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Individual-level trait diversity predicts phytoplankton
community properties better than species richness
or evenness
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Understanding how microbial diversity influences ecosystem properties is of paramount importance.
Cellular traits—which determine responses to the abiotic and biotic environment—may help us
rigorously link them. However, our capacity to measure traits in natural communities has thus far
been limited. Here we compared the predictive power of trait richness (trait space coverage),
evenness (regularity in trait distribution) and divergence (prevalence of extreme phenotypes) derived
from individual-based measurements with two species-level metrics (taxonomic richness and
evenness) when modelling the productivity of natural phytoplankton communities. Using phyto-
plankton data obtained from 28 lakes sampled at different spatial and temporal scales, we found that
the diversity in individual-level morphophysiological traits strongly improved our ability to predict
community resource-use and biomass yield. Trait evenness—the regularity in distribution of
individual cells/colonies within the trait space—was the strongest predictor, exhibiting a robust
negative relationship across scales. Our study suggests that quantifying individual microbial
phenotypes in trait space may help us understand how to link physiology to ecosystem-scale
processes. Elucidating the mechanisms scaling individual-level trait variation to microbial commu-
nity dynamics could there improve our ability to forecast changes in ecosystem properties across
environmental gradients.
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Introduction

Functional traits can help illuminate the relationship
between biodiversity and ecosystem processes (e.g.
Norberg et al., 2001; Norberg, 2004; Hillebrand and
Matthiessen, 2009; Reiss et al., 2009). Most research
in this area has thus far largely focused on taxonomic
or phylogenetic richness as measures of biodiversity
(see reviews by Cardinale et al., 2011; Krause et al.,
2014). However, the importance of relative species
densities for ecological processes has been neglected
(Mulder et al., 2004; Hillebrand et al., 2008; Zhang
et al., 2012), as well as the functional redundancy or
diversity of organisms (including intraspecific varia-
tion) that may partially decouple the number of

species from the functions supported by a commu-
nity (Chase and Leibold, 2003).

Traits, which are often analysed in terms of
species mean values, may be better defined as the
features of individual organisms’ phenotypes that
determine fitness and life history (McGill et al., 2006;
Violle et al., 2007). They influence ecological
interactions and dynamics (e.g. Bolnick et al., 2011;
de Bello et al., 2011; Violle et al., 2012) and have
important consequences for population demography
and ecosystem processes (Norberg, 2004; McGill
et al., 2006; Cadotte et al., 2011). Empirical evidence
for the importance of individual trait variation for
ecosystem properties is still lacking, despite the fact
that intraspecific trait variance contributes signifi-
cantly to plant community functional responses to
environmental change (Siefert and Ritchie, 2016;
Volf et al., 2016). The importance of intraspecific
variation for explaining community properties has
mostly been explored theoretically in ecology
(Bolnick et al., 2011; Albert et al., 2012; Violle
et al., 2012; De Laender et al., 2014; Barabás and

Correspondence: S Fontana, Biodiversity and Conservation Biol-
ogy, Swiss Federal Institute for Forest, Snow and Landscape
Research WSL, Zürcherstrasse 111, 8903 Birmensdorf,
Switzerland.
E-mail: simone.fontana@wsl.ch
Received 11 April 2017; revised 15 July 2017; accepted 21 August
2017; published online 3 October 2017

The ISME Journal (2018) 12, 356–366
© 2018 International Society for Microbial Ecology All rights reserved 1751-7362/18

www.nature.com/ismej

http://dx.doi.org/10.1038/ismej.2017.160
mailto:simone.fontana@wsl.ch
http://www.nature.com/ismej


D’Andrea, 2016; Hart et al., 2016). We expect that,
for example, changes in trait diversity (TD) should
reflect natural selection mechanisms, which affect
processes at all scales of community and ecosystem
organisation (Matthews et al., 2011). Additionally,
competition for resources, predation, environmental
change and rates of mutation and plasticity will all
affect individual phenotypes and consequently TD
within and between taxa, which will in turn
influence population demography, community
dynamics and ecosystem properties (Norberg et al.,
2001). The link between individual-level TD and
large-scale processes is underexplored in real com-
munities, particularly in microorganisms (Gsell
et al., 2013; Ackermann, 2015; Schreiber et al.,
2016).

