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Abstract

Latent variable mixture models (LVMMs) are models for multivariate observed data from a 

potentially heterogeneous population. The responses on the observed variables are thought to be 

driven by one or more latent continuous factors (e.g. severity of a disorder) and/or latent 

categorical variables (e.g., subtypes of a disorder). Decomposing the observed covariances in the 

data into the effects of categorical group membership and the effects of continuous trait 

differences is not trivial, and requires the consideration of a number of different aspects of 

LVMMs. The first part of this paper provides the theoretical background of LVMMs and 

emphasizes their exploratory character, outlines the general framework together with assumptions 

and necessary constraints, highlights the difference between models with and without covariates, 

and discusses the interrelation between the number of classes and the complexity of the within-

class model as well as the relevance of measurement invariance. The second part provides a 

growth mixture modeling example with simulated data and covers several practical issues when 

fitting LVMMs.

Introduction

Latent variable mixture models (LVMMs) combine latent class analysis models and factor 

models or more complex structural equation models (Muthén, 2001). LVMMs are most 

commonly used to investigate population heterogeneity, which refers to the presence of 

subgroups in the population. LVMMs can serve to analyse data from heterogeneous 

populations without knowing beforehand which individual belongs to which of the 

subgroups.

The simplest types of mixture models are latent class analysis (LCA) models. These models 

are designed for multiple observed variables (e.g., symptom endorsements, of questionnaire 

items), and have a single latent class variable that groups the individuals in a sample into a 

user-specified number of latent groups (Lazarsfeld & Henry, 1968; McCutcheon, 1987). 

LCA models do not have factors within class, and the covariances between the observed 

variables within class are constrained to zero1. This is a very stringent assumption. Suppose 

we have 5 observed items measuring some disorder. Not allowing these items to covary 
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within class means that there are no systematic severity differences between participants 

within a class in LCA models. The covariances between observed variables in the total 
sample only deviate from zero due to mean differences between the classes.

Factor models on the other hand are models for a single homogeneous population (i.e., no 

differences between subtypes), and observed variables in the sample are assumed to covary 

due to systematic differences along the underlying continuous latent factors (Bollen, 1989).

LVMMs can have one or more latent class variables, and permit the specification of factor 

models, growth models, or even more complex models within each class. If the within class 

model is a factor model, the resulting LVMM is often called factor mixture model. 

Covariances between observed variables in the total sample are attributed partially to mean 

differences between classes, and partially to continuous latent factors within each class. For 

example, consider data collected on several questionnaire items that measure anger. Suppose 

the population consists of two groups, a majority group of participants with very low levels 

of anger and a smaller group characterized by high scores on most of the items. The 

observed anger items in the total sample covary because of the mean differences between the 

two groups. In addition, the items can also covary if there are differences in the severity of 

anger within each group. These two sources of covariance are modeled in LVMMs by using 

latent categorical and latent continuous variables.

Latent class models are a special case of the LVMM where factor variances (or, alternatively, 

factor loadings) are zero. In the anger example this would mean that all participants within 

the low-scoring class do not differ in the severity of anger (i.e., zero anger factor variance 

within group). The same holds for the high scoring group: the assumption of the latent class 

model is no variability of anger within group because if there were systematic anger 

differences within class then the items would in fact covary. The observed covariances 

between the anger items in this model are modeled to be entirely due to mean differences 

between the groups. Factor models for a homogeneous population are also a special case: 

they are LVMMs with a single latent class. In the anger example this would boil down to 

neglecting the presence of two subgroups, and attributing all covariances to one underlying 

anger factor within a single homogenous population.

The LVMM framework is extremely flexible, and permits the specification of different types 

of mixture models. Models such as path models, factor models, survival models, growth 

curve models, and more general structural equation models can all be specified for multiple 

subgroups instead of for a single homogeneous population (see for instance Arminger et al. 

1999; Dolan & vd Maas, 1998; Jedidi et al., 1997; Muthén & Shedden, 1999; Muthén & 

Muthén, 2000; Ram & Grimm, 2009; Varriale & Vermunt, 2012; Vermunt 2008; Yung, 

1997). The flexibility comes at a price. The framework is built on a set of assumptions that 

should be realistic for the data. Further, in order to estimate a model, all relations between 

observed variables, between observed variables and latent variables, and between latent 

variables have to be specified. It is therefore necessary to decide whether within-class model 

parameters are class specific, or are the same for all classes (i.e., class invariant). As will be 

discussed in this paper, the interpretation of the model depends on these decisions. It is 

important to note that different within-class parameterization can influence how many 

Lubke and Luningham Page 2

Behav Res Ther. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classes best fit the data (Lubke & Neale, 2008). However, comparing a set of carefully 

parameterized mixture models can provide great insight into the processes and interrelations 

between variables when the assumption of population homogeneity is unrealistic.

The paper is organized into two main parts. The first part provides the theoretical 

background. After discussing the generally exploratory character of mixture analyses, the 

modeling framework is presented together with some of the necessary assumptions and 

constraints. The first part concludes with the discussion of issues that deserve consideration 

prior to fitting models to data, such as the interrelation between number of classes and 

within-class model complexity, measurement invariance, and models with and without 

covariates. The second part consists of a growth mixture analysis with covariates, and 

illustrates some of the practical issues discussed in the first part of the paper.

Part I: Exploration of Heterogeneity using Mixture Models

Latent variable mixture models (LVMMs) afford the possibility to detect groups of subjects 

in a sample, and to investigate the differences between the groups. LVMMs differ from other 

techniques to detect groups in data, such as taxometrics and cluster analysis, in that they 

require the user to specify all relations between observed and latent variables in the model 

(Meehl, 1995; Lubke & Miller, 2014). LVMMs are therefore prone to misspecifications. 

However, if there is sufficient a priori knowledge to specify these relations, then LVMMs 

usually have more power to detect groups in the data (Lubke & Tueller, 2010).

LVMMs differ from multi-group models in that it is not necessary to know which subject 

belongs to which group. Group membership is unobserved, or latent. Mixture models are 

therefore especially useful if the causes of the grouping are not known a priori. The grouping 

variable is formalized as a latent categorical variable, and the groups are called latent 

classes. In a cross-sectional setting, classes can consist of subjects with class-specific 

response profiles (e.g., high scores on some questionnaire items but low on others, or high 

on all), and in a longitudinal setting classes are characterized by class-specific trajectories 

over time (e.g., an increasing risk trajectory and a low constant trajectory).

If the process that causes the grouping is not well understood, then it is unlikely that the 

exact number of latent classes or the within-class structure are known. Mixture analyses are 

therefore often rather exploratory in character. Typically, a set of models with an increasing 

number of latent classes and different within-class structures is fitted to the data (e.g., more 

vs. less constrained models, see part 2, applied example). Model selection is based on 

measures such as the Bayesian Information Criterion (BIC) or the bootstrapped likelihood 

ratio test (Schwarz, 1978; McLachlan & Peel, 2000). Of course there is nothing wrong with 

exploratory analyses, quite the contrary. One can learn a lot from investigating 

heterogeneity, and such an analysis can be much more insightful about the structure in the 

data than incorrectly assuming that the data were sampled from a single homogeneous 

population. However, the exploratory character of a mixture analysis needs to be taken into 

account when best-fitting models are interpreted, and results need to be validated before 

specific conceptual conclusions concerning the class structure and within-class parameters 

can be drawn.
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The Modeling Framework

This section provides a brief overview of the key aspects of the LVMM framework so that 

the practical challenges in an empirical mixture analysis, as illustrated in part 2 of the paper, 

can be fully appreciated.

Within the LVMM framework the population can consist of k=1, …, K latent classes. If 

K=1, then there is only a single class (i.e. a single homogeneous population). The K=1 case 

therefore includes factor models, structural equation models, and growth models for a single 

homogeneous population. In case K>1, then a model needs to be specified for each of the 

classes. These within-class models are estimated jointly using a mixture distribution. A 

mixture distribution is a weighted sum of K component distributions, and is denoted as

Eq(1)

where Y is a vector of observed random variables,  is a weight that quantifies the relative 

size of the kth component, and  is a vector of model parameters for the kth component (see 

McLachlan & Peel, 2000, for more detail on mixture distributions). The most common 

choice for the component distributions is the multivariate normal distribution, although 

other distributions such as the Poisson distribution can be chosen to accommodate non-

normal observed data (e.g., counts of cigarettes, etc.). In case each set of observed variables 

within class,  is multivariate normally distributed, we have , where 

the parameter vector contains the parameters that structure the component specific means, 

 and covariance matrices, 

Eq(2)

Eq(3)

where  are the intercepts,  is the factor loading matrix, I is an identity matrix of 

appropriate dimensions,  contains regression coefficients of the regressions between 

factors,  are the factor means, the factor covariance matrix, and the covariance 

matrix of residuals. Basically, a full structural equation model can be specified within class, 

that is, Eq(2) and Eq(3) are the standard equations for structural equation models, and the 

reader is referred to textbooks such as Bollen (1989) for more detail on possible submodels.

