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A recent paper demonstrated that the pattern of firing rates
across ∼100 neurons in the anterior medial face patch is closely
related to which human face (of 2,000) had been presented to a
monkey [Chang L, Tsao DY (2017) Cell 169:1013–1028]. In addition,
the firing rates for these neurons can be predicted for a novel
human face. Although it is clear from this work that the firing
rates of these face patch neurons encode faces, the properties of
the face code have not yet been fully described. Based on an anal-
ysis of 98 neurons responding to 2,000 faces, I conclude that the
anterior medial face patch uses a combinatorial rate code, one
with an exponential distribution of neuron rates that has a mean
rate conserved across faces. Thus, the face code is maximally infor-
mative (technically, maximum entropy) and is very similar to the
code used by the fruit fly olfactory system.
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W ith a few exceptions, any of us can rapidly learn to rec-
ognize any of the 7 billion faces in the world, and we can

identify a familiar face in a fraction of a second (1–3). Although
our subjective experience is that our eyes “show” us a face, in
fact, faces are represented by the firing rates of particular popu-
lations of neurons (4). An important question, then, is: What are
the special features of the neural code used to represent faces?

A complete knowledge of the face code would require that we
fully understand the neural circuitry responsible for face recog-
nition and could predict, for any face, the firing rates of the face
neurons on the basis of the circuit properties. This is a version of
the approach adopted by Chang and Tsao (4). A partial under-
standing of the face code can, however, be achieved by identi-
fying those features of the code that are conserved across all
faces. This is the approach I take here. I will conclude that the
population of face neurons I study has the same mean firing
rate for every face and that the probability distribution for fir-
ing rates of the population is also conserved. Conservation prin-
ciples like the one I describe for faces can have implications
for how the face code is used by later circuitry, as I explain in
Discussion.

The neurons we and other primates use for identifying faces
are concentrated in specific, very small cortical regions, called
“face patches” in monkeys (5, 6). These face patches contain neu-
rons that respond specifically to faces or features of faces, and
the patches are spread along the inferior temporal cortex. Going
from posterior to anterior, face patches contain neurons whose
response characteristics change from one face patch to the next.
In the most posterior patches, neurons tend to fire in response
to face features, but by the anterior medial (AM) patch, neurons
(called “AM neurons” in the following) respond about equally to
any view of an entire face (with the exception of the back of the
head) (7).

A recent advance in our understanding of the neural represen-
tation of faces [Chang and Tsao, 2017 (4); hereafter referred to
as just “Chang and Tsao”] came from presenting an awake mon-
key with 2,000 human face images and recording the responses
of almost 100 AM neurons to the presentation of these faces.
From the firing rates of this population of neurons in response
to any specific one of the faces, Chang and Tsao could relate the
response to which face had caused it. Furthermore, if a new face

was presented to the monkey, the authors could predict the firing
rates of the population of AM neurons. In summary, because the
firing rates of the neurons could be related to which face caused
the response, and because a novel face could be used to predict
the firing rates in response to the face, it is clear that this popula-
tion of AM neurons is using a neural code that links firing rates
to the face presented. The specific goal of the present work is
to identify properties of this neural face code by examining the
database of firing rates produced by each of 98 AM neurons in
response to each of the 2,000 faces. These data were supplied to
me by Chang and Tsao.

Results
I start with a 98 by 2,000 matrix (data used by Le Chang and Doris
Tsao in their paper). This matrix contains the average firing rate
for each of the 98 AM neurons and each of the 2,000 faces. Each
neuron and face is identified by its location in the matrix, so neu-
rons are numbered 1 through 98, and faces by 1–2,000. To gather
data on so many face stimuli in a reasonable period, Chang and
Tsao presented each face three to five times, with each presenta-
tion lasting 150 ms, followed by a gray screen for another 150 ms.
The rate data in the Chang and Tsao matrix are averages over
presentations for each face stimulus and over time (see Chang
and Tsao for details).

The Neural Face Code Is Combinatorial. What is a combinatorial
code? The idea of a neural combinatorial code was first pro-
posed for the mouse olfactory system (8). Mouse odorant recep-
tor genes constitute a large gene family with ∼1,000 members
and, because each odorant receptor neuron expresses receptor
proteins encoded by only a single family member, mice have
∼1,000 distinct odorant receptor neurons. Each odorant recep-
tor neuron also responds with different firing rates to many dif-
ferent odors. A population of different types of odorant recep-
tor neurons, then, generates a pattern of firing rates that is, in
general, different for every odor. In this way, the vast number
of odors mice may need to recognize can be encoded by ∼1,000
neurons. Because the mouse uses rates of 1,000 different neu-
rons to encode each odor, every distinct odor is represented by a
point in a high (here, 1,000-D) dimensional space. What I have
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just described is called a “combinatorial odor code,” and such a
code is useful whenever a very large number of similar, but dis-
tinct, stimuli must be discriminated.

In the visual system, information about location of a stimulus
is received from which neurons are responding to that particu-
lar stimulus. In the olfactory system, however, all of the sensory
neurons respond to odors. The information about which odor is
present is not specified by which neurons in the population of
olfactory receptors are firing. Rather, odor identity is given by
the pattern of firing rates across a population. This distinction
between which neurons in a population are firing vs. the pat-
tern of rates across the population is the hallmark of a combi-
natorial code.