Individual-level traits in microbial assemblages
have become easier to measure owing to recent
technological developments (Shade et al., 2009;
Pomati et al., 2011; Fontana et al., 2014; Krause
et al., 2014). Indices that quantify community TD
using individual-level data (thereby integrating inter-
and intraspecific trait variation) have also been
recently tested and developed (Fontana et al.,
2016). Hereafter, we refer to them as ‘individual-
level TD indices’ because, despite quantifying com-
munity properties, they are calculated using traits
measured on individual organisms. These indices
jointly describe the three independent components
of TD (richness, evenness and divergence, respec-
tively): the trait onion peeling (TOP; Fontana et al.,
2016) index is the sum of all successive convex
hulls’ areas touching the individuals of a community
in multidimensional trait space, the trait even
distribution (TED; Fontana et al., 2016) index is the
regularity in the distribution of individuals when
compared with a perfectly even reference distribu-
tion, and the functional dispersion index (FDis;
Laliberté and Legendre, 2010) is the mean distance
of individuals to the centroid of trait distribution.
The TOP index has been successfully applied to
high-throughput individual-level data to study the
role of phenotypic variation over time in the
adaptation of microbial populations to environmen-
tal perturbations (Krismer et al., 2017). It reflects
changes in the trait space coverage, which may
happen as a consequence of environmental filtering

both within and at the edges of trait distribution.
TED is related to the reciprocal distances between
neighbour individuals in the trait space and is likely
to reflect biotic interactions (Fontana et al., 2016).
FDis distinguishes communities where individuals
are closer to the centroid of the multidimensional
trait distribution from communities where extreme
phenotypes are found (Fontana et al., 2016).

In this study, we focus on natural phytoplankton
communities, whose diversity and dynamics are
tightly linked to large-scale biogeochemical pro-
cesses. These microorganisms form the basis of
aquatic food webs and are responsible for almost
50% of total global primary production (Field et al.,
1998). The TD metrics described above have allowed
us to explore the relative strength of individual-level
trait variation and taxonomic diversity metrics
(species richness and evenness), as predictors of
important ecosystem properties—phytoplankton
community biomass and resource-use efficiency.

We studied these ecosystem properties in 28 lakes
from two European regions (Switzerland and Danube
Delta, Romania), sampled at different temporal and
spatial scales (Supplementary Table S1). We related
these properties to the TD and taxonomic diversity
metrics, while accounting for variation in water
chemistry and physics. This heterogeneity across
sites allowed us to sample environmental responses
in terms of individual-level TD change or turnover of
species, and their effects on community properties.
We used microscopy for classification of algal
species and scanning flow cytometry (SFC) to
estimate total biovolume (hereafter biomass) and
morphological and physiological traits measured on
individual cells/colonies (Table 1, more details in
Supplementary Table S2). We tested all combina-
tions of species richness, evenness, TOP, TED and
FDis using linear mixed-effects model averaging to
quantify and compare their predictive ability on
biomass and resource-use efficiency, while control-
ling for environmental variables.

We expected that the inclusion of individual-level
TD would improve the variance explained by
statistical models predicting phytoplankton produc-
tivity. In our SFC data, we cannot distinguish
between inter- and intraspecific trait variation
because we are unable to classify cells into species

Table 1 Ecological relevance of the measured phytoplankton traits

Measure Ecological importance

Length of the particle Reproduction, resource acquisition, predator avoidance
Frontal shape of the particle Resource acquisition
Fluorescence of chlorophyll a Resource acquisition
Fluorescence of phycoerythrina Resource acquisition
Fluorescence of accessory and decaying pigments Resource acquisition
Evenness in the distribution of pigments within cell/colony Resource acquisition
Cell rugosity/internal structure/gas vesicles/thylacoids Resource acquisition, predator avoidance

List of the seven traits used for calculating trait diversity indices (Litchman and Klausmeier, 2008; Pomati et al., 2013).
aFor Lake Zurich data (only one laser), this measure is missing.
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groups. Therefore, our assessment of the importance
of intraspecific trait variation is only indirect: if
interspecific trait variation is more important in
influencing ecosystem properties, models including
TD indices (i.e. trait richness) should not improve on
those that incorporate species-level metrics (i.e.
species richness), which are expected to be good
proxies of TD in this case. However, if intraspecific
trait variation has an important role, standard
biodiversity metrics will be poorer predictors of
ecosystem properties than TD indices.

