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Abstract

Vaccination represents a cost-effective weapon for disease prevention and has proven to 

dramatically reduce the incidences of several diseases that once were responsible for significant 

mortality and morbidity worldwide. The nasal cavity constitutes the initial stage of the respiratory 

system and the first contact with inhaled pathogens. The intranasal (IN) route for vaccine 

administration is an attractive alternative to injection, due to the ease of administration as well as 

better patient compliance. Many published studies have demonstrated the safety and effectiveness 

of IN immunization with liquid vaccines. Currently, two liquid IN vaccines are available and both 

contain live attenuated influenza viruses. FluMist® was approved in 2003 in the United States, and 

Nasovac® H1N1 vaccine was approved in India in 2010. Preclinical studies showed that IN 

immunization with dry powder vaccines (DPVs) is feasible. Although there is not a commercially 

available DPV yet, DPVs have the inherent advantage of being relatively more stable than liquid 

vaccines. This review focuses on recent developments of DPVs as next-generation IN vaccines.
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1. Nasal immune systems and its role in intranasal immunization

The nose is responsible for conditioning the inspired air and protecting the airways from 

large and potentially harmful particles, as well as functions as a sensory organ responsible 

for olfaction [1]. The air inhaled through the nose moves from the nasopharynx to the 

oropharynx, and then larynx and trachea until it reaches the deep lung [2].

The nasal cavity is divided by the nasal septum into two paired compartments, further 

separated by the folds of the superior, middle, and inferior concha that form three ducts 

called superior, middle, and inferior meatus [3] (Fig. 1). Based on the increased turbulence 

and air flow resistance, two major deposition areas of inhaled particles can be identified in 

the nasal cavity, the middle concha and the internal ostium [4].

The mucous membrane lining the nasal cavity secretes mucus that works as an innate 

immunity mechanism by washing away or entrapping potential pathogens [5]. Nasal 

secretions also contain protective elements such as immunoglobulins [6], lactoferrin [7, 8], 

and immune cells [9, 10]. The mucosal surfaces present inductive sites that can initiate an 

immune response to specific antigens independent from the systemic immune system. These 

inductive sites are collectively described as mucosa-associated lymphoid tissue (MALT) 

[11]. The nose-associated lymphoid tissue (NALT) is a subdivision of the MALT [12]. The 

term NALT in rodents refers to a pair of aggregated lymphoid tissue localized in the nose 

(i.e., the bottom of the nasal ducts) [13]. The Waldeyer’s ring, a well-known group of tonsils 

that includes the adenoid, tubal, palatine, and lingual tonsils, is the key lymphoid tissue in 

human nose [14]. A post-mortem study by Debertin et al. provided the first evidence of the 

existence of a NALT, in addition to the Walderyer’s ring, in young children [15]. This study 

in young children found disseminated aggregates of lymphoid tissue in the nasal cavity in 

38% of the cases, mainly located in the superior meatus (30.1%), the middle concha 

(26.4%), the inferior concha (13.5%), and the superior concha (10.4%). In a recent review, 

Pabst stated that there is not reported data on the frequency of NALT in adolescents and 

adults [16].

Upon nasal vaccination, antigens can follow different routes that were reviewed by Kuper et 

al. [17]. While soluble antigens can potentially penetrate the nasal mucosa and contact 

antigen-presenting cells (APCs) such as dendritic cells and macrophages in the mucosa, 

particulate antigens can be either cleared by the mucociliary system or taken up by 

microfold (M) cells in the NALT. The route followed by the antigens in DPVs should mainly 

resemble the fate of particulate antigens. The uptake of antigens by APCs leads to the 

activation of T and B cells. The activated B cells differentiate into plasma cells, which leave 

the follicles and secrete the immunoglobulin A (IgA) class of antibodies into the lumen, 

where they can interact and neutralize the specific antigens. This interaction leads to the 

formation of IgA-antigen complexes, which are easily entrapped in the mucus and then 

eliminated by the ciliated epithelial cells [18]. Also, lymphocytes activated in a mucosal 

surface can reach remote mucosal sites through the lymphatic system and transfer the 

immunity in a response called “the common mucosal immune system” [19]. The studies by 
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Johansson et al. demonstrated that in humans an IN vaccine could provide immunity to the 

cervicovaginal mucosa [20], but not to the gut mucosa [21].

