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Clinical Significance

The annual costs of spinal conditions related to intervertebral disc (IVD) degeneration 

exceed $190 billion in the US.(1) In industrialized countries, low back pain is extremely 

common, with a prevalence of 60–90%.(2) Despite this prevalence and soaring cost, there is 

no specific treatment that restores the physiological function of the degenerate IVD. Thus, 

developing new treatment strategies to repair the degenerating IVD is vital.

Current treatments for disc-related pain include surgical and non-surgical approaches,(3) and 

often result in incomplete symptomatic relief. A key limitation of current treatments for disc 

degeneration is that they do not maintain or restore native tissue structure and mechanical 

function. Therefore, there is a pressing need for new therapies to treat disc degeneration that 
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retain and/or restore disc structure and mechanical function by directly addressing the 

underlying causes and mechanisms.

The IVD is an elegant structure, with a gelatinous inner core (the nucleus pulposus (NP)) 

that functions as a shock absorber, converting axial loads into radial forces. The concentric 

outer rings (annulus fibrosus (AF)) enclose the inner core (Figure 1). The elegance and 

complexity of the IVD structure is illustrated in Figure 1. Specifically, tamoxifen was used 

at postnatal day 6 to induce the expression of Cre-recombinase driven by the type II collagen 

promoter (Col2CreER). The lumbar spine was examined at postnatal day 28 (Figure 1A). 

The motion segment consists of an IVD with the adjacent vertebral bodies (VB) (Figure 1B). 

Cell nuclei, stained with DAPI, are shown in blue (Figure 1A). Inner AF cells express type II 

collagen (col2) and have been highlighted by red fluorescent protein variant (tdTomato; 

Figure 1A). The cartilaginous endplate (CEP), growth plate (GP) and cancellous bone 

adjacent to the GP also express col2, and thus also expressed tdTomato (shown in red in 

Figure 1A&B).

The IVD progressively degenerates with age in humans (Figure 2), and strategies to repair 

the IVD depend on stage of degeneration.(4, 5) Cell therapy and cell-based gene therapy aim 

to address moderate IVD degeneration (Figure 2). In early disc degeneration, an attractive 

strategy is to encourage resident progenitor cells to proliferate. At this stage, various protein 

factors such as growth factors might be effective since resident cells may respond to the 

stimuli and produce additional extracellular matrix. However, the number and functional 

capacity of endogenous stem cells tend to become reduced with aging and degeneration.(6) 

Therefore, in moderate stages of degeneration, when fewer viable cells remain in the 

diseased IVD, cell or gene therapy is likely to be required to repopulate the disc and provide 

additional trophic factors. In advanced stages of degeneration when both cell and 

extracellular matrix loss is severe, tissue-engineering approaches may be needed.(7, 8)

The quality of life for people with chronic pain is often irreversibly affected due to rewiring 

of brain circuitry,(9) supporting the notion that early treatments will result in better 

outcomes. The ideal therapy for moderate IVD degeneration would: 1) be minimally 

invasive; 2) attenuate local inflammation; and 3) restore tissue structure and biomechanical 

function. In order to achieve success, transplantation of cells into the degenerate IVD must 

overcome several hurdles. First, transplanted cells must survive in the harsh IVD 

environment that is low in nutrients, oxygen and pH, exhibits elevated inflammatory 

cytokine expression, and experiences fluctuations in mechanical stress. Secondly, to achieve 

therapeutic efficacy, cells must remain viable and in place, produce extracellular matrix 

(ECM) rich in proteoglycans and type II collagen, or secrete trophic factors that stimulate 

resident cells to do so.

Patient selection

Most people with IVD degeneration do not have back pain,(10) and thus do not require any 

intervention. For patients with intractable back pain due to internal disc disruption, cell 

therapy may help to repair the structure and modulate inflammation, thus reducing pain. 

