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A central goal in theoretical neuroscience is to predict the
response properties of sensory neurons from first principles. To
this end, “efficient coding” posits that sensory neurons encode
maximal information about their inputs given internal con-
straints. There exist, however, many variants of efficient cod-
ing (e.g., redundancy reduction, different formulations of pre-
dictive coding, robust coding, sparse coding, etc.), differing in
their regimes of applicability, in the relevance of signals to be
encoded, and in the choice of constraints. It is unclear how these
types of efficient coding relate or what is expected when differ-
ent coding objectives are combined. Here we present a unified
framework that encompasses previously proposed efficient cod-
ing models and extends to unique regimes. We show that optimiz-
ing neural responses to encode predictive information can lead
them to either correlate or decorrelate their inputs, depending on
the stimulus statistics; in contrast, at low noise, efficiently encod-
ing the past always predicts decorrelation. Later, we investigate
coding of naturalistic movies and show that qualitatively differ-
ent types of visual motion tuning and levels of response sparsity
are predicted, depending on whether the objective is to recover
the past or predict the future. Our approach promises a way to
explain the observed diversity of sensory neural responses, as due
to multiple functional goals and constraints fulfilled by different
cell types and/or circuits.

neural coding | prediction | information theory | sparse coding |
efficient coding

Sensory neural circuits perform a myriad of computations,
which allow us to make sense of and interact with our envi-

ronment. For example, neurons in the primary visual cortex
encode information about local edges in an image, while neu-
rons in higher-level areas encode more complex features, such
as textures or faces. A central aim of sensory neuroscience is to
develop a mathematical theory to explain the purpose and nature
of such computations and ultimately, predict neural responses to
stimuli from first principles.

The influential “efficient coding” theory posits that sensory
circuits encode maximal information about their inputs given
internal constraints, such as metabolic costs and/or noise (1–4);
similar ideas have recently been applied in genetic and signal-
ing networks (5, 6). While conceptually simple, this theory has
been extremely successful in predicting a host of different neu-
ral response properties from first principles. Despite these suc-
cesses, however, there is often confusion in the literature, due to
a lack of consensus on (i) what sensory information is relevant
(and thus, should be encoded) and (ii) the internal constraints
(determining what information can be encoded).

One area of potential confusion is between different ideas
of why and how neural networks may need to make predic-
tions. For example, given low noise, efficient coding predicts
that neurons should remove statistical dependencies in their
inputs so as to achieve nonredundant, statistically independent
responses (3, 4, 7–9). This can be implemented within a recur-
rent network where neurons encode a prediction error equal
to the difference between their received inputs and an inter-

nally generated expectation, hence performing “predictive cod-
ing” (10–13). However, Bialek and coworkers (14, 15) recently
proposed an alternative theory, in which neurons are hypothe-
sized to preferentially encode sensory information that can be
used to predict the future, while discarding other nonpredic-
tive information (14–17). While both theories assume that neu-
ral networks make predictions, they are not equivalent: one
describes how neurons should compress incoming signals, and
the other describes how neurons should selectively encode only
predictive signals. Signal compression requires encoding surpris-
ing stimuli not predicted by past inputs; these are not generally
the same as predictive stimuli, which are informative about the
future (16).

Another type of code that has been studied extensively is
“sparse coding”: a population code in which a relatively small
number of neurons are active at any one time (18). While there
are various reasons why a sparse code may be advantageous (19–
21), previous work has shown that sparse coding emerges nat-
urally as a consequence of efficient coding of natural sensory
signals with a sparse latent structure (i.e., generated by combin-
ing many sensory features, few of which are present at any one
time) (22). Sparse coding has been successful in predicting many
aspects of sensory neural responses (23, 24), notably the orien-
tation and motion selectivity of neurons in the primary visual
cortex (25–29). Nonetheless, it is unclear how sparse coding is
affected by other coding objectives, such as efficiently predicting
the future from past inputs.

An attempt to categorize the diverse types of efficient coding
is presented in SI Appendix, Efficient Coding Models. To consis-
tently organize and compare these different ideas, we present
a unifying framework based on the information bottleneck
(IB) (30). In our work, a small set of optimization parameters
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determines the goals and constraints faced by sensory neurons.
Previous theories correspond to specific values of these parame-
ters. We investigate the conditions under which different cod-
ing objectives have conflicting or synergistic effects on neural
responses and explore qualitatively unique coding regimes.