M cells are specialized cells that have been extensively studied in the gut-associated 

lymphoid tissue (GALT) for its role in the transport of antigens across the mucous 

membrane to underlying lymphoid cells [22]. Fujimura found M cells in excised human 

adenoid tissue [23]. These cells could take up influenza A virus, suggesting that M cells are 

sites of antigen uptake for induction of mucosal immunity after IN immunization [24]. 

Finally, antigen particles taken up by NALT are drained into lymph nodes. These antigens 

may induce the production of serum IgA and IgG in systemic lymphoid organs [17, 25]. 

However, the systemic immune response elicited by mucosal vaccination is usually weaker 

than that induced by parenteral immunization [26]. Therefore, the immune response 

provoked by DPV formulations is generally characterized by measuring specific sIgA and 

serum IgG titers as markers of local and systemic immune responses, respectively [27].

2. Advantages and disadvantages of intranasal immunization

2.1. Intranasal immunization versus parenteral injection

Most of the pathogens enter the body by penetrating mucosal surfaces, making the nasal 

mucosa one of the most promising routes for vaccinations due to the accessibility of the 

mucosal tissue, the improved patient compliance, and the potential for self-administration 

[28]. Moreover, in light of the continuous search for novel approaches for heat-stable and 

needle-free vaccines, the IN route of immunization denotes a great versatile strategy. 

Specifically, needle-free vaccines can potentially decrease the costs of vaccination, as they 

do not require trained professionals for administration and waste disposal, and represent a 

viable approach for mass vaccination campaigns. In addition, IN route allows for the 

administration of both liquid and dry vaccine formulations.

A hurdle in the development of nasal vaccine formulations is the limited time available for 

antigen absorption, due to the rapid mucociliary clearance of foreign particles [29]. This 

obstacle has been addressed by using mucoadhesives, which can increase the 

immunogenicity of vaccines by prolonging the residence of the antigens at the immune 

effector sites [30]. Chitosan is one of the most extensively studied mucoadhesives in IN 

vaccine formulations [31–33]. Its mechanism of action is based on its capacity to increase 

vaccine residence time as well as open tight junctions transiently in mucosal membranes, 

which improve antigen penetration [34]. Chitosan also enhanced the response to a parenteral 

immunization [33, 35]. It has been proposed that the observed increase in immune response 

induced by vaccine formulations that contain chitosan could be due to the presence of 

impurities in the chitosan [27]. Glycol chitosan has also been tested as a mucoadhesive in 

liquid IN vaccines. In preclinical studies, vaccine formulations containing glycol chitosan 

have shown better mucosal uptake and reduced nasal clearance [36], as well as stronger 

immunogenicity [37], as compared to those containing chitosan.
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2.2. Intranasal versus pulmonary immunization

Currently, there are seven non-parenteral vaccines approved by the US Food and Drug 

Administration (FDA) [38]. Five of these products are for oral administration (i.e., 

adenovirus, cholera, rotavirus and typhoid vaccines) and two are liquid vaccines for 

intranasal administration (influenza vaccines). As compared to the nasal route, the 

pulmonary route offers a much larger mucosal surface area that has been extensively 

explored for local as well as systemic delivery of both liquid and powder drug formulations 

[39]. For vaccines, the high vascularization of the alveolar tissue may facilitate the systemic 

delivery of antigens with a greater potential of achieving both respiratory and systemic 

immunization [40]. The delivery of DPVs by inhalation has been explored in vivo for 

tuberculosis, hepatitis, influenza, and measles with promising results [41–46]. The safety 

and tolerability of a dry powder measles vaccine administered by inhalation were also 

confirmed in a clinical trial [47].

The main challenge of this route of administration is the low efficiency of the drug delivery 

achieved by current products. Both the formulation and the device used to administer the 

formulation determine the critical particle size for lung deposition [48]. To reach the deep 

lung, the aerosolized particles should have an ideal aerodynamic size between 1 and 5 μm. 

Particles above this size tend to impact on the surface of the upper airways [49]. For vaccine 

delivery, the later may not be completely disadvantageous because these particles still can 

reach the lymphoid tissue in the oropharyngeal region. However, if aiming for pulmonary 

and systemic immunization, advanced processing is required to obtain a high fine particle 

fraction (FPF) as well as delivery devices that can prevent or reduce the loss of product in 

the mouth and throat [50]. Saluja et al. developed two influenza DPVs with FPF values of 

37% and 23% that were able to trigger significantly higher serum IgG titers than IM 

immunization in a mouse model [42]. The animals were immunized through an 

oropharyngeal tube.