When selecting which disc is most symptomatic, the best tool available may be discography, 
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with patient response of severe concordant pain. Discography is a valuable tool since 

positive findings during discography correlate with levels of cytokines/chemokines in the 

tissue, thus providing a pathophysiological basis for discogenic back pain.(11, 12) 

Discography, however, may cause further IVD degeneration,(13) due to needle puncture 

damage and the toxicity of injected anesthetics and contrast media.(14–16) Based on these 

observations, only patients with severe axial back pain that is suspected to be due to 

degenerative disc disease are clinical candidates for discography. Patients with severe back 

pain confirmed to be related to IVD degeneration should undergo cell therapy. Therefore, 

after patient-confirmed severe concordant pain with provocation, cells could be injected 

during the same procedure to avoid puncturing the IVD multiple times.

Patients undergoing partial discectomy are another group of individuals who could benefit 

from cell therapy, since disc degeneration accelerates after partial removal of the disc.(17) 

Cells could be injected during surgery, after removal of the disc fragment(s) impinging on 

the nerve roots. The above indications for cell therapy require that cells are ready to use 

before the procedure.

Cell Sources and Types

Autologous and allogeneic cells have been used in clinical trials, but xenogeneic cells have 

only been used in animal studies. Autologous cells are ideal, due to concerns over disease 

transmission and immune responses. Autologous mesenchymal stromal cells can be 

harvested from bone marrow or adipose tissue. The main limitation is that most patients with 

back pain are middle aged, and their stem cells have limited expansion potential. A small 

clinical study (10 patients) examining the possible efficacy of hematopoietic stem cells in 

disc repair did not show any treatment effect.(18) A more recent study using bone marrow 

concentrate cells did show pain reduction.(19) The EuroDISC study is the largest (112 

patients) prospective multicenter randomized controlled trial comparing patients who had 

discectomy with or without subsequent treatment with expanded autologous IVD cells; this 

treatment led to moderate success in preserving the disc structure.(20, 21) The limitation of 

this study is that patients underwent two procedures, and the cells expanded may have 

included fibroblasts and inflammatory cells.

Allogeneic cells could be isolated from umbilical cord blood,(22) umbilical tissue,(23) or 

articular surface.(24, 25) Allogeneic cells from younger donors have higher expansion 

potential than most autologous cells. There is less ethical concern using these cells than with 

embryonic stem cells. Only one clinical trial using allogeneic young articular chondrocyte 

transplantation has been completed. This trial recruited 15 patients and showed promising 

results.(26)

Xenogeneic cells have only been tested in animal models; most of these studies used various 

human cells to repair injured animal IVDs.(17)

The main cells used in animal studies include stem cells, IVD cells and articular 

chondrocytes of autologous, allogeneic and xenogeneic sources (Table 1). Thirty-seven of 

the animal studies reviewed utilized stem cells. Among these, 10 studies used autologous 
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stem cells,(27–36) 15 studies used allogeneic cells,(25, 37–50) and 12 used xenogeneic cells 

(23, 51–61) (Table 1). Studies involving allogeneic and xenogeneic cells have shown good 

survival of these cells in the IVD, confirming that the disc niche is a relatively 

immunologically privileged site. In the intact IVD, there is limited blood supply to the outer 

1/3 of the posterior annulus fibrosus.(62) With injury and degeneration, there is nerve and 

blood vessel ingrowth,(63) possibly allowing immune cells to migrate into the diseased 

tissues. In fact, we have observed macrophages in both the injured IVD, and injured IVD 

injected with allogeneic articular chondrocytes, but did not find significant differences in 

macrophage infiltration between the two groups.(24) The infiltration of macrophages did not 

appear to result in elimination of allogeneic or xenogeneic cells implanted into the disc 

space.

Differentiated cells used in animal studies include IVD cells and articular chondrocytes. 

Among the 13 animal studies using IVD cells to repair the degenerating IVD, 6 used 

autologous cells.(64–69) Five studies used allogeneic cells,(70–74) and 2 used xenogeneic 

cells.(51, 54) Among the studies using articular chondrocytes, 2 studies used allogeneic 

cells,(24, 25) and one study used xenogeneic chondrocytes (54) to repair the injured IVD. 