At least some of these parameters can be constrained to be equal across classes. Parameter 

constraints and their interpretation are discussed later.

Mixture models with different numbers of classes cannot be compared with standard 

likelihood ratio tests since the test statistic does not have a known distribution (McLachlan 
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& Peel, 2000). Models have to be compared using information criteria such as the Bayesian 

Information Criterion (BIC) or bootstrapped likelihood ratio tests (Schwarz, 1978; 

McLachlan & Peel, 2000; Nylund et al., 2007).

Assumptions, necessary constraints, and sets of random starts

The LVMM framework inherits some of the assumptions of LCA models and structural 

equation models.

As in LCA, one assumes that each mixture component corresponds to a group or cluster of 

subjects. This is called the direct interpretation of mixture distributions (Titterington et al. 

1985). However, it is important to realize that mixture distributions are not only useful to 

model clustered data, they can also be used to approximate distributions with an unknown 

functional form. For instance, skewed distributions can be approximated by a mixture of 

normal component distributions (Pearson, 1894, 1895). Of course, observing skewed data 

does not mean that there are necessarily distinct groups of subjects in the thin tail of the 

distribution. This is called the indirect interpretation of mixtures because the components do 

not necessarily correspond to meaningful clusters of subjects in the data (Titterington et al. 

1985). Deciding whether the latent classes of a selected model represent meaningful groups 

of subjects is an important task of the researcher. Inclusion of covariates (e.g., age, sex, etc.), 

and class-predicted outcomes (e.g., adverse or beneficial outcomes such as dropout or 

improved health) can support the interpretation of the classes in terms of distinct groups. 

These and other means of validation are discussed in the section on validation methods.

As in structural equation modeling, the estimation of LVMMs is based on the assumption 

that the observed variables, Y, are linearly related to the factors. In addition, suitable 

distributions have to be chosen for the factors and the measurement errors, most commonly 

the multivariate normal distribution. Categorical observed data can be modeled either using a 

threshold model that treats Y as an unobserved continuous response variable that is 

partitioned into response categories using thresholds, or by replacing the linear regressions 

of observed variables on the factors by logistic or multinomial regression (Agresti, 2002; 

Muthén & Asparouhov, 2002). As mentioned above, other distributions for the observed 

variables can also be chosen (e.g., Poisson distribution for count data such as numbers of 

cigarettes per time interval).

Several constraints are necessary to identify the model. First, the weights, or proportions, of 

the component distributions have to sum to one to ensure the mixture distribution is a 

probability distribution, . Second, the latent factors within each class need to be 

scaled, that is, the mean and variance of each factor have to be identified. The constraints to 

identify the class-specific factor means are the same as in multi-group analysis, and most 

commonly consist of fixing one factor mean to zero, and estimating factor mean differences 

in the other classes (Sorbom, 1974). Constraints regarding the factor variance are the same 

as in confirmatory factor analysis, and consist of either fixing the variance to one, or fixing 

the factor loading of one of the items on the factor to one. In mixture analyses, that last 

option is preferable since it is often unrealistic that the factor variance is the same across 

classes. For instance, if a set of depression symptoms is observed in a sample from the 
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general population, the majority class will likely answer zero on most symptoms and the 

depression factor variance in that class will be close to zero. Conversely, the depression 

factor variance can be much larger in the affected group. Hence specifying equality of factor 

variance across classes may reflect an incorrect assumption about the data. Minimal 

constraints necessary to fit a model with categorical outcomes are discussed in detail in 

Millsap & Tein (2004).

When fitting mixture models it is necessary to use different sets of random starting values. If 

multiple sets of starting values lead to the same best fitting model the likelihood is said to 

have been replicated. However, replicating the likelihood is not sufficient to ensure a proper 

solution has been found. The number of random starts depends on model complexity and the 

quality of the data, and should be increased if the likelihood has not been replicated.

The number of classes and within class model complexity

The goals of fitting mixture models to empirical behavioral data are most commonly to 

establish the number classes and their relative size, and to evaluate the difference between 

the classes with respect to the means, variances, and other model parameters of interest. The 

following three paragraphs cover three issues that are important when designing an analysis 

that consists of comparing models with an increasing number of classes. These relate to the 

fact that the number of classes of the best-fitting models is affected by (1) the 

interdependence of the number of classes and the leniency of the within class model, (2) the 

statistical power to detect classes, and (3) the measurement properties of the items.

Interdependence of the number of classes and within class parameterization

Models with very constrained within-class parameterizations are likely to require more 

classes to fit the data than models that are more lenient within class (Lubke & Neale, 2006, 

2008). Model leniency (or, reversely, model complexity) refers to the number of freely 

estimated parameters within class. An example of a constrained model is a latent class 

model, which constrains the within-class covariances between observed variables to zero. 

When fitting latent class models, the observed covariances in the total sample are attributed 

entirely to mean differences between the classes. If there are in fact considerable covariances 

within class in the data (e.g., there are severity differences within class), then these 

covariances will result in the need of additional classes to fit the data. This is called 

“overextraction of classes” because it would be more appropriate to fit models with fewer 

classes that permit observed variables to covary within class.

In factor and structural equation mixture models, observed variables are not modeled to be 

independent within class. Permitting within-class covariation takes care of part of the total 

observed covariances in the total sample, and as a result a smaller number of classes might 

suffice to explain the observed covariances in the total sample.

Another example of the interrelation between within-class complexity and number of classes 

concerns factor variances within class, for instance the variance of growth factors in a 

growth mixture model. Constraining the factor variances to be equal across classes might 

necessitate additional classes compared to models with class-specific factor variances. The 
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reason is again that part of the overall variance is not adequately accounted for by the 

within-class parameters. For instance, a majority class that stays at low levels of substance 

use over time might have very little variance in intercept and slope whereas subjects in a risk 

group might vary considerably. Constraining factor variances to be equal would lead to 

models with additional risk classes to capture the larger variance in the risk group. When 

exploring heterogeneity it is therefore useful to compare models with different levels of 

complexity within class as well as models with an increasing number of classes.

The trade-off between the number of classes and the within-class model complexity directly 

affects the results of model comparisons, because adding a class with only a few class-

specific parameters can result in a more parsimonious model than estimating many class-

specific parameters in a model with one class less. Model comparisons are evaluated with 

criteria that stress parsimony. Criteria such as the BIC are not infallible, however. Models 

with more classes and fewer class-specific parameters often have a quite different conceptual 

interpretation compared to models with fewer classes and more class specific parameters. 

Therefore the interpretation of model comparisons has to be cast in the context of this trade-

off. This issue plays an especially important role when analyzing ordered categorical data, 

and when investigating measurement invariance (see next two paragraphs, and next section).

Power to detect classes

The power to detect classes depends to a large extent on the distance between the classes and 

on the sample size, especially the size of the smaller classes. This has been shown for 

relatively simple mixture models with simulated data (Lubke & Muthén, 2007; Tueller & 

Lubke, 2010). Low power due to smaller class separation can be compensated by a larger 

sample size. Mild misspecifications such as omitting cross-loadings do not seem to have a 

dramatic effect on the power to detect the true number of classes. When fitting more 

complex models it is important to realize that adding a class can require the estimation of a 

substantially larger number of parameters. Fit indices such as the BIC have a penalty for the 

number of parameters, and decisions based on the BIC might incorrectly be in favor of a 

model with fewer classes, especially when sample size is small. This issue is also relevant 

when analyzing ordinal items with class-specific thresholds, and measurement non-invariant 

models (see below). The sample size needed to detect classes in any given analysis depends 

on the characteristics of the data and the sample. Therefore, unfortunately, there is no good 

rule of thumb regarding sample size that is valid for different types of mixture analyses.