Efficient Coding with Varying Objectives/Constraints
We consider a temporal stimulus, x−∞:t ≡ (. . ., xt−1, xt), which
elicits neural responses, r−∞:t ≡ (. . ., rt−1, rt). We seek a neu-
ral code described by the probability distribution p(rt |x−∞:t),
such that neural responses within a temporal window of length
τ encode maximal information about the stimulus at lag ∆ given
fixed information about past inputs (Fig. 1A). This problem can
be formalized using the IB framework (30–32) by seeking a code,
p(rt |x−∞:t), that maximizes the objective function:

Lp(rt |x−∞:t) = I (Rt−τ :t ;Xt+∆)− γI (Rt ;X−∞:t), [1]

where the first term (to be maximized) is the mutual informa-
tion between the responses between t − τ and τ and the stimu-
lus at time t + ∆, while the second term (to be constrained) is
the mutual information between the response at time t and past
inputs (which we call the coding capacity, C ). A constant, γ, con-
trols the tradeoff between coding fidelity and compression. This
objective function can be expanded as

Lp(rt |x−∞:t) = 〈log p (xt+∆|rt−τ :t)− log p (xt+∆)

− γ log p (rt |xt−∞:t) + γ log p (rt)〉p(r,x). [2]

Previously, we showed that, in cases where it is not possible to
compute this objective function directly, one can use approxima-
tions of p(xt+∆|rt−τ :t) and p(rt) to obtain a lower bound, L̃ ≤
L, that can be maximized tractably (31) (SI Appendix,General
Framework).

From Eqs. 1 and 2, we see that the optimal coding strategy
depends on three factors: the decoding lag, ∆; the code length,
τ ; and the coding capacity, C (determined by γ). Previous theo-
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Fig. 1. Schematic of modeling framework. (A) A stimulus (stim.) (Upper)
elicits a response in a population of neurons (Lower). We look for codes
where the responses within a time window of length τ maximize informa-
tion encoded about the stimulus at lag ∆, subject to a constraint on the
information about past inputs, C. (B) For a given stimulus, the optimal code
depends on three parameters: τ , ∆, and C. Previous work on efficient tem-
poral coding generally looked at τ > 0 and ∆< 0 (blue sphere). Recent work
posited that neurons encode maximal information about the future (∆> 0)
but only treated instantaneous codes τ ∼ 0 (red plane). Our theory is valid
in all regimes, but we focus in particular on ∆> 0 and τ > 0 (black sphere).
(C) We further explore how optimal codes change when there is a sparse
latent structure in the stimulus (natural image patch; Right) vs. when there
is none (filtered noise; Left).

ries of neural coding correspond to specific regions within the 3D
parameter space spanned by ∆, τ , and C (Fig. 1B). For example,
temporal redundancy reduction (3, 33) occurs (i) at low inter-
nal noise (i.e., high C ), (ii) where the objective is to encode the
recent past (∆< 0), and (iii) where information about the stim-
ulus can be read out by integrating neural responses over time
(τ � 0). Increasing the internal noise (i.e., decreasing C ) results
in a temporally redundant “robust” code (34–37) (blue sphere in
Fig. 1B). Recent work positing that neurons efficiently encode
information about the future (∆> 0) looked exclusively at near-
instantaneous codes, where τ ∼ 0 (red plane in Fig. 1B) (15,
38–40). Here, we investigate the relation between these previ-
ous works and focus on the (previously unexplored) case of neu-
ral codes that are both predictive (∆> 0) and temporal (τ > 0)
and have varying signal to noise (variable C ) (black sphere in
Fig. 1B).

To specialize our theory to the biologically relevant case, we
later investigate efficient coding of natural stimuli. A hallmark
of natural stimuli is their sparse latent structure (18, 22, 25, 26):
stimulus fragments can be constructed from a set of primitive
features (e.g., image contours), each of which occurs rarely (Fig.
1C). Previous work showed that, in consequence, redundancy
between neural responses is minimized by maximizing their spar-
sity (SI Appendix, Efficient Coding Models) (22). Here, we investi-
gated what happens when the objective is not to minimize redun-
dancy but rather, to efficiently predict future stimuli given finite
coding capacity.