3. Advantages and disadvantages of dry powder vaccines

FluMist® (MedImmune, LLC) is the first live attenuated influenza virus IN vaccine that was 

successfully approved and commercialized in the US and Europe (as Fluenz®) [51]. 

Nasovac® (Serum Institute of India, Ltd.) is an IN flu vaccine approved in India [52]. The 

inactivated IN influenza virus vaccine Nasalflu® (Berna Biotech AG, Switzerland) was 

available for a short period of time before it was discontinued in 2001 due to a potential 

association with partial facial paralysis [53]. Other vaccines for IN administration have been 

extensively studied against infectious diseases (e.g., measles, meningitis, tuberculosis, and 

pneumonia) [33, 54–60], or autoimmune diseases (e.g., arthritis) [61]. However, most of 

these formulations are liquids such as drops, sprays, and even emulgels.

Liquid vaccine, similar to other biologic products, are susceptible to physical, chemical, and 

thermal instability that can affect their potency and efficacy by undergoing degradation, 

aggregation, and/or hydrolysis [62]. Therefore, to stabilize them, liquid vaccines need 

preservatives, buffers, and cold-chain for storage and transportation [54]. Dry powder 

vaccine formulations can potentially eliminate these requirements, leading to more stable, 

more efficacious, and less expensive vaccines, which would be highly advantageous in 
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particular for remote areas in tropical developing countries because these vaccines would 

become available for the population in the areas [63]. Data from many studies evidenced the 

superior storage stability of DPVs at different temperatures and humidities, as compared to 

liquid vaccines [27, 64–67]. Most of these studies evaluated the stability of the stored 

vaccines after reconstitution using in vitro assays, but Wang et al. instead demonstrated that 

an IN anthrax DPV stored for 2 years at room temperature was as immunogenic as the fresh 

DPV [68].

DPVs, as other dry powder formulations for inhalation, need to be protected from humidity 

[69]. The composition and quality of the packaging system are key elements for the 

chemical and physical stability of dry powder formulations [70]. Suitable containers for 

DPVs may well follow the packaging used in the recently available drug powders for nasal 

delivery [71]. In these intranasal products, the drugs are protected from humidity either in 

sealed pouches with desiccant (e.g., Onzetra Xsail®, sumatriptan nasal powder) or within 

the device with a built-in desiccant chamber (e.g., Rhinocort Turbuhaler®, budesonide nasal 

powder).

4. Dry powder vaccines tested in vivo

DPV formulations usually contain the same components of traditional vaccines (i.e., antigen 

and adjuvant), in addition to bulking agents, stabilizers, and mucoadhesives. Spray drying 

(SD) and freeze-drying (FD) are the most commonly used pharmaceutical processes to 

produce dry powders of biologic compounds. Spray freeze-drying (SFD) uses the same 

principle of liquid atomization of SD, but the atomized liquid is instantly frozen in liquid 

nitrogen and then lyophilized. SD was compared to SFD in the preparation of DPV 

formulations for pulmonary delivery, and it was noted that both methods produce stable 

vaccines with good inhalation properties [42]. Thin-film freeze-drying was also reported as a 

method to successfully convert liquid vaccines containing aluminum salts to DPVs [72]. A 

more recent approach instead is based on the encapsulation of the vaccine components in 

mucoadhesive particles, and then the particles are converted into a dry powder [73–76].

Finally, carrier-based formulations have been proposed as an alternative method to improve 

the nasal deposition of DPVs and consequently reduce the lung deposition of vaccine 

particles. Again, the carrier-based vaccines are converted into a dry powder for IN 

immunization. Sugar alcohols [76], polylactic acid-polyethylene glycol nanoparticles [77], 

and poly (lactic-co-glycolic) acid microspheres [78] are some examples of carriers tested for 

IN vaccines. Table 1 summarizes the different DPVs investigated for IN administration in 

preclinical and clinical studies. Below is described in detail each type of vaccine.

4.1. Influenza

Influenza represents the leading cause of respiratory diseases in humans [79]. The first 

reported influenza DPV formulation was developed using whole, inactivated influenza 

viruses [64]. This IN vaccine generated a potent nasal mucosal immune response in rats, in 

addition to a systemic immune response that was comparable to that induced through 

intramuscular (IM) injection. Data from that study also demonstrated that chitosan increased 

the immune response induced by the DPV [64]. Garmise et al. prepared and characterized 
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influenza DPVs by testing the polydispersity of particles and the flow properties of DPV 

formulations containing whole, inactivated influenza viruses, lactose or trehalose, and 

chitosan [80]. In another study, the research group focused on identifying the effect of 

different mucoadhesive compounds on the DPV formulations and found a consistent trend 

between the nasal residence time of the formulations and the strength of the resultant 

immune response. Maximal mucosal and systemic responses were observed when using 

sodium alginate and carboxymethylcellulose-high molecular weight [27].

