Skip to main content
. 2017 Oct 3;12(2):356–366. doi: 10.1038/ismej.2017.160

Table 2. Summary of the results with biomass as response variable.

  Greifensee (N=207) Lake Zurich (N=82) Danube delta lakes (N=136)
Number of models used for model averaging (out of 32) 8 8 4
Sum of weights 98.8% 99.5% >99.9%
Species richness estimate (95% CI) 0.008 (−0.033, 0.048) 0.004 (−0.097, 0.104) 0.345 (0.193, 0.497)
Pielou's evenness estimate (95% CI) 0.001 (−0.023, 0.024) −0.559 (−0.744, −0.374) 0.006 (−0.068, 0.080)
TOP estimate (95% CI) 0.073 (0.029, 0.117) 0.070 (−0.131, 0.271) 0.556 (0.382, 0.730)
TED estimate (95% CI) 0.590 (−0.658, −0.521) 0.437 (−0.691, −0.184) 0.430 (−0.581, −0.278)
FDis estimate (95% CI) −0.006 (−0.039, 0.027) 0.043 (−0.137, 0.223) −0.085 (−0.260, 0.091)
Mean R2 (null modela) 0.65 (0.02) 0.63 (0.24) 0.65 (0.17)

Abbreviations: CI, confidence interval; FDis, functional dispersion index; TED, trait even distribution; TOP, trait onion peeling.

The estimates of the five explanatory variables (with 95% CIs) represent standardised model-averaged regression coefficients. Values in bold are significant at the P<0.05 level.

a

Accounting for temporal and spatial heterogeneity.