Results
Dependence of Neural Code on Coding Objectives. Our initial goal
was to understand the influence of different coding objectives in
the simplest scenario, where a single neuron linearly encodes a
1-d input. In this model, the neural response at time t is rt =∑τw

k = =0 wkxt−k + ηt , where w = (w0, . . .,wτw ) are the linear
coding weights and ηt is a Gaussian noise with unit variance.∗

With 1-d stimuli that have Gaussian statistics, the IB objective
function takes a very simple form:

L= − 1

2
log

〈(
xt+∆ −

τ∑
k=0

ukrt−k

)2〉
− γ 1

2
log
〈
r2
t

〉
, [3]

where u = (u0, . . ., uτ ) are the optimal linear readout weights
used to reconstruct the stimulus at time t+∆ from the responses
between t − τ and t . Thus, the optimal code is the one that
minimizes the mean-squared reconstruction error at lag ∆, con-
strained by the variance of the neural response (relative to the
noise variance).†

Initially, we investigated “instantaneous” codes, where τ = 0,
so that the stimulus at time t + ∆ is estimated from the instan-
taneous neural response at time t (Fig. 2A). We considered
three different stimulus types, which are shown in Fig. 2B. With
a “Markov” stimulus (Fig. 2B, Top and SI Appendix, Methods
for Simulations in the Main Text), with a future trajectory that
depended solely on the current state, xt , the neurons only needed
to encode xt to predict the stimulus at a future time, xt+∆. Thus,
when τ = 0, we observed the trivial solution where rt ∝ xt , irre-
spective of the decoding lag, ∆ (Fig. 2 C and D and SI Appendix,
Fig. S2A).

With a “two-timescale” stimulus constructed from two Markov
processes that vary over different timescales (Fig. 2B, Middle),
the optimal solution was a low-pass filter to selectively encode

∗τw is the encoding filter length, not to be confused with τ , the decoding filter length.
†We omitted the constant stimulus entropy term,

〈
log p(xt+∆)

〉
, from Eq. 3 and the

noise entropy term,
〈
log p

(
rt|xt−∞:t

)〉
[since with no loss of generality, we assume a

fixed amplitude additive noise (32)].
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Fig. 2. Dependence of optimal code on decoding lag, ∆; code length, τ ; and coding capacity, C. (A) We investigated two types of code: instantaneous
codes, where τ = 0 (C and D), and temporal codes, where τ > 0 (E and F). (B) Training stimuli (stim.) used in our simulations. Markov stimulus: future only
depends on the present state. Two-timescale stimulus: sum of two Markov processes that vary over different timescales (slow stimulus component is shown
in red). Inertial stimulus: future depends on present position and velocity. (C) Neural responses to probe stimulus (dashed lines) after optimization (opt.) with
varying ∆ and τ = 0. Responses are normalized by the final steady-state value. (D) Correlation (corr.) index after optimization with varying ∆ and C. This

index measures the correlation between responses at adjacent time steps normalized by the stimulus correlation at adjacent time steps (i.e., 〈rtrt+1〉 /
〈

r2
t

〉
divided by 〈xtxt+1〉 /

〈
x2

t

〉
). Values greater/less than one indicate that neurons temporally correlate (red)/decorrelate (blue) their input. Filled circles show

the parameter values used in C. (E and F) Same as C and D but with code optimized for τ � 0. Plots in E correspond to responses to probe stimulus (dashed
lines) at varying coding capacity and fixed decoding lag (i.e., ∆ = 3; indicated by dashed lines in F).

the predictive, slowly varying part of the stimulus. The strength
of the low-pass filter increased monotonically with ∆ (Fig. 2 C
and D and SI Appendix, Fig. S2A).

Finally, with an “inertial” stimulus, with a future trajectory that
depended on both the previous state, xt , and velocity, xt − xt−1

(Fig. 2B, Bottom), the optimal solution was a high-pass filter so as
to encode information about velocity. The strength of this high-
pass filter also increased monotonically with ∆ (Fig. 2 C and D
and SI Appendix, Fig. S2A, Bottom).