A small parametric bootstrap study can help to provide insight into the power to distinguish 

between alternative models (Muthén & Muthén, 2002). The recommendation to assess 

power is the same as in any non-mixture analysis, and it should therefore be regarded as an 

integral part of the analysis. It consists of four steps, namely (1) fitting a model of interest to 

the empirical data, (2) saving the parameter estimates, (3) generating multiple simulation 

data sets using the saved model parameters, and (4) fitting the alternative models to each set 

of simulated data to obtain the proportion of simulations that correctly select the true data-

generating model. This can be repeated for multiple models of interest, and can aid the 

interpretation of the empirical results in the context of power. Bootstrap options are 

conveniently integrated in modeling software such as Mplus (Muthén & Muthén, 1998–
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2012). Note however that in an empirical analysis the processes that lead to the observed 

data are often much more complex than the fitted models, and the power to discriminate 

between a set of fitted models that do not include the true data-generating model may be 

underestimated in such bootstrap simulations (Lubke et al., 2016).

Measurement properties of the observed items

The measurement properties of the observed items can have a substantial effect on whether 

or not a model with a correct number of classes is accepted as a best-fitting model in a 

model comparison (Lubke & Miller, 2014). Location, scale, and response format of the 

items need to be considered preferably prior to an analysis.

The item means of the observed variables (or location parameters in case of binary or 

ordinal items) should cover the whole range of the construct that is driving the classification. 

For instance, if the goal of an analysis is to detect different classes of a personality disorder, 

then the items need to cover the full range of the severity of the disorder. Limiting the set of 

observed items to those at the high end of the range will not permit distinguishing between 

groups of individuals at the lower end of the range (Lubke & Miller, 2014; Lubke & Spies, 

2008). Item means are a function of the item’s content; for instance, a question regarding the 

frequency of suicidal thought will discriminate mainly at the higher end of depression, and 

does not help to distinguish between unaffected individuals since these will most likely all 

answer zero. Therefore the item content of the observed items should be evaluated prior to 

an analysis to ensure that the items included in the analysis differ gradually with respect to 

the probability of being endorsed.

Simulation studies also suggest that the response format of the items has an impact on the 

number of classes in the best-fitting model (Lubke & Neale, 2008). Compared to normally 

distributed outcomes, analyses done with binary items show a decrease in power to detect 

classes. Using Likert items with multiple response categories can lead to accepting models 

with too few classes in case class-specific thresholds are estimated. In that case adding an 

additional class results in estimating a substantial number of additional parameters, which 

can lead to a higher BIC than a model with one class less. Although in practice the selection 

of items might be limited because a standard questionnaire is used, it is necessary to 

consider the potential impact of item format and item content when designing the analysis as 

well as when contextualizing the results.

Relevance of measurement invariance

Measurement invariance (MI) refers to the equality across groups of the parameters of the 

measurement model that relates observed variables to underlying latent variables 

(Mellenbergh, 1989; Meredith, 1993). The definition of MI is

Eq(4)

where Y is again a vector of observed random variables, η is a vector of latent variables, and 

s is a grouping variable. In case of mixture modeling the grouping variable, s, is latent. The 
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definition in Eq(4) means that the distribution of observed variables conditional on the latent 

variables η equals the distribution of observed variables conditional on η and the grouping 

variable. In other words, the grouping does not affect the measurement model that relates the 

observed variables Y to the latent variables η. Simply put, in case MI holds, the 

measurement model is the same in all groups. A common misunderstanding is that testing 

equality of the variance of the latent variables η is part of an investigation of MI. This is not 

the case since MI involves the distribution of observed variables conditional on η.

More specifically, in case Y is related to η in a factor model, then the parameters of the 

intercepts, loadings, and residual variances have to be the same across the groups. Since the 

definition in Eq(4) concerns the distribution of Y conditional on latent variables η the 

distribution of the latent variables η may differ across groups. MI can be established by 

comparing a set of models with different invariance constraints. In case of normally 

distributed outcomes within group, the set consists of (1) a model that does not constrain 

intercepts, loadings, and residual variances to be equal across groups but has factor means 

set to zero in all groups, (2) the same model but now with class-invariant loadings, (3) a 

model with class-invariant loadings and intercepts, and estimated factor means in k−1 of K 
groups, and (4) a full measurement invariant model which adds equal residual variances to 

model (3). The four models are fitted and compared using appropriate fit indices. With 

ordered categorical data, threshold and loading invariance is tested jointly (Muthén & 

Asparouhov, 2002; Millsap & Tein, 2004). A model with class-invariant loadings and 

thresholds and class-specific factor means and covariances is compared to a model with 

class-specific loadings and thresholds and zero factor means.

If model (4) fits the data well, one can conclude that the data do not provide evidence 

against MI. MI implies that the factors are measured in the same way in all groups, so the 

groups can be compared with respect to the factor means and factor covariances. Since the 

interpretation of latent variables hinges on how they are measured by the observed items, MI 

supports the same interpretation of the factors in all groups. If MI does not hold up in a 

model comparison, then the interpretation is more cumbersome because apparently the 

factors have a somewhat different interpretation across groups. In that case groups can only 

be compared with respect to the observed items. Models with class-specific factor loadings 

and/or intercepts imply that the factor structure differs across classes, and classes therefore 

differ qualitatively.

Investigating MI is a bit more complicated in mixture analyses than in multi-group analyses 

because groups are unobserved (i.e., the grouping variable s is latent). Testing MI in mixture 

models involves in principle the comparison of models (1)-(4). The main difference is that 

all models have to be compared for different numbers of classes. As a result, there are a 

number of potential complications.

First, as explained above, constraints on within-class parameters can often necessitate 

additional classes to account for the observed variability in the total sample. In the context of 

MI, this means that MI constraints can result in models with more classes. For example, a 4-

class measurement invariant model might have a similar fit to a 2-class model without MI. 
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This is the reason why models with different MI constraints have to be compared with 

different numbers of classes.

Second, also mentioned above, in the case of ordered categorical outcomes (e.g., 5-point 

Likert items) an additional class with class-specific thresholds and loadings implies a quite 

large increase in the number of estimated parameters. Simulation studies have shown that the 

BIC can incorrectly favor MI models with an additional class over a much less parsimonious 

non-MI model with fewer classes (Lubke & Neale, 2008). The trade-off between adding a 

class and adding additional within-class parameters is not always easy to solve, and several 

alternative fitted models can have a similar BIC. In such a case validation can provide useful 

information to support model selection.

To summarize, the conceptual interpretation of non-MI models is different from that of MI-

models because, in case MI holds, classes can be compared quantitatively with respect to the 

factors. When MI does not hold, classes should be compared with respect to the response 

profiles of the observed variables or other class-specific parameters of the distribution of Y. 

When fitting mixture models one has to carefully choose which parameters are constrained 

to be class-specific, and which are class-invariant, rather than relying on defaults in model 

fitting software. Choosing a set of alternative models for a model comparison and other 

practical issues are discussed in more detail in the next section.

Models with and without covariates

There is now a considerable body of literature concerning whether or not to include 

covariates when deciding on the number of classes (Asparouhov & Muthen, 2014; Kim, 

Vermunt, Bakk, Jaki, & Van Horn, 2016; Li & Hser, 2011; Nylund-Gibson & Masyn, 2016; 

Vermunt, 2010). Results of simulation studies seem to converge to the conclusion that is not 

necessary to include covariates to detect the correct number of classes. Nevertheless, 

parameters of models with and without covariates (including class proportions) can differ 

dramatically, thus leading to quite different conceptual interpretations. This occurs if 

covariates have direct effects on the observed variables within class over and above the 

effect that is mediated by class membership. The situation is similar to a scenario where a 

variable X (e.g., gender) has effects on two other variables (e.g., anger and depression). In 

that case the effect size of the association between anger and depression would depend on 

whether or not effects of gender on depression and anger are included in the analysis. In the 

context of mixture models, if covariates have an effect on the class variable and on observed 

variables within class, then the unconditional model (i.e., the model without the covariates) 

can have different class proportions compared to the conditional model (i.e., the model with 

covariates). This is due to the fact that the regression of the observed Y variables on the class 

variable C depends on whether or not covariates are included: the covariates partially 

“explain” the association between the Y and the class variable C. Stated otherwise, the 

grouping of subjects into classes depends on whether or not information contained in 

covariates is included in the analysis. Likewise, the conceptual interpretation of a conditional 

model is different from the interpretation of the unconditional model.
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It is for the researcher to decide which model more appropriately reflects the research 

question at hand. As the example above illustrates, fitting a model with covariates addresses 

a different research question than a model without covariates. The question is whether a 

clustering of subjects is sought conditional on covariates (e.g., conditional on sex), or not.

