methods, detecting premature convergence can be 

problematic. Because Lorentzian peaks are not bounded, “leakage” into the thresholded 

regions is a potential source of artifacts or bias.

2.5.9. MDD—Multi-dimensional decomposition (MDD) was introduced to NMR as three-

way decomposition and has also been referred to as multi-way decomposition.56 MDD is 

related to methods such as factorial analysis, principal component analysis (PCA) and 

singular value decomposition (SVD). The aim is to find a set of one-dimensional vectors that 

best describe the experimental data (Eq. 5). The assumption is that the multidimensional 

signal (in either the time or frequency domain) can be described as a sum of the vector outer 

products of independent one-dimensional “shapes”, e.g. for three dimensions:

(5)

Here S is the measured signal at coordinates (i, j, k), e is the noise component at those 

coordinates, and A is a diagonal matrix containing the intensity of each signal component. 

F1–F3 are the normalized one-dimensional vectors describing each component (often 

referred to as shapes) along each of three dimensions, but the method can be extended to any 

dimensionality greater than 2. The vectors may be either in the time or frequency domain or 

a mixture (i.e. the decomposition can be applied to a mixed time-frequency data, e.g. an 

interferogram). From the above it should therefore be possible to describe the data using R• 

(i+j+k−2) values (the sum of the lengths of the three one-dimensional vectors, less 2 because 

one value belongs to all thee vectors) and, so long as the size of the measured dataset is 

much larger than this value, the data is over-determined and can therefore be solved using a 

least squares approach. In practice the number of expected signals, R, is a user-defined 

parameter, which in essence sets the noise threshold. Furthermore, a parameter λ is defined 

that penalizes large amplitude components, ensuring that large amplitude components that 

cancel out are not kept. The results are not very sensitive to the value of R, so long as it is set 

to a value slightly larger than the expected number of peaks. Regularization via λ is 
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important in cases where the data suffers from low SNR or in strongly overlapped 

regions107. A feature of this method is that even if some values of S are unknown, but 

sufficient information is available, the vectors F1–F3 can still be calculated. These 

components will be complete and can be used to reconstruct a complete dataset. The method 

can therefore be applied to NUS data. There is, however, an inherent limitation on the 

amount of data that can be omitted before the least squares problem becomes intractable. To 

improve on this limitation, the algorithm has recently been extended to assume that the time 

domain signal has autoregressive properties, i.e. to assume Lorentzian lineshapes.108 

Removing a variable reduces the number of unknowns, allowing for larger portions of the 

data to be omitted, but as always this is only true if the assumption is correct (see also 

Section 2.3). This new implementation of the method is referred to as recursive MDD 

(rMDD).109

2.5.10. Covariance NMR—Covariance NMR was introduced as alternative to spectral 

analysis (e.g. FT) for identifying coherences in the indirect dimension of 2D NMR 

experiments.110 It has subsequently been expanded as a general approach for correlating any 

experiments that have certain symmetry properties.110 The method in its simplest form uses 

the fact that processing of 2D spectra involves FT of one dimension, which produces a set of 

1D datasets all in the frequency dimension along the first dimension but representing 

different time points along the second dimension. The modulation of each signal is 

dependent on its correlated partners. Instead of applying the FT along the second dimension, 

one can simply ask which frequencies are modulated in a correlated way. A correlation is 

then calculated for each pair of frequencies; this has the important property that, since the 

result is a matrix containing correlation information between every frequency pair, the 

indirect frequency dimension has the same digital resolution as the direct dimension, 

regardless of how many time increments were actually acquired along the indirect 

dimension. If the operation is, for example, performed on a singled 1D spectrum the result is 

a 2D spectrum with correlations between all frequencies that contain a signal. The number 

of samples acquired in the indirect dimensions does therefore not affect the apparent 

resolution of the spectrum, instead as additional samples are collected in the indirect 

dimension the intensity of the “false” correlations will be reduced in relation to those at 

“true” correlations. One of the interesting properties of this treatment of NMR data is that 

the data does not need to be uniformly sampled, and NUS data can be used. Indeed, the data 

may be modulated by any variable that affects correlations. Recent extensions to the original 

method enable application to heteronuclear correlations (and thus unsymmetrical spectra) 

through indirect covariance.111 This extension, however, requires the correlation of two (or 

more) two-dimensional spectra that have one dimension in common, e.g. a 1H-13C HSQC 

and a 1H-1H TOCSY. In this example one would be able to extract correlations describing all 

protons in each carbon spin system. This requires additional filtering and spectral 

manipulation as it is prone to false positives and requires the input spectra to match well (i.e. 
it assumes negligible chemical shift differences due to pulse sequence-dependent sample 

heating, etc.).111
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3. Non-JEENER Experimental Methods For Speeding up Data Acquisition

All the experimental methods for performing multidimensional experiments discussed thus 

far elicit coherences by parametric sampling of the indirect dimensions – repeating a one-

dimensional experiment while varying delays (the parameters) corresponding to the indirect 

dimensions – still adhering to the Jeener paradigm employed by conventional uniform-

sampling multidimensional FT methods, but using NUS for the parametric sampling of the 

indirect dimensions. These methods can all be applied to existing NMR pulse sequences 

with little or no change to the pulse program. However, alternative approaches to speeding 

up multidimensional NMR have also emerged that do not exploit NUS. Some fundamentally 

change the way coherences in dimensions beyond the acquisition are elicited. Most of these 

methods involve significant changes to pulse sequences or even to the spectrometer 

hardware. Some of the methods can be combined with the NUS methods described above to 

enable further increases in speed.