With an instantaneous code, varying the coding capacity, C ,
only rescales responses (relative to the noise amplitude) so as to
alter their signal-to-noise ratio. However, the response shape is
left unchanged (regardless of the stimulus statistics) (Fig. 2D).
In contrast, with temporally extended codes, where τ > 0 (so the
stimulus at time t +∆ is estimated from the integrated responses
between time t − τ and t) (Fig. 2A), the optimal neural code
varies with the coding capacity, C . As with previous efficient
coding models, at high C (i.e., high signal-to-noise ratio), neu-
rons always decorrelated their input, regardless of both the stim-
ulus statistics and the decoding lag, ∆ (to achieve nonredundant
responses) (SI Appendix, Efficient Coding Models), while decreas-
ing C always led to more correlated responses (to achieve a
robust code) (SI Appendix, Efficient Coding Models) (36). How-
ever, unlike previous efficient coding models at low to inter-
mediate values of C (i.e., intermediate to low signal-to-noise
ratio), the optimal code was qualitatively altered by varying the
decoding lag, ∆. With the Markov stimulus, increasing ∆ had
no effect; with the two-timescale stimulus, it led to low-pass fil-
tering, and with the inertial stimulus, it led to stronger high-pass
filtering.

Taken together, “phase diagrams” for optimal, temporally
extended codes show how regimes of decorrelation/whitening
(high-pass filtering) and of smoothing (low-pass filtering) are
preferred depending on the coding capacity, C , and decoding
lag, ∆. We verified that a qualitatively similar transition from
low- to high-pass filtering is also observed with higher dimen-

sional stimuli and/or more neurons. Importantly, we show that
these phase diagrams depend in an essential way on the stimulus
statistics already in the linear Gaussian case. We next examined
what happens for non-Gaussian, high-dimensional stimuli.

Efficient Coding of Naturalistic Stimuli. Natural stimuli exhibit a
strongly non-Gaussian statistical structure, which is essential for
human perception (22, 41). A large body of work has investigated
how neurons could efficiently represent such stimuli by encod-
ing their nonredundant or independent components (4). Under
fairly general conditions (e.g., that stimuli have a sparse latent
structure), this is equivalent to finding a sparse code: a form of
neural population code, in which only small fractions of neurons
are active at any one time (22). For natural images, this leads to
neurons that are selective for spatially localized image contours,
with receptive fields (RFs) that are qualitatively similar to the
RFs of V1 simple cells (25, 26). For natural movies, this leads to
neurons selective for a particular motion direction, again similar
to observations in area V1 (27).

However, an independent (sparse) temporal code has only
been shown to be optimal (i) when the goal is to maximize infor-
mation about past inputs (i.e., ∆< 0) and (ii) at low noise (i.e.,
at high capacity; C � 0). We were interested, therefore, in what
happens when these two criteria are violated: for example, when
neural responses are optimized to encode predictive information
(i.e., for ∆ ≥ 0).

To explore these questions, we modified the objective func-
tion of Eq. 3 to deal with multidimensional stimuli and non-
Gaussian statistics of natural images (SI Appendix, General
Framework). Specifically, we generalized the second term of
Eq. 3 to allow optimization of the neural code with respect
to higher-order (i.e., beyond covariance) response statistics.
This was done by approximating the response distribution p(r)
by a Student t distribution, with shape parameter, ν, learned
directly from data (SI Appendix, Eq. S5) (31). Crucially, our
modification permits—but does not enforce by hand—sparse

188 | www.pnas.org/cgi/doi/10.1073/pnas.1711114115 Chalk et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711114115/-/DCSupplemental/pnas.1711114115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711114115/-/DCSupplemental/pnas.1711114115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711114115/-/DCSupplemental/pnas.1711114115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711114115/-/DCSupplemental/pnas.1711114115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711114115/-/DCSupplemental/pnas.1711114115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711114115/-/DCSupplemental/pnas.1711114115.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1711114115/-/DCSupplemental/pnas.1711114115.sapp.pdf
http://www.pnas.org/cgi/doi/10.1073/pnas.1711114115


N
EU

RO
SC

IE
N

CE
BI

O
PH

YS
IC

S
A

N
D

CO
M

PU
TA

TI
O

N
A

L
BI

O
LO

G
Y

neural responses (42). For nonsparse, Gaussian stimuli, the IB
algorithm returns ν→∞, so that the Student t distribution is
equivalent to a Gaussian distribution, and we obtain the results
of the previous section; for natural image sequences, it repli-
cates previous sparse coding results in the limit ∆< 0 and
C � 0 (SI Appendix, Fig. S5), without introducing any tunable
parameters.