From a statistical perspective, deciding on the number of classes can be done without 

covariates, and covariate effects can also be tested post-hoc, after a mixture model has been 

fitted to the data. For instance, in a mixture analysis of anger, one can test post-hoc whether 

the prevalence of males in a high scoring class is higher than the prevalence of females. 

Different ways to conduct such tests in a 3-step procedure are described in detail in 

(Asparouhov & Muthen, 2014; Masyn, 2016; Vermunt, 2010).

Model selection uncertainty

It is a very common strategy to fit additional models based on results of the previously fitted 

models. This clearly illustrates the exploratory character of mixture modeling. Even if the 

majority of the fitted models are planned, it is possible that additional models adapt more 

and more to sample-specific idiosyncrasies. Importantly, due to sampling fluctuation, this 

increases the uncertainty that the same model would be selected in a new sample.

Model selection uncertainty refers to the probability that different models would be selected 

as the “best-fitting model” in different samples from the same population. Especially in 

mixture analyses, model selection uncertainty can be substantial, and it is advisable not to 

treat the best-fitting model as if it were the only possible model for the data. Furthermore, it 

is important to realize that the p-values for parameter estimates in modeling software output 

do not take this uncertainty into account, and therefore do not reflect a 0.05 Type I error 

(Hurvich & Tsai, 1990; Lubke & Campbell, 2016). In fact, Type I error can be grossly 

inflated when model comparisons and tests of parameter significance are conducted in the 

same data. It is therefore advisable to split the sample into an exploratory and confirmatory 

subsample, and fit all models in the exploratory set. The selected model or models can then 

be fitted to the confirmatory subsample to obtain parameter estimates and their significance. 

If the original sample size is too small to split, it is preferable to limit the number of planned 

models. In that case the study needs to be reported as an exploratory analysis, and parameter 

significance cannot be considered.

In sum, it is good to plan the analysis beforehand, design the planned models according to 

pre-existing knowledge and the research questions at hand, and include models in the 

analysis plan that can refute hypotheses about the structure in the data. Most importantly, 

one should stick to the analysis plan without adding additional models that are based on 

intermediate results to avoid capitalization on chance.

Practical issues to consider before fitting mixture models

Exploratory data analysis prior to fitting models

Given the interdependence of the number of classes needed to fit the data and the within-

class model constraints, it is advisable to gain as much information as possible about the 
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data before specifying and fitting models. Exploratory data analysis (Behrens, 1997; Tukey, 

1977) is a very important step before conducting a quality mixture analysis. The sample data 

should be split into an exploratory and a confirmatory set such that all exploration and initial 

model fitting can be done in the exploratory set. The confirmatory set serves to fit the final 

models. Data splitting avoids compromising Type I error when assessing parameter 

significance in the selected final models (see also section on Validation). Summary statistics 

of the items, bivariate and trivariate plots, and other exploratory tools can all help to inform 

the subsequent model specifications. Although mixture distributions are not necessarily bi- 

or multimodal (McLachlan & Peel, 2000), it is useful to examine the observed item 

distributions for skewness, kurtosis, outliers, and in case of ordinal outcomes, a 

preponderance of zero’s. A thorough data exploration provides an indispensable basis to 

understand the results of the comparison of a set of mixture models. It provides the basis to 

contextualize and interpret model-fitting results, and can also greatly facilitate the 

understanding of problems such as non-convergence of fitted models.

Designing increasingly lenient models

Similar to forward and backward stepwise approaches in regression, model comparisons can 

be done by starting with the most constrained model or by starting with the most lenient 

model. When comparing mixture models it is more practical to start with constrained models 

because estimation is much faster and the risk of non-convergence is usually smaller. A 

possible strategy is to first fit latent class models that constrain the within-class covariance 

matrix to be diagonal in accordance with the assumption of local independence (i.e., zero 

covariance within class). Comparing latent class models with an increasing number of 

classes will provide an approximate upper bound for the required number of classes. 

Gradually permitting more complexity within class such as including factors within class 

will usually result in the need for fewer classes. For instance, when fitting growth mixture 

models one can start with fixed effects models where the growth factors have zero variance 

and all within class variability is considered to be error (Nagin, 1999). Next, models with 

intercept random effects can be fitted, followed by models with both intercept and slope 

variance. This approach is illustrated for longitudinal data in Muthén & Muthén (2000).

A strategy of fitting gradually more lenient models also reveals at which point the specified 

models overfit the data, which can lead to large standard errors for some parameter 

estimates, improbable parameter estimates, or non-convergence. Although non-convergence 

can have different causes, knowing which additional estimated parameters resulted in non-

convergence can often substantially narrow the potential sources of the problem. Non-

converged models should always be reported along with the converged ones. For instance, 

non-convergence of models with class-specific loadings is not necessarily due to overfitting 

but might be due to insufficient sample size. When accepting a more constrained, converged 

model, the interpretation of the model comparison needs to take this possibility into account.

Before fitting a set of alternative models, it is necessary to consider which parameters need 

to be specified as class specific or class invariant in each of the models. As mentioned above, 

the substantial interpretation of a model hinges on which parameters are specified to be class 
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specific or class invariant. Therefore, all a priori knowledge about the structure in the data 

should be translated into an appropriate parameterization of the within class models.

Empirical underidentification

Careful consideration of the within-class parameterization is especially important when the 

expected size of one or more classes is small, because insufficient within class sample size 

can lead to empirical underidentification. This refers to a situation in which the fitted model 

is identified, but the sample data do not support the estimation of all model parameters. A 

classic example is a 2-factor model with two observed indicators for each of the factors. 

Although the model is identified, it is possible that in a given sample the correlation between 

the factors approaches zero. Fitting the 2-factor model to these data really means that two 

separate single factor models are estimated simultaneously. However, since single factor 

models with two indicators are not identified, this will result in problems. Empirical 

underidentification is not uncommon when the size of one or more classes is small relative 

to the number of class specific parameters. Constraints such as fixing loadings to be class 

invariant can help to stabilize the model estimation. Since different constraints affect model 

interpretation, the chosen constraints need to be explicitly reported.

Missing Data

Assumptions concerning missingness and appropriate ways of estimating models in the light 

of missingness are similar to non-mixture analysis. Specific to mixtures is the consideration 

whether missingness is expected to be the same across classes. This issue has been 

investigated in the context of growth mixture modeling where attrition over time a 

commonly observed pattern (Lu et al., 2011).

Validation of best-fitting model(s)

The validation of best fitting models can take different forms, and can include (1) 

comparison to previous results, (2) including additional variables in the analysis, and (3) 

validation in new data.

When comparing results of a model comparison to the results of previous studies, it is 

necessary to consider potential differences between the populations from which the samples 

were drawn, differences in sample size, and differences in the measurement instrument (if 

any). To illustrate the effect of differences between populations, consider measuring a 

psychiatric disorder in a general population sample vs. a clinical sample. Class solutions will 

not be easily comparable because the unaffected major cluster in the general population is 

missing in the clinical sample. Differences in sample size can affect the number of classes 

between the studies due to differences in power. Different measurement instruments can be 

differentially sensitive to detection of classes in the higher or lower ranges of the construct 

on which the sample is clustered (see paragraph on measurement properties). However, 

when differences between studies are appropriately taken into account, a comparison to 

previous results can be a very useful contribution to the validation of results.

Inclusion of covariates and class-predicted outcomes can validate the interpretation of the 

latent classes if expectations considering the impact of the covariates or class predicted 
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outcomes are formulated a priori. For instance, high school dropout can be an expected 

outcome of a smaller risk trajectory class but might not be expected for the majority class in 

a growth mixture analysis. Validating the class solution with secondary variables such as 

covariates and class predicted outcomes can help characterize the classes in more detail and 

can support a direct interpretation of the latent classes (see previous paragraph on 

covariates).

Validation in a new sample is usually the strongest type of validation. Having access to an 

additional sample from the same population provides the means to compare the class 

structure and the model parameter estimates. Obviously, collecting an additional sample 

might not be feasible due to monetary or other constraints. However, in light of increasing 

collaborations between research groups and efforts to make data publicly available, this type 

of validation will hopefully become more frequent. Splitting the available sample into an 

exploratory and a confirmatory set is a viable option with a sufficient sample size. Model 

selection can then be done in the exploratory set. The advantage of sample splitting is that 

fitting the selected model to the confirmatory set can be also be used for statistical testing of 

parameter significance. It avoids the inflated Type I errors that occur when carrying out 

model selection and statistical testing of parameters in a single sample (Lubke & Campbell, 

2016; Lubke et al., 2016). Grimm et al. (2016) propose to use k-fold cross validation which 

also leads to correct Type-I error in the selected model. However, splitting the total sample 

into for instance 5 folds severely decreases the power to detect classes. Therefore this option 

is especially useful when a very large sample is available.