3.1. Hadamard spectroscopy

The idea of Hadamard spectroscopy112 is to use a set of frequency-selective pulses to excite 

only those parts of the frequency domain that contain signals of interest. In some sense this 

resembles the continuous-wave method used in early NMR spectrometers. In practice 

multiple discrete frequencies are irradiated in the same experiment and the frequencies are 

encoded by a Hadamard matrix in which the phase of the pulses is varied (not unlike the G-

matrix). In this manner each individual frequency is given a different phase. This spectrum 

will be highly distorted due to the variable pulse phases. However, if the procedure is 

repeated n times so that the phases of all individual frequencies are varied in such a way that 

each can uniquely be identified, the resulting n spectra can be combined to produce a 

conventional spectrum. The matrix is decoded using the Hadamard matrix (which contains 

the relevant information regarding the phase of each component in each experiment) to 

reveal individual frequency components.

3.2. Single scan NMR

Conventional multidimensional NMR experiments subject the entire sample to the same 

manipulations by RF or magnetic field gradient pulses. In single scan experiments, pulsed 

field gradients are used to physically divide the sample into spatially-distinct subsets that are 

subjected to different evolution times.113 Provided that there are sufficient spins in each 

subset of the sample to elicit a detectable response, this permits parametric sampling of one 

or more indirect dimensions in space, rather than time. In this way a complete 2D dataset 

can be acquired in a single scan. As spectrometers continue to improve in sensitivity, we 

anticipate that these methods will find increasing application.

3.3. SOFAST

Band-Selective Optimized Flip-Angle Short-Transient (SOFAST)114 experiments (later also 

referred to as BEST experiments115) speed data acquisition by reducing the relaxation delay 

required in most NMR experiments. The relaxation delay is used to restore the spin system 

to equilibrium prior to repeating the experiment (whether for collecting multiple transients, 

or during parametric sampling of an indirect dimension). The relaxation delay is often a 
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second or longer, and is thus the most time-consuming step in most multidimensional 

experiments. SOFAST exploits two concepts in reducing the relaxation delay. The first is the 

fact that the less the spins are perturbed the less time it will take for them to be restored to 

their equilibrium state. For a given relaxation delay, there is an optimal tip angle that will 

elicit the largest time-averaged signal-to-noise ratio; this angle is referred to as the Ernst 

angle.50 Second, if a source of non-perturbed 1H spins is present during the observation of 

(other) 1H spins, in large molecules (outside the extreme narrowing region) these will serve 

to efficiently relax the spins under observation due to cross-relaxation (NOE effect). This 

effect is more pronounced for larger proteins due to spin diffusion. For proteins the aliphatic 

protons can be used as the source of unperturbed spins by applying shaped pulses in the low-

field NH region. Combining these two principles, the SOFAST technique is able to reduce 

the relaxation delay by an order of magnitude, allowing more parametric sampling of the 

data in a given time. SOFAST and BEST approaches are compatible with NUS.29, 116

3.4. Conclusions & outlook

The confluence of improvements in magnets, probes, and computational power has 

contributed to an explosion of novel approaches for reducing the time required to obtain 

multidimensional NMR spectra through non-uniform sampling.

NUS provides a means by which the precious (and expensive) instrument time dedicated to 

acquiring multidimensional NMR spectra can be tailored for the sample conditions and the 

required information. In the sampling limited regime where high-sensitivity is available 

(high-sample concentration, cryogenic probe etc.) the spectroscopist can through NUS 

dramatically reduce the experiment time compared to achieving the same resolution using 

traditional sampling. Evidence from the literature shows that NUS can in extreme cases be 

used to acquire 4D spectra by sampling less than 1% of a time-domain, which would require 

months of acquisition time using traditional sampling93. In the sensitivity-limited regime 

where low SNR poses difficulties in uncovering important correlations (e.g. due to poor 

solubility of samples at high-concentrations) NUS can be used to improve the SNR per unit 

time compared to traditional sampling, instead of reducing experiment time.