All studies reported some improvement of the disc structure, while allogeneic articular 

chondrocyte transplantation was reported to attenuate local inflammation.(24)

Mesenchymal stem cells (MSCs) from various sources (e.g., bone marrow, fat,(28) umbilical 

cord blood,(22) Wharton's jelly,(23, 75) olfactory stem cells(42)) or induced pluripotent 
stem cells (76) have also been investigated for repairing the degenerate IVD. While readily 

available, MSCs may suffer from overt cell loss when implanted in the undifferentiated state, 

due to inability to survive in the harsh, nutrient-poor environment.(77) Induced pluripotent 

stem cells from autologous or allogeneic sources are very attractive.(78, 79) There are 

concerns over teratoma formation in the disc space, a consideration that needs further 

examination.

There are only limited direct comparisons between the outcomes of IVDs treated with stem 

cells, differentiated disc cells or articular chondrocytes; the differentiated cells seem to be 

superior in producing more cartilage-like matrix.(25, 51) Further work is needed to directly 

compare the survival of undifferentiated stem cells, stem cells pre-conditioned to the IVD 

environment with biomechanical stress and hypoxia, and differentiated cells. Likewise, 

direct comparison of the cells’ ability to attenuate local inflammation, and to improve disc 

structure and biomechanical function is needed.

Scaffolds

There are concerns over bone spur formation due to injury to the IVD during cell injection 

or leakage of the cells.(45) We have observed non-calcified cartilaginous protrusion(s) that 

contain injected articular chondrocytes at the needle insertion site (Figure 3). Using a 

scaffold seems to reduce cell leakage and osteophyte formation.(31) Among the 50 studies 

reviewed here, 25 used some form of scaffold. Of these, fibrin gel has been reported to 

reduce cell leakage.(71) Use of collagen microspheres has been shown to reduce osteophyte 

formation (which may be consequent on cell leakage).(31) Our preliminary data have shown 
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that young allogeneic articular chondrocytes (AC) injected into the center of the injured 

rabbit IVD survive and reduce host inflammation, but also can leak at the injection site 

(Figure 3). To reduce leakage and support cell growth, our group has developed hyaluronic 

acid (HA)-based hydrogels that preserve the chondrocytic phenotype and growth;(80–83) 

these materials solidify at body temperature and are thus ideal for injection-based therapies. 

We have also shown that hyaluronic acid hydrogels promote NP cell phenotype stability.(84) 

We have further tested a tripleinterpenetrating-network (TIN) hydrogel that enhances 

biomechanical properties of the repaired IVD and supports cell delivery.(85) Other natural 

and synthetic scaffold materials, including laminin,(86) pig bone gelatin and cartilage 

extracellular matrix,(87) collagen,(88) composite of collagen with alginate,(89) and 

carboxymethylcellulose (90) have been tested for engineering IVD by seeding with cells in 

vitro, followed by implantation into the disc space. All the above scaffolds could be 

modified into injectable form and used in minimally invasive cell therapy. Thus, these 

hydrogels should be assessed as scaffolds to prevent this leakage, and to enhance 

biomechanical properties of the repaired IVD in the future.

Animal models

A critical step towards the clinical translation of new therapies for IVD degeneration is 

testing in an appropriate in vivo model. Disc degeneration is a complex process involving 

both mechanical and biochemical factors. When considering the appropriate animal model 

for disc degeneration studies, the choice of species represents a balance between size, 

morphology, mechanical properties, nutrient diffusion, repair potential and logistical 

concerns. Rabbits are the most frequently used among the studies reviewed, likely reflecting 

the cost and size of the IVDs (Table 2). Larger animals such as the sheep, goat or pig have 

bigger IVDs, with shapes more similar to that of humans. However, the costs would be 

higher and therefore are more appropriate for definitive pre-clinical studies. Among the 50 

animal studies reviewed here, 28 studies used rabbits, 7 used rats, 5 used dogs, 6 pigs, and 

there were 1 goat, 2 sheep and 1 mouse study (Table 2). Sheep and goat have IVDs 

resembling those of humans in size and absence of notochordal cells,(91) but only 3 studies 

out of 50 used these models. Although the authors agree that a large animal model is critical 

given the risk of implant ejection and subsequent catastrophic injury, large animal studies 

are not consistently conducted before clinical trials. However, it is our belief that study in a 

large animal without persisting notochord (i.e., goat or sheep) should be considered before 

clinical trials.