Summary of necessary steps

The following list summarizes the issues covered in Part I, and can be used as a guideline.

1. exploratory analysis (preferably in a partition of the data that is not used for 

significance testing): this includes considering which distribution to use for the 

observed data (counts, or normally distributed, or categorical?), assessing 

response probabilities on the observed items (especially for likert-type items), 

checking item correlations, selecting observed items for the analysis, fitting 

initial single class and mixture models to assess the need for multiple classes.

2. prepare and stick to an analysis plan: based on the exploratory analysis, design 

models that are likely supported by the data and that represent the research 

question(s) at hand. Then carry out the analysis plan. Any additional models that 

are fitted based on results of the planned models are post-hoc analyses, and 

should be reported as such. Note that the exploratory part usually takes 

considerably longer than designing and carrying out the main analysis!

3. report and interpret the results: most commonly the resolution in the data limit 

the complexity of the mixture models that can be fitted to the data. Non-

convergence is therefor not uncommon for the more complex models. This 

should be reported, and included in the discussion. It is also important to 

consider that in a new sample results might look different. This so-called 
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sampling fluctuation is especially important to recognize in mixture modeling 

(for an example see Lubke & Campbell, 2016).

Part II: Illustration of growth mixture modeling using simulated data

This illustration concerns a longitudinal analysis using growth mixture models, and assumes 

the reader is familiar with linear and quadratic growth curve models for a single 

homogeneous population. For this illustration data were generated for an intermediate 

sample size (N = 1200) with 5 measurement occasions.

The data

The data file contains N = 1200 for a single outcome variable observed at 5 equally spaced 

time points. At each time point the observed variable is a categorical item scored 0, 1, or 2, 

which could for instance indicate alcohol consumption (0=never, 1=1–2 glasses per week, 

2=more than 2 glasses per week). The data-generating model is a 2-class quadratic growth 

mixture model with 3 covariates predicting class membership. The 3 covariates were 

generated as binary variables, representing for example gender or minority ethnic group 

membership, and have differential effects predicting class membership as well as the random 

intercept in each class (i.e., class –specific covariate effects). Individuals scoring a 1 on the 

first covariate are more likely to be in class 1, whereas individuals who score a 1 on the 

second and third covariates are less likely to be in class 1. The covariates have a larger 

impact on the intercept factor in class 1. The data-generating model specifies expected class 

proportions of about 75% and 25%. Class 1 is the majority class, which starts at a low level 

and remains basically flat during the interval of the study due to a small positive linear slope 

and a small negative quadratic slope. Class 2 is the smaller class, which starts at a bit higher 

level and increases initially before declining again, with a large positive linear slope and 

moderate negative quadratic slope. This scenario could represent data concerning alcohol 

problems or substance use during adolescence, where a majority of the sample does not 

display these behaviors at any given time. However, there is a smaller risk group 

characterized by a quadratic average trajectory over the course of the study.

Research Questions

The three main goals of the mixture analysis are to explore (1) whether there are multiple 

subgroups in the population that differ with respect to their developmental trajectories, (2) 

whether it is worthwhile to allow for random effects within each group or whether variability 

around an average class trajectory is largely measurement error, and (3) whether the 

inclusion of covariates changes interpretation of the structure in the data.

Analysis plan

The crucial first step of the analysis is to randomly split the data into an exploratory set and 

confirmatory set before any data exploration takes place. For this analysis, the two sets will 

be of equal size, with N=600 each. Prior to fitting models, exploratory data analysis (EDA) 

is conducted in the exploratory set to observe response frequencies of the categorical 

dependent variables, the average response trajectory over time, and the frequencies of 

covariate responses.
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To address the research questions, a set of increasingly complex models is designed, and 

then fitted to the exploratory part of the data. This forms the basis to select the most 

appropriate model or models, which are then fitted in the confirmatory data part in order to 

get parameter estimates with correct standard errors (Hurvich & Tsai, 1990; Lubke & 

Campbell, 2016). It is possible that at some level of complexity models become unstable, for 

instance, variance parameters can have large standard errors, or models do not converge. 

This can occur for different reasons, including that the model is overfitting the data (i.e., the 

model is more complex than the growth process in the population), or that the data do not 

provide sufficient resolution to estimate the parameters (e.g., small sample size, categorical 

data, missing data, etc.).

It is common practice to fit models without covariates first to establish the number of classes 

(Asparouhov & Muthen, 2014; Masyn, 2016). In this analysis we fit the same models with 

class membership predicted by the covariates to illustrate how inclusion of covariates can 

change class sizes and therefore interpretation of results. We also fit a set of models that 

include class-specific covariate effects on the latent intercept factor in addition to covariate 

prediction of class membership. Model comparison will only be carried out on these models 

fitted to the exploratory set of the data. A very small subset of the best-fitting models from 

the exploration (1–3 models) is fitted in the confirmatory set for model inference and 

interpretation.

Models without covariates—Models without covariates are unconditional models (i.e., 

they are estimated without conditioning on covariates). The following models without 

covariates will be fitted:

Models 1–4: quadratic growth mixture model with 2, 3, 4, and 5 classes, respectively; 

no variances or covariances for the growth factors.

Models 5–7: quadratic growth mixture model with 2, 3, and 4 classes; random 

intercept factor within class.

Models 8–10: quadratic growth mixture model with 2, 3, and 4 classes; random 

intercept and linear slope factors within class, and intercept-slope covariance.

Models 11–12: quadratic growth mixture model with 2, and 3 classes; random 

intercept, linear slope, and quadratic slope factors, and their covariances, within class.

Note that the number of classes decreases as the model parameterizations become more 

complex. As explained previously, it is expected that fewer classes are needed to explain to 

the total covariance in the data as within-class models increase in complexity.

Models with covariates—To determine if covariates impact model selection and/or class 

membership estimates, the following models with covariates (i.e., conditional models) will 

be fitted:

Conditional models 1–12: as in models 1–12 without covariates, with class 

membership predicted by the covariates.
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Conditional models 13–15: quadratic growth mixture models with 2, 3, and 4 classes; 

class membership predicted by the covariates and class-specific covariate effects on 

the intercept factor; no linear or quadratic slope variances (only the residual variance 

of the intercept regressed on the covariates estimated).

Conditional models 16–18: as in models 13–15, but with random linear slope factor 

and intercept-slope factor covariance.

Conditional models 19–20: as in models 16–17 (2 and 3 classes only), but with 

random linear and quadratic slopes and growth factor covariances.

The conditional models 13–20 with the additional effect of the covariates on the intercept 

factor could represent a case where the covariate value is expected to impact class 

membership as well as the baseline level in each class. In the example of adolescent 

substance use, a researcher may expect that gender could significantly differentiate the 

classes, and within each class, males may have a higher baseline level than females.

Model fitting

Models were fitted using Mplus 7.4 (Muthén & Muthén, 1998–2015). Models were initially 

fitted with 500 initial random starts and the best 50 carried out to the default convergence. If 

the best log-likelihood value was not replicated, the random starts were increased to 2000 

with the best 200 iterated to convergence, respectively. The relative fits of the models were 

compared using BIC, and models were also checked for proper convergence. We do not 

advise using the Lo-Mendell-Rubin test since it has been criticized to rely on incorrect 

assumptions (Jeffries, 2003). The bootstrapped likelihood ratio test might also not be an 

ideal choice since classes resulting from fitting say Model A do not contain exactly the same 

subjects (i.e., the same grouping) ad those resulting from fitting Model B. Likelihood ratio 

testing, however, relies on identical groups when comparing multi-group (or multiclass) 

models. Of course no index for model comparisons is flawless, and BIC for instance only 

selects the correct model asymptotically (i.e. when sample size approaches infinity). Models 

were deemed properly converged if estimation converged properly, parameters estimates 

were acceptable (e.g., no variance estimates were negative), and standard errors were 

reasonably small.

Results

Exploratory Data Analysis

Descriptive statistics of the observed variables and covariates in the exploratory data are 

presented in Table 1. The responses are seen to have a preponderance of zeros, although 

responses on ‘1’ and ‘2’ tend to increase from time 1 to time 5. The covariates have 0/1 

response proportions of 48/52%, 64/36%, and 68/32%. Plotting the mean responses at each 

time point reveals what appears to be a quadratic trajectory. However, due to the zero-

inflated responses, we would not expect all individuals to experience initial growth, thus 

informing our choice to fit quadratic growth mixture models.
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Models without covariates

The fit statistics for the 12 models without covariates are presented in Table 2. Though AIC 

and sample-size adjusted BIC are also presented, the model comparison is based on BIC as 

the fit criteria of choice. The three best-fitting unconditional models are models 5, 6 and 8. 