Regardless of the sampling regime, the gains that can be achieved employing NUS are 

closely tied to the ability of the method of spectrum analysis employed to suppress sampling 

artifacts. It is therefore not surprising to find that researchers have intensely investigated a 

multitude of novel methods for processing NUS data. Each new method (over 10 in the past 

decade) introduces new terminology, concepts, and acronyms, which unfortunately has 

contributed to poor penetration of some of the new methods. The situation is exacerbated by 

the relative dearth of quantitative comparisons of competing methods, so it is the joint 

responsibility of spectroscopists and method developers to ensure that these methods are 

critically compared through application to real-world problems. Thus far, most of these 

methods have been applied mainly to highly sensitive experiments on protein samples with 

relatively high concentrations of 1–3 mM. Most proteins cannot be concentrated to 

anywhere near such levels, and the known favourable properties of ubiquitin hardly make 

this a challenging benchmark sample.
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If trends of the past decade hold, then the development of still more methods can be 

anticipated. To assess the utility of any new method for NMR data acquisition and 

processing two fundamental questions must be addressed: when does the method break 

down (i.e. due spectral crowding or low signal-to-noise ratio) and how does the method 

break down (i.e. what is the nature of any artifacts, and how accurate is the method in terms 

of false positives, false negatives, and amplitude and frequency?). While there have been 

some notable attempts to address these questions for the methods described here, there is 

still much to learn. The qualitative comparisons offered here serve as a prelude to more 

quantitative critical comparisons that remain sorely needed.
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Figure 1. 
Radial, Poisson gap, random, and exponentially biased sampling (envelope-matched 

sampling, EMS) schemes (left column) for 30% sampling coverage of the underlying 

Nyquist grid, and corresponding point spread functions (PSFs) for 30%, 10%, and 5% 

sampling coverage (left to right). The intensity scale for the PSFs is shown on the right. The 

central (zero frequency) component for random sampling is so sharp as to be barely visible. 

Adapted from Mobli et al.31.
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Figure 2. 
Two-dimensional cross-sections from a four-dimensional N,C-NOESY spectrum, obtained 

from (A) uniformly sampled hypercomplex (States-Haberkorn-Ruben) data, (B) real values 

only in the indirect dimensions, and (C) using random phase detection. One-dimensional 

cross-sections at the frequencies depicted by colored lines crossing the contour plots are 

depicted at the top. Reprinted with permission from Maciejewski et al. (2011).46
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Figure 3. 
A timeline showing the introduction of various NMR methods aimed at speeding up NMR 

data acquisition (below the horizontal line). Entries above the timeline refer to fundamental 

advances in NMR spectroscopy that indirectly impacted or enabled these methods.
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Figure 4. 
Relationships among different methods used for speeding up NMR data acquisition. 

Processing methods are categorised based on the type of data they are applicable to. The 

dotted line indicates that the methods appropriate for non-deterministic sampling are also 

applicable to the other types of sampling, whereas the converse is not true. Parametric 

methods are italicised and post-processing methods are underlined.
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Figure 5. 
Schematic depiction of RD, GFT and BPR. (A) The RD method gives rise to chemical shift 

multiplets, which are separated by the chemical shift of one nucleus (ω2) and centered at the 

chemical shift of the other nucleus (ω1). In GFT processing of RD data, the phases are 

manipulated (B) so that their combination results in “basic spectra” of reduced complexity 

(C–D). In projection spectroscopy the delays are scaled by a projection angle. The resulting 

spectra can be directly projected onto the higher dimensional plane, where an intersection in 

this higher dimensional spectrum reveals the true chemical shifts (X marks the spot).
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Figure 6. 
Sampling grid showing on- and off-grid sampling of the same number of points (circles). 

The off-grid samples are according to radial sampling and the on-grid samples are 

distributed randomly. The distances between the radial points are sufficient to reconstruct the 

same spectral window as the underlying grid (black dots) without aliasing.
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Figure 7. 
Comparison of spectra obtained with uniform sampling (A and B) and nonuniform sampling 

(C and D). In C the spectrum was computed using maximum entropy reconstruction, using 

the same number of samples employed in B. In D the spectrum was computed using nuDFT 

(FT in which samples not collected are set to zero). Reproduced from Hoch et al.49 with 

permission from the PCCP Owner Societies.
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Figure 8. 
Comparison of DFT, CLEAN, and CLEAN with SCRUB post-processing applied to NUS 

data. Reprinted with permission from Coggins et al. (2012).85
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Figure 9. 
Comparison of a spectrum obtained using uniform sampling and conventional DFT 

processing (left) with a spectrum obtained using the same number of samples in the indirect 

dimension (the same experiment time) using NUS and FM processing (right). Adapted from 

Fig. 1 of Hyberts et al. (2014)94. Reprinted with permission.
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Figure 10. 
Spectra computed from uniformly sampled data using IST (A) and MaxEnt (B). A single 

exponentially decaying sinusoid was added to the experimental time-domain data, with a 

frequency indicated by the red oval.
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Figure 11. 
IST spectral reconstruction from NUS data illustrating the non-Gaussian (spiky) noise 

distribution. Reprinted with permission from Fig. 3D in Stern et al.96.
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