We investigated how the optimal neural code for naturalis-
tic stimuli varied with the decoding lag, ∆, while keeping cod-
ing capacity, C , and code length, τ , constant. Stimuli were con-
structed from 10 × 10-pixel patches drifting stochastically across
static natural images (Fig. 3A, SI Appendix, Methods for Sim-
ulations in the Main Text, and SI Appendix, Fig. S3). Gaussian
white noise was added to these inputs (but not the decoded
variable, Xt+∆) (SI Appendix, Methods for Simulations in the
Main Text). Neural encoding weights were optimized with two
different decoding lags: for ∆ =−6, the goal was to encode
past stimuli, while for ∆ = 1, the goal was to predict the near
future. Fig. 3B confirms that the codes indeed are optimal
for recovering either the past (∆ =−6) or future (∆ = 1) as
desired.

After optimization at both values of ∆, individual neurons
were selective to local oriented edge features (Fig. 3 C and
D) (25). Varying ∆ qualitatively altered the temporal features
encoded by each neuron, while having little effect on their spa-
tial selectivity. Consistent with previous results on sparse tem-
poral coding (27), with ∆ =−6, single cells were responsive to
stimuli moving in a preferred direction as evidenced by spa-
tially displaced encoding filters at different times (Fig. 3C and
SI Appendix, Fig. S6 A–C) and a high “directionality index” (Fig.
3E). In contrast, with ∆ = 1, cells responded equally to stimuli
moving in either direction perpendicular to their encoded stim-
ulus orientation. This was evidenced by spatiotemporally sepa-
rable RFs (SI Appendix, Fig. S6 D–F) and directionality indexes
near zero. This qualitative difference between the two types of

A B

C D
E

Fig. 3. Efficient coding of naturalistic stimuli. (A) Movies were constructed
from a 10×10-pixel patch (red square), which drifted stochastically across
static natural images. (B) Information encoded [i.e., reconstruction (recon.)
quality] by neural responses about the stimulus at varying lag (i.e., recon-
struction lag) after optimization with ∆ =−6 (blue) and ∆ = 1 (red). (C)
Spatiotemporal encoding filters for four example neurons after optimiza-
tion with ∆ =−6. (D) Same as C for ∆ = 1. (E) Directionality index of neu-
ral responses after optimization with ∆ =−6 and ∆ = 1. The directionality
index measures the percentage change in response to a grating stimulus
moving in a neuron’s preferred direction vs. the same stimulus moving in
the opposite direction.

code for naturalistic movies was highly surprising, and we sought
to understand its origins.

Tradeoff Between Sparsity and Predictive Power. To gain an intu-
itive understanding of how the optimal code varies with decod-
ing lag, ∆, we constructed artificial stimuli from overlapping
Gaussian bumps, which drifted stochastically along a single spa-
tial dimension (Fig. 4A and SI Appendix, Methods for Simula-
tions in the Main Text). While simple, this stimulus captured two
key aspects of the naturalistic movies. First, Gaussian bumps
drifted smoothly in space, resembling stochastic global motion
over the image patches; second, the stimulus had a sparse latent
structure.

We optimized the neural code with ∆ ranging from −2 to 2,
holding the coding capacity, C , and code length, τ , constant. Fig.
4B confirms that highest performance was achieved when the
reconstruction performance was evaluated at the same lag for
which each model was trained. This simpler setup recapitulated
the surprising result that we obtained with naturalistic stimuli:
namely, when ∆< 0, neurons were selective to a single preferred
motion direction, while when ∆ ≥ 0, neurons responded equally
to stimuli moving from either direction to their RF (Fig. 4 C
and D).