Materials and methods

Phytoplankton communities at three study sites
To test relationships between biodiversity indices
and ecosystem properties, we used monitoring data
from three different lake systems, covering a wide
range of temporal and spatial scales. Lake Greifen-
see, Lake Zurich and Danube Delta (with 26 lakes), in
this order, represent a gradient of increasing sam-
pling time span (3 months, 7 months, 2 years),
decreasing sampling frequency (weekly, monthly,
seasonally) and increasing spatial scale (6 depths
from 1 to 8.5m, 11 depths from 0 to 40m, 26 lakes in
a geographical region). All data sets include micro-
scopy data (phytoplankton classification, enumera-
tion and biomass calculation) obtained using the
Utermöhl method (Utermöhl, 1931), as well as
phytoplankton morphological and physiological
traits acquired by SFC, in addition to physical and
chemical water parameters. Supplementary Table S1
summarises the characteristics of the three lake
systems.

In lake Greifensee (Switzerland), monitoring data
were collected from a single location at the North
end of the lake by an automated system that
integrates physical, chemical (Idronaut, Brugherio,
Italy; http: //www.idronaut.it) and biological ana-
lyses (Pomati et al., 2011). From the 31st of July to
the 24th of October 2014, SFC measurements were
collected every 4 h from samples collected at six
different depths (1, 2.5, 4, 5.5, 7 and 8.5 m).
Additional chemical analyses and microscopy mea-
surements (to obtain species diversity metrics) were
performed on water samples collected manually at
the same location, depths and time (average time
interval between successive samples = 58.3 h, stan-
dard deviation = 67.7 h). Total phosphorus (TP) and
total nitrogen (TN) were measured using DIN
Standards (German Institute for Standardisation).
The sample size is 207 (36 time points x 6 depths,
with some missing data points due to technical
problems).

In lake Zurich (Switzerland), monitoring data were
collected from a single location in the centre of the
lake by the Zurich drinking water company (WVZ),
which also performed microscopy and chemical
analyses as described in Pomati et al. (2012). Water
was sampled at 11 different depths (0, 1, 2.5, 5, 7.5,

10, 12.5, 15, 20, 30 and 40m) from the 6th of May to
the 2nd of December 2009, with a time interval of
1 month. The same water samples were analysed
with SFC. The sample size is 82 (8 months x 11
depths, with some missing data points due to
technical problems).

Monitoring data were collected from 26 shallow
lakes of the Danube Delta (Romania). These lakes
form a complex system in a region of hundreds of
km2 (Supplementary Table S1). From a single
location in each lake, an integrated sample over the
water column was collected in spring, summer and
autumn of two following years (May, July and
September 2013; May, July and October 2014). The
same water samples were used for microscopy and
chemical analyses, as well as SFC measurements. TP
and TN were measured using standard colorimetric
methods (Tartari and Mosello, 1997). The sample
size is 136 (6 months x 26 lakes, with some missing
data points due to technical problems).

SFC measurements
The scanning flow cytometer Cytobuoy (Woerden,
The Netherlands; http: //www.cytobuoy.com) was
used for counting and characterising phytoplankton
single cells and colonies (e.g. Dubelaar et al., 2004;
Pomati et al., 2013; Fontana et al., 2014). The present
instrument contains two laser beams (coherent solid-
state sapphire, wavelengths 488 and 635 nm), but the
samples from lake Zurich were measured with a
previous version of the instrument containing only
one laser (wavelength 488 nm). Light, both from
forward scattering (FWS) and sideward scattering,
provides information on particle morphology. The
fluorescence emitted by photosynthetic pigments
was measured by three different detectors referred
to as red (668–734 nm range; FL.Red from the
488 nm laser and FL.2.Red from the 635 nm laser),
orange (601–668 nm range; FL.Orange) and yellow
(536–601 nm range; FL.Yellow). Cytobuoy measure-
ments provide time-resolved pulse signals, from
which many descriptors of morphology, internal
structure and fluorescence profile of each particle
were extracted. More details on the instrument can
be found elsewhere (Dubelaar et al., 2004; Pomati
et al., 2011, 2013; Fontana et al., 2014).