Model 5 is the two-class model with random intercepts, model 6 is the three-class model 

with random intercepts, and model 8 is the two-class model with random intercepts and 

linear slopes. Overall, model 5 fits the best, with models 6 and 8 having nearly identical 

BICs. The pattern of models indicate that model fit greatly improves when random 

intercepts are introduced, but then gets worse as random linear and quadratic slopes are 

introduced, and as more classes are estimated with these random slopes.

Additionally, model 7 (four-class model with random intercepts) and model 11 (two classes 

with random intercepts, linear slopes, and quadratic slopes) do not converge due to a non-

positive definite Fisher Information matrix. Therefore, fit statistics are not obtained. Models 

10 and 12 report fit statistics, but register an error with the first-order derivative product 

matrix. This error can be due to starting values, scaling issues such as inflated thresholds, or 

unidentified models. This error also registers the parameter at the source of the problem. In 

this case, random slopes are the problem parameters for both models 10 and 12, indicating 

that slope variance cannot be reliably estimated in these data.

Models with covariates

Next, the models conditional on the covariates were fitted in the exploratory data. The fit 

statistics and model summaries for these 20 models are presented in Table 3. The best-fitting 

model according to BIC in these conditional models is model 13, which is the two-class 

model with class membership predicted by the covariates and within-class effects of the 

covariates on the intercept factor. As this is a regression of the intercept factor on the 

covariates, a residual variance for the intercept is estimated. The second-best-fitting model is 

model 16, which is the same as model 13 but with random linear slopes. Models 12 and 20, 

the 3-class models including variances and covariances for all growth factors, had a non-

positive definite Fisher Information matrix, giving an indication that random effects for all 

of the growth factors in 3 classes may be overfitting the data. Models 18 and 19 have non-

positive derivative matrices, and identify random slopes as the problem parameter. Random 

linear slopes in 4 classes (model 18) and random quadratic slopes (model 19) also appear to 

overfit these data.

Additionally, several models registered an error with the first-order derivative product 

matrix. Models 5, 6, 9, and 11 identified the regression of a covariate on the class variable as 

a potential source of the problem. Further inspection revealed that these estimates were quite 

inflated, with logistic regression coefficients in the range of 12–14 (these were generated 

around values of 1 and 2). These estimates correspond to improbable odds ratios of class 

membership. Models 13–17, however, account for the additional class-specific effects of the 

covariates on the intercept term, and these models generally display better fit to the data. The 

unaccounted conditional effects of the covariates on the intercept could potentially inflate 

the prediction of class membership and therefore contribute to the problems in models 5, 6, 

9, and 11.
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Choosing confirmatory models

The fit criteria of the conditional and unconditional models cannot be compared directly 

because they use different data, but the choice between the two modeling approaches for 

making inference is very important. For example, observing the estimated class probabilities 

of the unconditional model 5 and the conditional model 13 (for comparison, not for 

parameter inference), it is seen that the unconditional model 5 estimated class proportions 

are roughly 52% for class 1 and 48% for class 2, whereas the conditional model 13 has 

estimated class proportions of 76% and 24%, respectively. The unconditional model 5 is 

characterized by a slightly larger class that starts at a low level, declines with a negative 

linear slope, and accelerates in its decline due to a negative quadratic slope. The slightly 

smaller has the quadratic growth trajectory that was observed in the exploratory data 

analysis. Both classes have very large intercept factor variances. Conditional model 13 

contains a majority class with a low initial level, small positive linear slope and small 

negative quadratic slope. The much smaller class in conditional model 13 starts a bit higher, 

and has a larger positive linear slope and larger negative quadratic slope compared to the 

majority class.

In the exploratory model comparison, the two-class models with random intercepts were 

generally the best-fitting types of models, with random linear slopes being potentially 

important for the data. In the conditional modeling, it appeared that adding the covariates 

predicting both class membership and the within-class intercept factor stabilized the models, 

as models 13, 14, and 16 fit better than any models without the conditional intercepts. 

Additionally, a work-around for comparing the conditional and unconditional models is 

including the covariates in the unconditional models with coefficients fixed at zero; this 

resulted in a BIC of 4022.13 for model 5, compared to the BIC of 3614.37 and 3636.26 for 

the conditional models 13 and 16, respectively. Therefore, it was decided to fit models 13 

and 16 in the confirmatory data.

Confirmatory models

Models 13 and 16 with covariates included were fitted in the confirmatory data. Model 13 

(BIC = 3535.49, AIC = 3447.55) demonstrated better fit to the data than model 16 (BIC = 

3558.13, AIC = 3452.60), although their parameter estimates were generally fairly similar. 

The only difference between model 13 and model 16 is the inclusion of within-class linear 

slope variances and intercept-slope covariances. These estimates are not significant in model 

16, which is not unexpected given that model 13 displays better fit.

Model 13 estimated a majority class of 72.5% and smaller class of 27.5%, and model 16 

estimated a similar 73/27% split. Selected parameter estimates from each model are 

presented in Table 4. Both models estimate a majority class that starts at low levels and has a 

significant but small linear increase, followed by a decline towards the initial level due to the 

negative quadratic slope. The baseline level, or intercept factor, varies significantly 

depending on X1 and X3, but not X2. The smaller class starts a bit higher and is 

characterized by a much more pronounced quadratic curve, with a larger positive linear 

slope and a negative quadratic slope. The intercept factor is significantly predicted by all 3 

covariates in this class. Membership in class 1 is negatively predicted by X2 and X3.
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Drawing inference on these final models, it appears these data are composed of 2 latent 

classes, a majority class of about 72.5% and smaller class of 27.5%. The average trajectories 

of the two classes, computed from class probabilities and class-specific parameter estimates, 

are presented in Figure 1. The majority class stays within a very small range over time, on 

average, even though the slope factor means are significantly different from zero. For a study 

of adolescent alcohol use, this class represents the majority who remain at relatively lows 

levels of consumption throughout adolescence. Within this class, those who score a 1 on X1 

and X3 (say, males and adolescents who started drinking before the study) would have a 

higher baseline level of drinking over time compared to, say, females and adolescents who 

did not drink at a young age. However, early-onset drinkers remain less likely to be in this 

class, which is why the average trajectory remains lower than class 2.

Class 2, the smaller class, starts a bit higher and experiences much more increase over the 

course of the study. This class represents a smaller group of adolescents at risk for higher 

levels of substance use, with a large up-tick in use in early adolescence, followed by a 

deceleration and slight decline. However, these adolescents remain at relatively high risk 

over the 5 measurement occasions of this hypothetical study. In class 2, the baseline level is 

also higher for males and early drinkers, but it is significantly reduced for those with X2 

(e.g., adolescents in a minority ethnic group). Within each class, the average linear and 

quadratic slopes best describe the change process over time, as seen by the best model fixing 

the slope variances to zero.

Part II Summary

The overall results address the main research questions highlighted at the outset of the data 

analysis. There are two subgroups in the population that have meaningfully different 

trajectories. The intercept factor, or baseline level, varies across individuals, but fixing the 

linear and quadratic slopes is adequate for these data. Including the covariates in the mixture 

model drastically changes the interpretation of the data structure. Similar conditional and 

unconditional models differed in the estimated class proportions and the trajectories of the 

classes. Furthermore, the covariates explained some of the variability in the intercept factors 

within each class. Including the covariates was crucial in this analysis.

Part II of this paper demonstrated how to systematically fit GMMs, taking into account the 

theoretical and practical issues discussed in part I. First, research questions were specified 

and an analysis plan was created to answer these questions. We followed the analysis plan, 

detailed the exploratory nature of our model comparisons in the data, and justified choices 

for subsequent steps of model fitting. We randomly split our data into exploratory and 

confirmatory subsets, which allows researchers to make inferences after exploratory model 

comparisons with controlled type I errors and valid standard errors for parameter estimates 

(Lubke & Campbell, 2016; Lubke et al., 2016). Following this procedure led to best-fitting 

models that were indeed congruent with the data-generating model.
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Conclusion

The mixture modeling framework is largely an exploratory device. A number of assumptions 

and constraints are necessary to fit mixture models to data. These assumptions need to be 

realistic for a given data set, and should correspond to existing knowledge about the data. 