Predicting the future state of the stimulus requires estimat-
ing its current motion direction and speed. How is it possible
then that optimizing the code for predictions (∆> 0) results
in neurons being unselective to motion direction? This para-
dox is resolved by realizing that it is the information encoded
by the entire neural population that counts, not the information
encoded by individual neurons. Indeed, when we looked at the
information encoded by the neural population, we did find what
we had originally expected: when optimized with ∆> 0, the neu-
ral population as a whole encoded significantly more informa-
tion about the stimulus velocity than its position (relative to when
∆< 0), despite the fact that individual neurons were unselective
to motion direction (Fig. 4 E and F).

The change in coding strategy that is observed as one goes
from encoding the past (∆< 0) to the future (∆> 0) is in
part due to a tradeoff between maintaining a sparse code and
cells responding quickly to stimuli within their RF. Intuitively,
to maintain highly selective (and thus, sparse) responses, neu-
rons first have to wait to process and recognize the “complete”
stimulus feature; unavoidably, however, this entails a process-
ing delay, which leads to poor predictions. This can be seen in
Fig. 4 G and H, which shows how both the response sparsity
and delay to stimuli within a cell’s RF decrease with ∆. In SI
Appendix, Supplementary Simulations, we describe in detail why
this tradeoff between efficiency and prediction leads to direction-
selective filters when ∆< 0 but not when ∆> 0 (SI Appendix,
Fig. S7).

Beyond the effects on the optimal code of various factors
explored in detail in this paper, our framework further general-
izes previous efficient and sparse coding results to factors listed
in SI Appendix, Table S1 and discussed in SI Appendix, Supple-
mentary Simulations. For example, decreasing the capacity, C
(while holding ∆ constant at−2), resulted in neurons being uns-
elective to stimulus motion (SI Appendix, Fig. S8A), with a similar
result observed for increased input noise (SI Appendix, Fig. S8B).
Thus, far from being generic, traditional sparse temporal coding,
in which neurons responded to local motion, was only observed
in a specific regime (i.e., ∆< 0, C � 0, and low input noise).

Discussion
Efficient coding has long been considered a central principle
for understanding early sensory representations (1, 3), with well-
understood implications and generalizations (23, 37). It has been
successful in predicting many aspects of neural responses in early
sensory areas directly from the low-order statistics of natural
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Fig. 4. Efficient coding of a “Gaussian-bump” stimulus. (A) Stimuli (stim.) consisted of Gaussian bumps that drifted stochastically along a single spatial
dimension (dim.) (with circular boundary conditions). (B) Information encoded by neural responses about the stimulus at varying lag, ∆test, after optimization
with varying ∆train. Black dots indicate the maximum for each column. (C) Response of example neuron to a test stimulus (Upper) and after optimization
with ∆ =−2 (blue), ∆ = 0 (green), and ∆ = 2 (red; Lower). (D) Spatiotemporal encoding filters for an example neuron after optimization with different ∆.
(E) Circular correlation between the reconstructed speed of a moving Gaussian blob and its true speed vs. the circular correlation between the reconstructed
position and its true position obtained from neural responses optimized with ∆ =±2 (red and blue curves). Curves were obtained by varying γ in Eq. 3
to find codes with different coding capacities. (F) Linear reconstruction of the stimulus trajectory obtained from neural responses optimized with ∆ =±2
(red and blue curves). The full stimulus is shown in grayscale. While coding capacity was chosen to equalize the mean reconstruction error for both models
(vertical dashed line in E), the reconstructed trajectory was much smoother after optimization with ∆ = 2 than with ∆ =−2. (G) Response sparsity (defined
as the negentropy of neural responses) vs. ∆ (dots indicate individual neurons; the line indicates population average). (H) Delay between stimulus presented
at a neuron’s preferred location and each neuron’s maximum response vs. ∆.

stimuli (7, 22, 32, 43, 44) and has even been extended to higher-
order statistics and central processing (45, 46). However, a
criticism of the standard theory is that it treats all sensory infor-
mation as equal, despite empirical evidence that neural systems
prioritize behaviorally relevant (and not just statistically likely)
stimuli (47). To overcome this limitation, Bialek and cowork-
ers (14, 15) proposed a modification to the standard efficient
coding theory, positing that neural systems are set up to effi-
ciently encode information about the future given fixed informa-
tion about the past. This is motivated by the fact that stimuli are
only useful for performing actions when they are predictive about
the future.