Individual-level TD indices
For all phytoplankton samples, we calculated the TD
indices describing the three components of TD
defined in Mason et al. (2005): richness, evenness
and divergence. We quantified these three TD
components using distinct indices: TOP, TED and
FDis, respectively (Laliberté and Legendre, 2010;
Fontana et al., 2016). These TD indices fulfil
theoretical requirements that make them suitable
for application to individual-based measurements,
when every organism constitutes a unique combina-
tion of traits and therefore influences the TD
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(Fontana et al., 2014). Thus, in the present study we
did not identify neither taxonomic nor functional
groups in the SFC data, and we calculated TD
metrics without classifying particles (single cells
represent the fundamental unit in this study). These
multivariate indices were calculated using seven
Cytobuoy-derived traits, selected on the basis of their
ecological and physiological relevance for phyto-
plankton (Table 1), and to avoid trait multicollinear-
ity: length (maximum value between length by
sideward scattering and length by FWS), average
FWS, average FL.Red, average FL2.Red, average FL.
Yellow, fill factor FL.Red, ratio between average
sideward scattering and average FWS. Owing to this
a priori selection of traits, there was no need for
dimensionality reduction. In all data sets the
absolute value of pairwise Pearson’s correlation
coefficients between the selected traits were below
0.7, which we chose as the maximal acceptable limit
to reduce collinearity issues (Dormann et al., 2013).
Before calculating TD indices, the selected traits
were standardised (mean =0; standard deviation =1)
so that each trait has equal weight (Petchey and
Gaston, 2006). This was necessary because the
selected traits have different units and vary in value
by orders of magnitude. Details about the interpreta-
tion of the selected traits and their ecological
relevance are reported in Supplementary Table S2.
These seven traits provide information on phyto-
plankton three-dimensional structure, fluorescence
properties, cell/colony size and distribution of
pigments and other structures within cells (Pomati
et al., 2013). Although they do not cover all relevant
dimensions of trait space in phytoplankton (e.g. life
history, nutrient uptake kinetics and mixotrophy),
these traits relate to photosynthesis, resource acqui-
sition (surface-to-volume ratio), reproduction and
predator avoidance (Litchman and Klausmeier,
2008; Pomati et al., 2013; Table 1).

Species-level biodiversity metrics
We calculated species richness (number of species)
and Pielou’s evenness using microscopic counts of
the phytoplankton community in each sample. Effort
was made to standardise the counting method and
taxonomic identification (at the species level) across
all data sets. The same sample preparation method
was used (Utermöhl, 1931) and taxonomists
exchanged knowledge and information. Pielou’s
evenness was calculated based on the biovolume of
each species present, derived by multiplying the
abundance data from microscopy by the best avail-
able estimate of species-specific biovolume.

Biomass calculation
Biomass was defined as the sum of the biovolumes of
all phytoplankton cells or colonies in the samples,
divided by the sample volume analysed. The
biovolume of each single particle was estimated

assuming an ellipsoid shape with the formula:
(Biovolume2 = 0.0017 ×FWS.Total−0.013) (Foladori
et al., 2008; Pomati and Nizzetto, 2013). It is
important to note that total FWS was derived by
SFC, but it is not one of the traits included in the
calculation of the TD indices (see above).