Apart from assumptions that are inherited from structural equation modeling (e.g. 

distributional assumptions, linear relations), the assumption that each mixture component 

corresponds to a meaningful group in the sample (i.e., the direct interpretation of mixtures) 

needs to be considered when interpreting results of an analysis.

A mixture modeling analysis usually consists of comparing models with an increasing 

number of classes and different within-class parameterizations. Importantly, each model 

consists of a system of equations relating the observed variables to continuous and 

categorical latent variables and their interrelations, thus representing a combined hypothesis 

that is evaluated by fitting the model to the data. Comparing multiple models therefore 

equates to comparing numerous alternative combined hypotheses. Fitting a sequence of 

models in which each additional model depends on the result of the previous models is not 

advisable because it is likely that the models can adapt more and more to sample specific 

aspects, thereby reducing the likelihood of replicating the results in a new sample. To avoid 

this potential capitalization on chance, it is good practice to split the sample into an 

exploratory and confirmatory part, and design an analysis plan before fitting models to the 

data. Clarity regarding the number of fitted models and the model-fitting strategy is essential 

when reporting results of a mixture analysis. Non-converged (but potentially more 

interesting) models should also be reported such that the reader can evaluate the results of 

the full set of models that were fitted to the data.

Due to the potential that a different model can get selected in a different sample from the 

same population (i.e., model selection uncertainty), it is also good practice to avoid focusing 

on a single best-fitting model (Lubke & Campbell, 2016, Lubke et al., 2016). As illustrated 

in Part 2, considering a small number of best-fitting models can be highly informative.

In sum, LVMMs are a complex and sophisticated device to investigate population 

heterogeneity. They require careful consideration of the within-class parameterization, and 

should include some form of validation. Though LVMMs are complex tools that can at times 

be tedious to fit, carefully evaluating a set of LVMMs can provide much more insight into 

the structure of the data than models that ignore potential population heterogeneity.
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Figure 1. 
Model-implied trajectories from fitting conditional model 13 in the confirmatory data. The 

red line represents class 1 and the blue line represents class 2. The dotted lines capture 

variability in the intercept factor due to the covariates, and are the expected trajectories at the 

extreme values of all covariates (i.e., all zeros or all ones on the three covariates).

Lubke and Luningham Page 25

Behav Res Ther. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lubke and Luningham Page 26

Ta
b

le
 1

Su
m

m
ar

y 
st

at
is

tic
s 

fo
r 

si
m

ul
at

ed
 d

at
a 

ca
te

go
ri

ca
l d

at
a.

R
es

po
ns

e
T

1
T

2
T

3
T

4
T

5
X

1
X

2
X

3

0
0.

77
2

0.
64

0
0.

58
0

0.
58

3
0.

65
5

0.
47

8
0.

63
7

0.
68

2

1
0.

14
0

0.
22

0
0.

22
0

0.
23

0
0.

15
8

0.
52

2
0.

36
3

0.
31

8

2
0.

08
8

0.
14

0
0.

20
0

0.
19

0
0.

18
7

N
A

N
A

N
A

T
1–

T
5 

in
di

ca
te

s 
th

e 
5 

lo
ng

itu
di

na
l t

im
e 

po
in

ts
; X

1–
X

3 
in

di
ca

te
s 

th
e 

3 
bi

na
ry

 p
re

di
ct

or
 v

ar
ia

bl
es

.

Behav Res Ther. Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lubke and Luningham Page 27

Ta
b

le
 2

M
od

el
 s

um
m

ar
y 

an
d 

fi
t s

ta
tis

tic
s 

fo
r 

un
co

nd
iti

on
al

 m
od

el
s 

(n
ot

 in
cl

ud
in

g 
co

va
ri

at
es

) 
in

 th
e 

ex
pl

or
at

or
y 

da
ta

. I
ta

lic
iz

ed
 f

it 
st

at
is

tic
s 

in
di

ca
te

 m
od

el
s 

th
at

 

ob
ta

in
ed

 in
fo

rm
at

io
n 

cr
ite

ri
a,

 b
ut

 m
ay

 h
av

e 
un

tr
us

tw
or

th
y 

st
an

da
rd

 e
rr

or
s 

du
e 

to
 n

on
-p

os
iti

ve
 d

ef
in

ite
 1

st
-o

rd
er

 p
ro

du
ct

 d
er

iv
at

iv
e 

m
at

ri
x.

 T
he

 p
ro

bl
em

 

pa
ra

m
et

er
 is

 in
di

ca
te

d.
 B

la
nk

 e
nt

ri
es

 in
di

ca
te

 m
od

el
s 

w
ith

 n
on

-p
os

iti
ve

 d
ef

in
ite

 F
is

he
r 

In
fo

rm
at

io
n 

m
at

ri
x,

 f
or

 w
hi

ch
 in

fo
rm

at
io

n 
cr

ite
ri

a 
ca

nn
ot

 b
e 

co
m

pu
te

d.
 T

he
 th

re
e 

be
st

 B
IC

 v
al

ue
s 

ar
e 

bo
ld

ed
.

M
od

el
n 

cl
as

s
n 

pa
ra

m
.

L
og

−l
ik

el
ih

oo
d

A
IC

B
IC

aB
IC

F
is

he
r 

In
fo

. E
rr

or
?

1s
t-

or
de

r 
D

er
iv

. E
rr

or
? 

(B
ad

 p
ar

am
.)

m
1 

(u
nc

on
di

tio
na

l)
2

9
−

20
82

.1
6

41
82

.3
3

42
21

.9
0

41
93

.3
3

N
o

N
o

m
2 

(u
nc

on
di

tio
na

l)
3

13
−

19
98

.7
3

40
23

.4
5

40
80

.6
1

40
39

.3
4

N
o

N
o

m
3 

(u
nc

on
di

tio
na

l)
4

17
−

19
75

.3
4

39
84

.6
8

40
59

.4
3

40
05

.4
6

N
o

N
o

m
4 

(u
nc

on
di

tio
na

l)
5

21
−

19
66

.5
8

39
75

.1
7

40
67

.4
9

40
00

.8
3

N
o

N
o

m
5 

(u
nc

on
di

tio
na

l)
2

11
−

19
72

.5
4

39
67

.0
8

40
15

.4
5

39
80

.5
2

N
o

N
o

m
6 

(u
nc

on
di

tio
na

l)
3

16
−

19
63

.9
8

39
59

.9
5

40
30

.3
0

39
79

.5
1

N
o

N
o

m
7 

(u
nc

on
di

tio
na

l)
4

21
Y

es

m
8 

(u
nc

on
di

tio
na

l)
2

15
−

19
67

.7
5

39
65

.5
40

31
.4

5
39

83
.8

3
N

o
N

o

m
9 

(u
nc

on
di

tio
na

l)
3

22
−

19
63

.0
2

39
70

.0
3

40
66

.7
6

39
96

.9
2

N
o

N
o

m
10

 (
un

co
nd

iti
on

al
)

4
29

−1
96

0.
47

39
78

.9
5

41
06

.4
6

40
14

.3
9

N
o

Y
es

 (
sl

op
e 

va
ri

an
ce

)

m
11

 (
un

co
nd

iti
on

al
)

2
Y

es

m
12

 (
un

co
nd

iti
on

al
)

3
31

−1
95

9.
74

39
81

.4
7

41
17

.7
8

40
19

.3
6

N
o

Y
es

 (
qu

ad
ra

tic
 v

ar
ia

nc
e)

N
ot

e.
 p

ar
am

. =
 p

ar
am

et
er

; A
IC

 =
 A

ka
ik

e 
in

fo
rm

at
io

n 
cr

ite
ri

on
; B

IC
 =

 B
ay

es
ia

n 
in

fo
rm

at
io

n 
cr

ite
ri

on
; a

B
IC

 =
 s

am
pl

e-
si

ze
 a

dj
us

te
d 

B
IC

.

Behav Res Ther. Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lubke and Luningham Page 28

Ta
b

le
 3

M
od

el
 s

um
m

ar
y 

an
d 

fi
t s

ta
tis

tic
s 

fo
r 

co
nd

iti
on

al
 m

od
el

s 
(i

nc
lu

di
ng

 c
ov

ar
ia

te
s)

 in
 th

e 
ex

pl
or

at
or

y 
da

ta
. I

ta
lic

iz
ed

 f
it 

st
at

is
tic

s 
in

di
ca

te
 m

od
el

s 
th

at
 o

bt
ai

ne
d 

in
fo

rm
at

io
n 

cr
ite

ri
a,

 b
ut

 m
ay

 h
av

e 
un

tr
us

tw
or

th
y 

st
an

da
rd

 e
rr

or
s 

du
e 

to
 n

on
-p

os
iti

ve
 d

ef
in

ite
 1

st
-o

rd
er

 p
ro

du
ct

 d
er

iv
at

iv
e 

m
at

ri
x.