Different ratios of the bioadhesives, starch, and polyacrylic acid, were evaluated as carriers 

of the viral influenza antigen by Coucke et al. [81]. These powder formulations were able to 

induce systemic immune responses. It was observed that the levels of IgG titers induced by 

the IN vaccine had a dose-dependent correlation with the polyacrylic acid content.

Dehghan et al. observed the highest increase in IgG titers after the administration of chitosan 

nanospheres loaded with whole UV-inactivated influenza virus A together with synthetic 

CpG oligodeoxynucleotides (CpG ODNs) or Quillaja saponin as adjuvants in a rabbit model, 

demonstrating the feasibility of including vaccine adjuvants in IN DPV formulations [73, 

82].

4.2. Diphtheria and Meningitis

Diphtheria is a disease caused by a toxin produced by Corynebacterium diphtheria. The 

cross-reacting material (CRM197) of the diphtheria toxin, not toxic but still antigenic, is used 

extensively as a licensed polysaccharide antigen carrier in human vaccines [83]. CRM197 

can be further treated with formaldehyde to increase resistance to proteolytic degradation 

[84]. McNeela et al. found that the addition of chitosan to a liquid formulation of CRM197 

treated with 0.18% formaldehyde resulted in significantly enhanced immunogenicity 

measured by specific IgG titers in guinea pigs [33]. In another study, the group demonstrated 

that the vaccine formulated as a DPV was well tolerated in humans [85]. This IN vaccine 

induced significantly higher secretory IgA levels and similar protective levels of serum IgA 

and IgG, compared to those induced by IM immunization, and the same DPV caused a 

strong Th2-biased response in humans after IN immunization [86].

Menjugate-C® is a meningitis C vaccine developed and commercialized in Europe by 

Chiron Corp. (now Novartis Vaccines and Diagnostics, Inc.). It contains meningococcal C 

oligosaccharide conjugated to CRM197 in a powder form to be resuspended before IM 

administration [87]. Huo et al. used this vaccine powder mixed with chitosan for nasal 

immunization in a clinical study [88]. IN administration of the powder was well tolerated by 

the subjects, and the meningococcal-specific serum IgG and IgA levels observed 28 days 

after the administration were comparable to those seen after IM administration.

4.3. Viral gastroenteritis

Noroviruses are recognized as the main cause of epidemics of gastroenteritis in children and 

adults. The genetically variable Norovirus genus present three genogroups (GI, GII, and 

GIV) that can infect humans [89]. The expression of Norwalk virus (GI.1) capsid proteins 

without the viral RNA allows the development of immunogenic but noninfectious virus-like 

particles for vaccine formulations [90]. The immunogenicity of the norovirus virus-like 
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particles (NV VLPs) was later confirmed by intranasal administration using a liquid 

formulation in mice[91].

El-Kamary et al. conducted a phase 1 clinical study to evaluate the safety and 

immunogenicity of a DPV containing NV VLPs, monophosphoryl lipid A (MPL) as 

adjuvant and chitosan as a mucoadhesive [92]. This DPV was highly immunogenic and well 

tolerated with only mild side effects. Peripheral blood mononuclear cells (PBMCs) from 

subjects in these clinical studies were collected to analyze B memory cell responses [93]. 

The B memory cell frequencies determined by flow cytometry were correlated with the 

serum levels of NV VLP-specific serum antibodies [93]. A significant NV-specific IgA and 

IgG responses were obtained in all subjects immunized with 100 μg/dose. In a different 

clinical study, the same DPV containing NV VLP, MPL, and chitosan provided significant 

protection against gastroenteritis after exposure to a homologous virus [94].

Velasquez et al. formulated a vaccine powder containing these NV VLPs in combination 

with a gelling agent derived from Aloe vera (GelSite®) and gardiquimod as an adjuvant. In 
situ gelation as well as mucosal and systemic immunity were shown in guinea pigs when 

this formulation was given IN [29]. Two novel adjuvant-free norovirus vaccines have been 

developed containing NV VLPs from genogroups I and II.4 with GelSite® as a 

mucoadhesive. The preclinical study conducted by Springer and colleagues reported that 

these DPVs showed maximal immunogenicity with smaller doses (greater than 15 μg) in 

guinea pigs [95]. Recently, the same group reported a bivalent DPV containing the antigens 

GI and GII.4 [96].