The mouse model has the advantage of opportunities for genetic manipulations (as 

illustrated in Figure 1), and is less costly than using larger animals. Challenges of working 

with the mouse IVD mainly reflect its small size: surgical precision is crucial, and the 

amount of tissue for molecular and biochemical assays is limited. Our group and others have 

developed the mouse injury model.(92, 93) In addition, we have developed microinjection 

methods, and use cell tracing methods to confirm precision injection (Figure 4). Various 

volumes of protein labeled with infrared (IR) dye have been injected into the degenerating 

IVD in the mouse tail. Tail IVD degeneration has been induced with a needle puncture. It is 

worth noting that injecting into the intact IVD is exceedingly difficult, due to the positive 
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pressure within the disc. Further refinement of the mouse model is our priority and an 

important future direction.

Role of inflammation in IVD degeneration and back pain

IVD degeneration is a slowly progressing cascade mediated in part by inflammation.(94) 

Inflammatory stimulation directly alters the mechanobiology of NP cells (95) and inhibits 

cell extracellular matrix (ECM) production.(96, 97) Inflammation in the IVD tissues is also 

increasingly recognized to be associated with back pain.(11, 12, 98–100) More recently, 

serum biomarkers have been reported that vary with diagnosis.(101, 101, 101, 101, 102, 

102) In particular, serum levels of IL-6 were significantly higher in subjects with LBP 

compared with control subjects.(101, 102) Novel treatments targeting inflammation are 

being pursued.(103, 104) The high levels of proinflammatory mediators found in disc tissue 

from patients undergoing fusion for discogenic back pain suggest that production of 

proinflammatory mediators within the IVD may be a major factor in the genesis of a painful 

lumbar disc.(11, 12, 98, 99) These findings strongly suggest that in addition to the 

commonly used histology and extracellular matrix composition, inflammatory markers may 

be used as outcome measures in response to cell therapy. However, among the 50 studies, 

only 2 examined local inflammation.(24, 41) All the clinical trials used patient symptoms as 

outcome measures. Future work should focus on identification of inflammatory mediators as 

outcome measures.

Benchmark for success

None of the above animal studies or clinical trials completely restored IVD structure. 

Although mechanical function changes in degenerative discs have been well documented,

(105) whether cell therapy can restore biomechanical function has not been previously 

determined. In light of the fact that patients primarily seek medical care for back pain, 

attenuating local inflammation should be a priority amongst benchmarks for success. The 

ideal therapy should also be minimally invasive, and concurrent with other procedures such 

as discography or discectomy. Restoration of tissue structure and biomechanical function are 

important, and preservation of spinal motion is also desirable.
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Figure 1. Mouse lumbar intervertebral disc (IVD)
A. Sagittal section of a Col2CreER;R26- tdTomato mouse IVD. B: schematic drawing of the 

vertebral body (VB)-IVD-VB motion segment. Red: type II collagen expressing cells; Blue: 

cell nuclei stained with DAPI. NP: nucleus pulposus; CEP: cartilaginous endplate; iAF: 

inner annulus fibrosus (AF); oAF: outer AF; GP: growth plate.
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Figure 2. Gross morphology illustrating progressive human disc degeneration
NP: nucleus pulposus; AF: annulus fibrosus.
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Figure 3. Rabbit intervertebral disc injected with chondrocytes labeled with infrared dye and 
transduced with adenovirus expressing β-galactosidase
A: infrared scan; B: X-gal stain. Ruler in right panel is 1mm/space.
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Figure 4. Protein labeled with infrared (IR) dye was injected into the degenerating mouse tail 
IVD
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Table 1

Cell Sources and Types Used in Animal Models.

Cell Source Autologous Allogeneic Xenogeneic Total Studies

Stem Cells 10 15 12 37

Intervertebral Disc Cells 6 5 2 13

Articular Chondrocytes 0 2 1 3
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