Model selection and averaging
We formulated linear mixed-effects models to
explain variation in ecosystem properties. We
included all possible combinations of five explana-
tory variables as fixed effects: species richness,
Pielou’s evenness and the three metrics of
individual-level TD (TOP, TED and FDis). TD
estimates are not independent from taxonomy-
based biodiversity measures. However, we found
these two groups of predictors to be only weakly
correlated (a maximum Pearson’s r of 0.50 across all
data sets, between TED and Pielou’s evenness in lake
Zurich). In addition, we accounted for temporal and
spatial autocorrelation in abiotic (physics and chem-
istry) and biotic environmental variables (e.g. grazers
and parasites). First, we included the date of
sampling as a fixed effect, with a quadratic term. In
the case of lake Greifensee (high temporal sampling
frequency), the exact time of sampling and the date
were combined in a single variable. Second, random
intercepts were also included in all models to
account for spatial ecosystem heterogeneity: depth
of sampling for lakes Greifensee and Zurich, and lake
identity for the shallow Danube Delta lakes. This
approach resulted in a list of 32 models for each data
set. The variance inflation factors of all variables of
interest were lower than 4 in all models, indicating
that multicollinearity was not a problem.

We calculated marginal R2 values (Nakagawa and
Schielzeth, 2013) to estimate the proportion of
variance explained by the fixed effects alone in each
model. Models with delta correction to the Akaike
information criterion o7 were defined as the
strongest set of models (Burnham and Anderson,
2002; Richards, 2005). These were subsequently
used for model averaging to minimise the depen-
dence of the regression coefficients on single models
and to assess overall predictive power. Model
selection and averaging were performed using the
MuMIn R-package (R Core Team, 2013).

Additional analyses
We also performed all the above analyses using
resource use efficiency (RUE, sensu Ptacnik et al.,
2008) as ecosystem property instead of biomass,
which allowed us to study the predictive power of
biodiversity metrics on the ability of a community to
take up limiting resources. We defined RUE as the
amount of standing phytoplankton biomass per unit
of limiting resource present (Ptacnik et al., 2008). We
used phytoplankton total biovolume (calculated with
SFC data) as a proxy for biomass and TP as the main
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limiting resource in temperate lakes (Ptacnik et al.,
2008), which in turn is a proxy for potential system
productivity. Therefore, RUE was calculated as
(biomass/TP).

Additionally, we ran a full set of analyses includ-
ing in all models the number of particles measured
by SFC as a fixed effect, to account for variation in
biomass or RUE caused by SFC sample size.

To examine the influence of phytoplankton limit-
ing resources on TED, we used high-resolution data
from lake Greifensee including photosynthetic active
radiation (PAR, from high-frequency profiles) and TP
(representing potential availability), the key limiting
factors for algal growth in freshwater environments
(Ptacnik et al., 2008). We performed a multiple linear
regression analysis (N=195) with PAR, TP (both log-
transformed) and their interaction as explanatory
variables, and TED as response variable.

Results

The best models retained for model averaging
explained more than 60% of the variance in phyto-
plankton biomass, with a large proportion contributed
by the biodiversity metrics (Figure 1, Table 2 and
Supplementary Tables S3–S5). Temporal structure in
the data contributed variable amounts depending
on the lake system (Table 2). Note that marginal R2

values represent the variance explained by the fixed
effects alone, and therefore do not include the
variance attributable to spatial autocorrelation (ran-
dom factor). Models containing individual-level TD
metrics improved predictions of microbial biomass
and RUE. Our results show a consistent negative
correlation between TED and community biomass
across data sets. The other components of TD
(richness and divergence), after correcting for the
number of cells/colonies, had a nonsignificant effect
on ecosystem properties (Supplementary Figures S2
and S3, and Supplementary Tables S10–S17), except
TOP in lake Greifensee where it had, however, a
weaker effect than TED (Supplementary Figures S2a
and S3a).

Species richness was not a significant predictor of
biomass. A positive relationship in the Danube Delta
lakes disappeared when the models accounted for
the number of individuals measured by SFC
(Supplementary Figure S2c and Supplementary
Tables S10 and S13), suggesting a sampling effect.

The different lake systems showed some idiosyn-
cratic patterns, but the main results were consistent.
In lake Greifensee, TED was the strongest predictor
of biomass, while TOP was the second (Table 2 and
Figure 1a). Species richness, Pielou’s evenness and
FDis were nonsignificant predictors of biomass
(Figure 1a). In Lake Zurich, Pielou’s evenness was
the strongest predictor of biomass, while TED was
the second (Table 2 and Figure 1b). Species richness,
TOP and FDis were nonsignificant predictors of
biomass (Figure 1b). In the Danube Delta lakes, TOP

was the strongest predictor of biomass, whereas TED
and species richness were the second and third,
respectively (Table 2 and Figure 1c). Pielou’s even-
ness and FDis were nonsignificant predictors of
biomass (Figure 1c).