 T
he

 p
ro

bl
em

 p
ar

am
et

er
 is

 

in
di

ca
te

d.
 B

la
nk

 e
nt

ri
es

 in
di

ca
te

 m
od

el
s 

w
ith

 n
on

-p
os

iti
ve

 d
ef

in
ite

 F
is

he
r 

In
fo

rm
at

io
n 

m
at

ri
x,

 f
or

 w
hi

ch
 in

fo
rm

at
io

n 
cr

ite
ri

a 
ca

nn
ot

 b
e 

co
m

pu
te

d.
 T

he
 tw

o 

be
st

 B
IC

 v
al

ue
s 

ar
e 

bo
ld

ed
.

M
od

el
n 

cl
as

s
P

ar
am

s
L

og
-l

ik
el

ih
oo

d
A

IC
B

IC
aB

IC
F

is
he

r 
In

fo
. E

rr
or

?
1s

t-
or

de
r 

D
er

iv
. E

rr
or

? 
(B

ad
 p

ar
am

.)

m
1 

(c
on

di
tio

na
l)

2
12

−
19

17
.0

8
38

58
.1

5
39

10
.9

1
38

72
.8

2
N

o
N

o

m
2 

(c
on

di
tio

na
l)

3
19

−
17

99
.5

1
36

37
.0

1
37

20
.5

5
36

60
.2

3
N

o
N

o

m
3 

(c
on

di
tio

na
l)

4
26

−
17

63
.9

1
35

79
.8

2
36

94
.1

4
36

11
.6

0
N

o
N

o

m
4 

(c
on

di
tio

na
l)

5
33

−
17

48
.2

9
35

62
.5

8
37

07
.6

8
36

02
.9

1
N

o
N

o

m
5 

(c
on

di
tio

na
l)

2
14

−1
81

5.
94

36
59

.8
8

37
21

.4
3

36
76

.9
9

N
o

Y
es

 (
cl

as
s 

1 
on

 X
3)

m
6 

(c
on

di
tio

na
l)

3
22

−1
76

3.
59

35
71

.1
8

36
67

.9
1

35
98

.0
6

N
o

Y
es

 (
cl

as
s 

1 
on

 X
3)

m
7 

(c
on

di
tio

na
l)

4
30

−
17

43
.5

9
35

47
.1

8
36

79
.0

9
35

83
.8

4
N

o
N

o

m
8 

(c
on

di
tio

na
l)

2
18

−
18

04
.7

4
36

45
.4

8
37

24
.6

3
36

67
.4

8
N

o
N

o

m
9 

(c
on

di
tio

na
l)

3
28

−1
75

2.
94

35
61

.8
9

36
85

.0
0

35
96

.1
1

N
o

Y
es

 (
cl

as
s 

2 
on

 X
3)

m
10

 (
co

nd
iti

on
al

)
4

38
−

17
38

.5
8

35
53

.1
6

37
20

.2
4

35
99

.6
1

N
o

N
o

m
11

 (
co

nd
iti

on
al

)
2

24
−1

80
1.

65
36

51
.3

0
37

56
.8

2
36

80
.6

3
N

o
Y

es
 (

cl
as

s 
1 

on
 X

3)

m
12

 (
co

nd
iti

on
al

)
3

Y
es

m
13

 (
co

nd
iti

on
al

)
2

20
−

17
43

.2
2

35
26

.4
3

36
14

.3
7

35
50

.8
8

N
o

N
o

m
14

 (
co

nd
iti

on
al

)
3

31
−

17
31

.1
9

35
24

.3
7

36
60

.6
8

35
62

.2
6

N
o

N
o

m
15

 (
co

nd
iti

on
al

)
4

42
−

17
21

.6
2

35
27

.2
4

37
11

.9
1

35
78

.5
7

N
o

N
o

m
16

 (
co

nd
iti

on
al

)
2

24
−

17
41

.3
7

35
30

.7
4

36
36

.2
6

35
60

.0
7

N
o

N
o

m
17

 (
co

nd
iti

on
al

)
3

37
−

17
27

.6
7

35
29

.3
5

36
92

.0
3

35
74

.5
7

N
o

N
o

m
18

 (
co

nd
iti

on
al

)
4

50
−1

71
6.

44
35

32
.8

9
37

52
.7

3
35

93
.9

9
N

o
Y

es
 (

sl
op

e 
va

ri
an

ce
)

m
19

 (
co

nd
iti

on
al

)
2

30
−1

74
0.

44
35

40
.8

8
36

72
.7

9
35

77
.5

4
N

o
Y

es
 (

qu
ad

ra
tic

 v
ar

ia
nc

e)

m
20

 (
co

nd
iti

on
al

)
3

46
Y

es

N
ot

e.
 p

ar
am

. =
 p

ar
am

et
er

; A
IC

 =
 A

ka
ik

e 
in

fo
rm

at
io

n 
cr

ite
ri

on
; B

IC
 =

 B
ay

es
ia

n 
in

fo
rm

at
io

n 
cr

ite
ri

on
; a

B
IC

 =
 s

am
pl

e-
si

ze
 a

dj
us

te
d 

B
IC

.

Behav Res Ther. Author manuscript; available in PMC 2018 November 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Lubke and Luningham Page 29

Ta
b

le
 4

K
ey

 p
ar

am
et

er
s 

of
 th

e 
m

od
el

s 
fi

tte
d 

to
 th

e 
co

nf
ir

m
at

or
y 

da
ta

.

M
od

el
C

la
ss

In
te

rc
ep

t 
on

M
ea

ns
/β

0
C

la
ss

 1
 o

n

X
1

X
2

X
3

β 0
L

in
ea

r
Q

ua
dr

at
ic

X
1

X
2

X
3

13
C

1
2.

61
8*

**
−

3.
78

8+
2.

75
6*

**
−

5.
16

0*
**

0.
12

7*
−

0.
21

6*
**

−
0.

53
3

−
3.

08
0*

**
−

3.
04

3*
**

C
2

2.
74

6*
**

−
3.

44
8*

**
3.

16
3*

**
−

1.
61

9+
0.

65
4*

**
−

0.
26

3*
**

16
C

1
2.

63
8*

**
−

3.
91

7+
2.

81
0*

**
−

2.
85

0*
**

0.
14

3*
**

−
0.

21
5*

**
−

0.
54

4
−

3.
05

6*
**

−
2.

91
4*

**

C
2

2.
75

5*
**

−
3.

74
0*

**
3.

27
9*

**
0.

94
5

0.
70

1*
**

−
0.

28
8*

**

β 0
 is

 th
e 

in
te

rc
ep

t t
er

m
 f

ro
m

 th
e 

re
gr

es
si

on
 o

f 
th

e 
in

te
rc

ep
t f

ac
to

r 
on

 th
e 

co
va

ri
at

es
, i

.e
., 

th
e 

m
ea

n 
of

 th
e 

in
te

rc
ep

t f
ac

to
r 

w
he

n 
th

e 
co

va
ri

at
es

 a
re

 a
ll 

ze
ro

.

**
* =

 p
 <

 0
.0

01
,

* =
 p

 <
 .0

5,

+ =
 p

 <
 0

.1
.

Behav Res Ther. Author manuscript; available in PMC 2018 November 01.


	Abstract
	Introduction
	Part I: Exploration of Heterogeneity using Mixture Models
	The Modeling Framework
	Assumptions, necessary constraints, and sets of random starts

	The number of classes and within class model complexity
	Interdependence of the number of classes and within class parameterization
	Power to detect classes
	Measurement properties of the observed items

	Relevance of measurement invariance
	Models with and without covariates
	Model selection uncertainty
	Practical issues to consider before fitting mixture models
	Exploratory data analysis prior to fitting models
	Designing increasingly lenient models
	Empirical underidentification
	Missing Data

	Validation of best-fitting model(s)
	Summary of necessary steps
	Part II: Illustration of growth mixture modeling using simulated data
	The data
	Research Questions
	Analysis plan
	Models without covariates
	Models with covariates

	Model fitting

	Results
	Exploratory Data Analysis
	Models without covariates
	Models with covariates
	Choosing confirmatory models
	Confirmatory models

	Part II Summary
	Conclusion
	References
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4