4.4. Anthrax

This lethal disease is caused by an exotoxin produced by Bacillus anthracis. Investigated IN 

vaccine formulations include those containing the recombinant protective antigen (rPA) 

protein and synthetic CpG oligonucleotides (as an adjuvant) [97, 98]. Mikszta et al. 

evaluated the protective effect of this vaccine in rabbits [99]. IN administration of the DPV 

showed better protection against anthrax (100% of survival) than IN liquid vaccine (67% 

survival). In a following study, the same complete protection was observed when a lower 

dose of this DPV was used to immunize rabbits [97]. Finally, this DPV formulation allowed 

the maintenance of protein integrity for one month at ambient temperature and in accelerated 

stability studies [65].

Another antigen used for anthrax vaccines is a peptide from the capsule of B. anthracis. 

DPVs were developed by lyophilization with mannitol and MPL using rPA in combination 

with either the free peptide or the peptide conjugated to rPA (rPA-conjugated). The powder 

was then resuspended to obtain liquid vaccines or mixed with chitosan to prepare DPVs for 

IN administration [100]. These vaccines were used to immunize rabbits exposed later to a 

lethal aerosol spore challenge. All DPVs demonstrated 100% protection, but only the 

animals immunized with rPA plus rPA-conjugated capsular peptide did not show signs of 

illness after 14 days. Also, the DPVs induced serum IgG titers that were higher than those 

induced by IN liquid vaccination and similar to that induced by IM vaccination. Klas et al. 

tested a different formulation containing rPA and the capsule peptide mentioned above in 

rabbits [101]. The peptide was conjugated to bovine serum albumin (BSA-conjugated), 
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lyophilized with mannitol and MPL, and then mixed with chitosan. Results after an aerosol 

spore challenge showed that a single IN immunization could protect the rabbits against the 

lethal spore challenge, up to 9 weeks post-treatment. Wang et al. used a different adjuvant, 

the mast cell activator C48/80, to prepare an rPA DPV without mucoadhesives [68]. IN 

administration of a freshly prepared DPV or a DPV stored for 2 years at room temperature 

induced immune responses comparable to those induced by IM administration of a liquid 

vaccine.

4.5. Tetanus

Tetanus toxoid (TT) has been used as a model antigen for IN vaccine development [74, 102]. 

Tafaghodi and Rastegar used TT and Quillaja saponin encapsulated in alginate microspheres 

with and without cross-linked dextran mucoadhesive microspheres for nasal immunization 

in rabbits [103]. These microspheres were tested for morphology, particle size, and in vitro 
release of TT and Quillaja saponin. They observed the highest mucosal and systemic 

immune responses when dextran microspheres were added to the formulation, which was 

converted into a dry powder and filled into a polyethylene tube (2 mm in diameter) 

connected to a syringe for IN administration.

5. Devices used for intranasal delivery of dry powder vaccines

The IN FluMist® Quadrivalent vaccine is a liquid formulation in a prefilled intranasal 

sprayer. However, dry powders for IN immunization require a different type of device to 

aerosolize the product. Dry powder inhalers (DPIs) are examples of commercially available 

inhalers developed for pulmonary drug delivery and have been on the market for decades. 

Depending on the aerosolization mechanism, DPIs are broadly classified as active or passive 

devices. Active devices have an aerosolization mechanism, while in passive devices the 

aerosolization is driven by patient’s inhalation [104]. Following this classification criterion, 

most of the devices tested for IN delivery of DPVs can be classified as active devices. In 

fact, during the administration of IN vaccines inhalation should be prevented to keep the 

formulation in the nasal cavity to target the lymphoid tissues in the nasal cavity and prevent 

lung deposition.