Identical analyses using RUE instead of biomass as
the ecosystem property of interest yielded almost
identical patterns as those presented in Figure 1
(Supplementary Figure S1 and Supplementary
Table S6). Including in all models the number of
individuals measured by SFC as a fixed effect, to
correct for potential biases associated with the fact
that some biodiversity metrics, especially TOP
(Fontana et al., 2016), are increasing functions of
sampled abundance, also did not change the results
(Supplementary Figures S2 and S3 and Supple-
mentary Tables S10–S17). These additional steps
had the effect of reducing the predictive strength of
species richness and TOP, when analysing both
biomass and RUE in the Danube Delta lakes
(Supplementary Figures S2c and S3c). TED was,
however, the strongest predictor of ecosystem prop-
erties (Supplementary Figures S2 and S3) under all
analytical conditions.

A multiple linear regression to test the influence of
the main limiting resources on TED revealed a
negative, significant effect of PAR and TP (P=0.03
and Po0.001, respectively; R2 = 0.25). TED was
highest under limitation by both light and nutrients,
with a marginal effect (P=0.07) of their interaction
(Figure 2).

Discussion

This study demonstrates that individual-level trait
metrics may help link biodiversity in natural micro-
bial communities to essential ecosystem properties.
In particular, we found that TED (regularity in the
distribution of individual phenotypes in trait space)
was the most important predictor of community
productivity. Previous studies have explored the
correlation between TD measures and ecosystem
properties in macro- and microorganisms, but trait
evenness has rarely emerged as being important
(Tilman et al., 1997; Mouillot et al., 2011; Bílá et al.,
2014). Gagic et al. (2015) found contrasting effects of
trait evenness, whereas Santos et al. (2014) showed a
negative correlation between trait evenness and
phytoplankton productivity, consistent with our
results. These differences are probably due to the
fact that the tested relationships are dependent on
environmental heterogeneity (Norberg et al., 2001;
Hodapp et al., 2016). It has to be noted, however, that
the concept of trait evenness used in previous
studies is radically different from the one used here,
where regularities in trait distances among indivi-
duals represent the unit of measure. Previous studies
calculated TD using species-level data, disregarding
the individual-level trait differences that we find to
be the most important predictors.
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Individual-level trait evenness, as characterised by
TED, is also conceptually different from species
evenness, as, by measuring the distances of indivi-
dual organisms in multidimensional trait space, it
does not include any information about relative
abundances (Supplementary Figure S4; Fontana
et al., 2016). To understand the negative correlation
between TED and community biomass in our data, it

is necessary to refer to environmental effects on both,
although they cannot be fully disentangled given the
correlative nature of our analyses. Our interpretation
of the negative relationship between TED and total
biomass is that resource scarcity indirectly affected
both in opposite ways—decreasing total community
biomass and increasing TED (Figure 2). The pattern
that we observed may be explained by plasticity or

Figure 1 Effect sizes of biodiversity metrics on biomass. TED is the strongest predictor of biomass among the five biodiversity metrics.
Values are standardised model-averaged regression coefficients with 95% confidence intervals, derived from models accounting for
temporal and spatial heterogeneity.
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selection for particular phenotypic characters under
conditions of resource limitation. This may induce
individual microbes to be more evenly spaced in a
multidimensional landscape defined by their func-
tional traits (thereby minimising the overlap of
‘individual niches’). Our analyses confirmed that
low levels of both light and nutrients maximised
TED values in microbial communities (Figure 2).