The implications of such a coding objective have remained
relatively unexplored. Existing work only considered the high-
ly restrictive scenario where neurons maximize information
encoded in their instantaneous responses (15, 38, 40). In this case
(and subject to some additional assumptions, such as Gaussian
stimulus statistics and instantaneous encoding filters), predictive
coding is formally equivalent to slow feature analysis (39). This is
the exact opposite of standard efficient coding models, which (at
low noise/high capacity) predict that neurons should temporally
decorrelate their inputs (3, 33).

We developed a framework to clarify the relation between dif-
ferent versions of the efficient coding theory (14, 30, 31). We
investigated what happens when the neural code is optimized
to efficiently predict the future (i.e., ∆> 0 and τ > 0) (Fig. 1B).
In this case, the optimal code depends critically on the coding
capacity (i.e., signal-to-noise ratio), which describes how much
information the neurons can encode about their input. At high
capacity (i.e., low noise), neurons always temporally decorre-
late their input. At finite capacity (i.e., mid to high noise), how-
ever, the optimal neural code varies qualitatively depending on
whether the goal is to efficiently predict the future or reconstruct
the past.

When we investigated efficient coding of naturalistic stimuli,
we found solutions that are qualitatively different from known
sparse coding results, in which individual neurons are tuned to

directional motion of local edge features (27). In contrast, we
found that neurons optimized to encode the future are selec-
tive for motion speed but not direction (Fig. 3 and SI Appendix,
Fig. S6). Surprisingly, however, the neural population as a whole
encodes motion even more accurately in this case (Fig. 4E). We
show that these changes are due to an implicit tradeoff between
maintaining a sparse code and responding quickly to stimuli
within each cell’s RF (Fig. 4 G and H).

It is notable that, in our simulations, strikingly different con-
clusions are reached by analyzing single-neuron responses vs. the
population responses. Specifically, looking only at single-neuron
responses would lead one to conclude that, when optimized for
predictions, neurons did not encode motion direction; looking
at the neural population responses reveals that the opposite is
true. This illustrates the importance of population-level analyses
of neural data and how, in many cases, single-neuron responses
can give a false impression of which information is represented
by the population.

A major challenge in sensory neuroscience is to derive the
observed cell-type diversity in sensory areas from a normative
theory. For example, in visual area V1, one observes a range of
different cell types, some of which have spatiotemporally sep-
arable RFs and others do not (48, 49). The question arises,
therefore, whether the difference between cell types emerges
because different subnetworks fulfill qualitatively different func-
tional goals. One hypothesis, suggested by our work, is that cells
with separable RFs have evolved to efficiently encode the future,
while cells with nonseparable RFs evolved to efficiently encode
the past. More generally, the same hypothesis could explain the
existence of multiple cell types in the mammalian retina, with
each cell type implementing an optimal code for a particular
choice of optimization parameters (e.g., coding capacity or pre-
diction lag).

Testing such hypotheses rigorously against quantitative data
would require us to generalize our work to nonlinear encoding
and decoding models (SI Appendix, Table S1). Here, we focused
on a linear decoder to lay a solid theoretical foundation and
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permit direct comparison with previous sparse and robust cod-
ing models, which also assumed a linear decoder (25–27, 35,
36). In addition, a linear decoder forces our algorithm to find
a neural code for which information can be easily extracted
by downstream neurons performing biologically plausible oper-
ations. While the linearity assumptions simplify our analysis,
the framework can easily accommodate nonlinear encoding and
decoding. For example, we previously used a “kernel” encoding
model, where neural responses are described by a nonparamet-
ric and nonlinear function of the input (31). Others have similarly
used a deep convolutional neural network as an encoder (50).

As mentioned earlier, predictive coding has been used to
describe several different approaches. Clarifying the relationship
between inequivalent definitions of predictive coding and linking
them mathematically to coding efficiency provided one of the ini-

tial motivations for our work. In past work, alternative coding
theories are often expressed using very different mathematical
frameworks, impeding comparison between them and sometimes
leading to confusion. In contrast, by using a single mathemati-
cal framework to compare different theories—efficient, sparse,
and predictive coding—we were able see exactly how they relate
to each other, the circumstances under which they make oppos-
ing or similar predictions, and what happens when they are
combined.
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