In general, these devices for DPV delivery use a pneumatic force to expel the powder into 

the nasal cavity, which resembles the mechanism of action of a syringe. Indeed, most of the 

lab-made devices used for preclinical studies are based on syringes [64]. Some examples of 

commercially available devices for IN delivery of powders are the Monopowder single-dose 

disposable device (Valois Pharmaceutical Division), the Unit-dose system (AptarGroup, 

Inc.), and the Powder-Jet® device (RPC Bramlage GmbH). The Unit-dose system has been 

used to intranasally dose DPVs in preclinical studies in rabbits and guinea pigs [68, 95]. The 

Monopowder single-dose disposable device has been used for intranasal DPV administration 

in preclinical and clinical studies [85, 86, 100, 101]. The Powder-Jet®, different from the 

other devices, is a multidose system and was used by Trows and Scherließ to characterize 

their carrier-based DPV formulations [76]. A detailed review of devices for nasal drug 

delivery is available [105]. Since vaccines are aimed for long-term immunization, there is no 

clear need for multi-dose chambers nor reusability, which are important aspects of devices 
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used for chronic diseases. An ideal IN DPV product should be pre-loaded in a ready-to-use, 

disposable device to prevent manipulation and loss of the product. The packaging of the 

device should be moisture-sealed to ensure protection from humidity until use. Onzetra 

Xsail® (Avanir Pharmaceuticals, Inc.), approved by the FDA in 2016, is a sumatriptan 

powder for nasal delivery with the breath-powered device OptiNose® (OptiNose US, Inc.) 

[106]. This passive device is actuated when the patient blows air in the mouthpiece that 

releases the drug into the nasal cavity through the nosepiece. Even though OptiNose® has 

not been tested for DPVs delivery, it sets the precedent of an approved device that can be 

used for the study of future DPVs. Also, blowing through the mouth causes the closure of 

the soft palate between the nasal and the oral cavity, which prevents powder from flowing 

into the oropharynx and lungs [107, 108]. Therefore, this characteristic could be helpful to 

evaluate in clinical studies the immune responses triggered at the nasal mucosa without the 

contribution of additional responses from the airway mucosa outside the nasal cavity.

A list of the main findings, key challenges, and potential future directions of IN DPVs 

research can be found in Table 2.

6. Conclusion

Vaccines are a primary weapon to safeguard public health, and now even more important, 

with the continuous development of antimicrobial-resistant microorganisms. Injectable 

vaccines present some disadvantages such as the requirement of professional assisted 

administration, cold chain during storage and transport, as well as the costs of waste 

disposal. Needle-free IN vaccination represents an attractive approach to address these 

issues, safely and efficiently. The success with the IN liquid FluMist® and Nasovac® 

vaccines demonstrated the viability of IN immunization from both marketing and 

vaccinology perspectives. It is true that there is not an FDA-approved DPV yet, but the 

increasing amount of preclinical and clinical studies, as well as the approval of IN dry 

powder products, have shown the interest of the pharmaceutical industry in this new type of 

vaccines and route of administration. Preclinical studies showed that IN immunization with 

DPVs is feasible. Finally, intranasal immunization with DPVs has many advantages over 

with liquid vaccines, but different devices that can actively deliver the powder into the nasal 

cavity are needed to efficiently administer DPVs intranasally.
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Figure 1. 
Representation of the upper airways. Enlarged is a cross-section of the upper airway with 

details of the nasal cavity [2,3]. The adenoid, tubals, palatine tonsil and lingual tonsil are 

collectively called as the pharyngeal lymphoid ring or the Waldeyer’s ring. Modified from 

Perry and Whyte with copyright permission [109].
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Table 2

Summary of key findings, main challenges, and future directions in intranasal DPV research.

Key findings in the literature about IN DPVs Main challenges of IN DPVs Prediction/future directions of IN 
DPVs

• Mucoadhesives such as chitosan and 
GelSite® improved the 
immunogenicity of DPVs by 
increasing the residence time of the 
formulation in the mucosal surface.

• Mild formaldehyde treatment 
(0.18%) to stabilize antigens can 
enhance its immunogenicity.

• The higher stability of DPVs 
compared to liquid vaccines was 
confirmed by the determination of its 
activity in vitro and in vivo.

• Common mucosal response after IN 
vaccination can be tested to provide 
mucosal immunity in distant 
mucosal surfaces.

• Limited time for antigen 
absorption due to the rapid 
nasal mucociliary clearance.

• Lack of guidelines for dry 
powder nasal products for in 
vitro performance and 
characterization.

• Limited number of devices for 
dry powder nasal delivery for 
in vivo evaluation of DPVs.

• Storage of the formulation 
protected from humidity to 
prevent loss of activity.

• Improvement of devices 
or development of new 
devices to efficiently 
deliver DPVs to nasal 
cavity only.

• Novel formulations 
using particle carriers as 
bulking agents to 
modulate particle size 
and density to improve 
the deposition in the 
nasal cavity.
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