We believe that resource limitation constrained
the total productivity of the phytoplankton commu-
nities in our study, inducing individual phenotypes
to spread more evenly along trait axes (to better
exploit available resources), leading to the negative
correlation between TED and community biomass.
This interpretation does not contradict the expected
outcomes of competition under resource limitation,
which leads to the dominance (at the population
level) of the species with the highest affinity for
resources (Tilman, 1982). Variation in TED signals
individual organisms converging around certain trait
combinations (low TED) or spreading more regularly
among trait space (Supplementary Figure S4); this
happens as a consequence of co-occurring physiolo-
gical and ecological processes. While both

acclimation and competitive dominance could
explain the above patterns, the fact that individual-
level TD dominates the predictive power of our
statistical models relative to species-based metrics
(considered here as proxies of trait change due to
taxa turnover) suggests that variation in TED may be
explainable mainly by physiological responses at the
single-cell level or genetic variation within species.

Light limitation can induce changes in the dis-
tribution of individual phytoplankton fluorescence
traits because both the absolute and relative intra-
cellular abundance of different pigments can be
regulated, thereby changing absorbance across the
light spectrum. This has been previously shown in
the cyanobacterium Tolypothrix tenuis, in which
algal cells regulated the relative amounts of different
pigments to fill gaps in the prevailing light spectrum
that were not already exploited by competitors
(Stomp et al., 2004). And in plant communities,
intraspecific trait variability is influenced by light
acquisition traits of neighbour individuals (Le
Bagousse-Pinguet et al., 2015). These studies showed
that a complementary effect caused by the differ-
ential use of light is not always a consequence of
increased taxa richness (as in Striebel et al., 2009a, b),
but is in principle possible at the intraspecific
level. Light represents a spectrum of wavelengths,
being a potentially infinite set of resources that can
be exploited by photosynthetic organisms able to
regulate pigment composition (Stomp et al., 2007a, b,
2008).

The relationship between TP and TED is more
difficult to interpret as many phytoplankton traits
might be involved in optimising phosphorus uptake
rate and use (Litchman and Klausmeier, 2008;
Table 1). In this context, cell size represents a key
trait, which reflects different nutrient acquisition
strategies by determining surface-to-volume ratio
(Litchman and Klausmeier, 2008). The fact that
patterns observed for RUE are very similar to those
of biomass (Supplementary Figure S1 and
Supplementary Tables S6–S9) suggests, however,
that the TP–TED relationship might be less impor-
tant than the PAR–TED relationship. If the relation-
ship between ecosystem properties and TED was

Table 2 Summary of the results with biomass as response variable

Greifensee (N=207) Lake Zurich (N=82) Danube delta lakes (N=136)

Number of models used for model averaging (out of 32) 8 8 4
Sum of weights 98.8% 99.5% 499.9%
Species richness estimate (95% CI) 0.008 (−0.033, 0.048) 0.004 (−0.097, 0.104) 0.345 (0.193, 0.497)
Pielou's evenness estimate (95% CI) 0.001 (−0.023, 0.024) −0.559 (−0.744, − 0.374) 0.006 (−0.068, 0.080)
TOP estimate (95% CI) 0.073 (0.029, 0.117) 0.070 (−0.131, 0.271) 0.556 (0.382, 0.730)
TED estimate (95% CI) −0.590 (−0.658, −0.521) −0.437 (−0.691, − 0.184) −0.430 (−0.581, −0.278)
FDis estimate (95% CI) −0.006 (−0.039, 0.027) 0.043 (−0.137, 0.223) −0.085 (−0.260, 0.091)
Mean R2 (null modela) 0.65 (0.02) 0.63 (0.24) 0.65 (0.17)

Abbreviations: CI, confidence interval; FDis, functional dispersion index; TED, trait even distribution; TOP, trait onion peeling.
The estimates of the five explanatory variables (with 95% CIs) represent standardised model-averaged regression coefficients. Values in bold are
significant at the Po0.05 level.
aAccounting for temporal and spatial heterogeneity.

Figure 2 Relationship between phytoplankton limiting resources
and TED. Individual-level trait evenness (TED) increases with
decrease in PAR and TP in lake Greifensee (N=195). The grey
surface represents the fitted linear model relating TED to log(PAR),
log(TP) and their interaction.
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driven by limiting TP, then it would have disap-
peared when biomass was corrected for TP (i.e.
considering RUE), which was not the case.

In our data, species richness, which represents the
most commonly used metric in studies correlating
biodiversity with ecosystem properties (Cardinale
et al., 2011), did not show a strong relationship with
biomass. Interestingly, species richness showed no
clear correlation with TD metrics across our data sets
(maximum absolute value of Pearson’s r was 0.40).
Our results seem to contradict previous studies (e.g.
Hector et al., 1999; Cardinale et al., 2011) and the
common assumption of a positive correlation
between species richness and primary production.
However, nonsignificant as well as negative correla-
tions have been already reported previously
(Cardinale et al., 2011). One possible reason for the
lack of importance of species richness in our study is
that we focused on natural communities shaped by
natural selection gradients, whereas studies correlat-
ing biodiversity with ecosystem properties typically
deal with communities assembled randomly from a
species pool (Hooper et al., 2005; Krause et al.,
2014). Natural communities are the result of assem-
bly processes over abiotic and biotic gradients and
their species composition reflects the adaptation to a
specific environment. In this context, phenotypic
composition might have a more important role
compared with the number of species present.
However, Ptacnik et al. (2008) found a significant
positive relationship between genus richness and
RUE in natural algal communities. These authors
investigated a very large spatial (almost continental)
and temporal scale (over several years), whereas our
largest scale is regional (Danube Delta) with a
generally shorter temporal frequency. This suggests
that the scale of analysis might also be important
when considering the relative importance of biodi-
versity metrics in explaining ecosystem processes
(Farnsworth, 1998; Cadotte et al., 2011;
Chalmandrier et al., 2017).

The importance of species evenness for ecosystem
properties has been intensively tested in the past few
years using experimental, observational and model-
ling approaches, with partially contradictory results
(positive effect of evenness through niche partition-
ing vs dominance of high productive species). Most
studies have focussed on grassland and forest
communities (e.g. Mulder et al., 2004; Zhang et al.,
2012; Orwin et al., 2014; Dooley et al., 2015), but
some microbial communities have also been inves-
tigated (Filstrup et al., 2014; Powell et al., 2015). In
this study, species evenness emerged as important
only in lake Zurich (Figure 1), where it was the
strongest predictor of biomass. This result likely
reflects the specific characteristics of this lake’s
phytoplankton community: in the past few decades,
the ecosystem has been dominated by a single
cyanobacterial species (Planktothrix rubescens) that
accounts for ~ 40% of the total annual phytoplankton
biomass (Posch et al., 2012). Variation in species

evenness is principally driven by growth of this
cyanobacterium, which causes fluctuations in com-
munity biomass (blooms). This is consistent with
patterns observed in many other lakes (Filstrup et al.,
2014).

Ecosystem processes depend upon guilds of inter-
acting organisms and their aggregated responses to
their immediate environment. Theoretically,
individual-level trait variation is important to main-
tain ecosystem processes only in a spatially or
temporally heterogeneous environment (under con-
stant environmental conditions the fittest phenotype
would eventually prevail) (Norberg et al., 2001;
Norberg, 2004; Hodapp et al., 2016). The importance
of individual-level TD in our analyses suggests that
(1) there is significant environmental heterogeneity
in the studied aquatic ecosystems, which may lead to
the emergence and maintenance of TD (Ackermann,
2015; Stark et al., 2017), and (2) this heterogeneity
(characterised by our TD indices) is important to
understand and predict ecosystem processes. As TD
can characterise phenotypic variation among indivi-
dual organisms, aggregating physiological (plastic)
responses of phenotypes, evolution of populations
and ecological turnover of species, it has been long
hypothesised to perform better than species-level
metrics in explaining ecosystem properties (Norberg
et al., 2001; Petchey and Gaston, 2006; Fontana et al.,
2014, 2016). Despite variation between systems,
including TD metrics in statistical or mechanistic
models explaining phytoplankton productivity may
allow us to improve our predictive power over a
range of environmental gradients. The relationship
between trait evenness and both environment and
ecosystem properties deserves further investigation,
both theoretical and empirical. Experimental work
can help disentangle the mechanisms (physiology/
evolution) that determine variation in the regularity
of algal phenotypes in trait space, its dependency on
environmental conditions and its importance for
ecological interactions.
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