Here, I describe the combinatorial code used by neurons in the
AM face patch where only ∼100 neurons are needed to encode
the 2,000 different faces. As Chang and Tsao have stressed, a
combinatorial code for faces is much more efficient than encod-
ing only one (or a few) faces per neuron.

For the 98 neurons I study here, the number that failed to
respond to a specific face stimulus—that is, had a firing rate of
0—ranged from 11 to 37, with an average number of ∼22 non-
responding neurons for each face. However, the identity of the
nonresponding neurons varied from face to face, and every AM
neuron responded, perhaps with a very low rate, to several hun-
dred or more different face stimuli. The number of faces that
evoked some nonzero response in a specific AM neuron ranged
from 320 to all 2,000 faces, with an average number of 1,554
across all 98 AM neurons. Thus, most AM neurons responded
(perhaps with very low rates) to most faces, but 12 AM neurons
responded to less than half of the face stimuli presented. Seven
of the 98 neurons responded to all 2,000 faces with rates that
ranged from 1 to 75 Hz for different faces. Thus, different AM
neurons responded to different numbers of faces, as illustrated
in Fig. 1A.

We can ask which of the 98 neurons were used to encode each
face, where neuron identity is specified by its number (from 1 to
98). If we rank-order the 50 neurons that are firing most rapidly
for each face (all faces produce at least some firing in 61 neu-
rons), we can produce 2,000 vectors, each with 50 numbers (each
entry in the vector designates a neuron that fired for the face).
Neuron numbers are listed in their order of increasing neuron
firing rates, so that the first entry in the vector specifies the slow-
est firing of the 50 neurons, and the last entry specifies the neu-
ron with the highest rate for that face. These vectors are called
“face-response vectors,” and two such vectors, for faces 1 and
2, are presented in Fig. 1B to illustrate the idea. If the same
neurons fired for both faces (if the same face were presented
twice, for example), they would fall on the diagonal straight line
in the figure. The fact that only one point (for AM neuron 90)
fell on this line means that either the same neurons were fir-
ing at different rates for the two faces or that different neu-
rons were firing. For the 50 AM neurons represented in face-
response vector 1, 32 of the same neurons were used by face 2,
and 18 neurons were different. Of the 32 neurons that were used
by both faces, only 1 (AM neuron 90) was at the same location
in both face-response vectors. To characterize plots like this for
pairs of faces, I calculated a correlation coefficient for the two
vectors. For this particular pair of faces, the correlation coef-
ficient was 0.08, so the two face-response vectors were nearly
uncorrelated.

I also calculated the correlation coefficients for the face-
response vectors for all 1,999,000 face pairs. The correlation
coefficients ranged from −0.62 to 0.74, and the average across
the absolute value of the coefficients gave a mean correlation
coefficient of 0.13. High positive correlations meant that the face
stimuli must have been similar (same neurons with nearly the
same rate). A mean close to zero (0.13) for the absolute value
of correlation coefficients meant that most face pairs used the
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Fig. 1. Properties of the AM face code. (A) Number of faces (of 2,000) that
evoke a response in each of the 98 AM neurons. Each face is specified by
a number from 1 to 98, but here the neurons are rank-ordered according
to the number of faces that evoke a response. On the abscissa, the rank-
ordered faces is displayed, and on the ordinate, the number of faces that
evoke a response in each neuron is presented. An exponential distribution
with a mean of 25 AM neurons has been superimposed on the observed
data in the figure. (B) Which neurons respond to each of two faces. On the
abscissa is a vector of 50 numbers that give the index (a number from 1
to 98) for each neuron in order of increasing firing rates for face-response
vector 1. The ordinate uses the face-response vector (50 long) for face 2.

same neurons at different rates or different neurons, as would
be expected for a combinatorial code. The extremes of the range
of correlation coefficients (the largest correlation was 0.74) pre-
sumably arose because those particular face pairs were quite sim-
ilar. I return to this point in Discussion.

Constraints on the Face Code. We know from Chang and Tsao
that the rates of the 98 AM neurons carry enough information
to identify the faces. And we know from the above analysis that
different faces produce nonzero firing rates for different num-
bers of neurons (61–88 of 98 AM neurons); that most faces acti-
vate, at least minimally, most AM neurons; and that all 98 neu-
rons are activated by multiple face stimuli. Thus, it seems that
the AM face patch neurons use a combinatorial code to iden-
tify faces. Here, I show two constraints on the combinatorial
face code.

As noted above, which neurons are activated varied across the
2,000 faces. The mean firing rate (excluding neurons with a zero
rate) across AM neurons was approximately the same across all
faces, as is shown in Fig. 2A. The mean rate across the 2,000 face
stimuli was 9.7 Hz (white line in Fig. 2A) with a SD of 0.97.

The distributions of firing rates, then, have a mean that is close
to the same across all faces. Codes, like the face code, are most
informative (that is, they have maximum entropy according to
information theory; ref. 9, chapter 14, Entropy) for only cer-
tain firing-rate distribution functions. If the mean for a code is
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Fig. 2. Constraints on the combinatorial face code. (A) The mean firing
rate of active neurons (ordinate) as a function of face number (abscissa).
The white line represents the grand mean firing rate of 9.7 Hz calculated
across the 2,000 individual mean rates. (B) Cumulative probability distri-
bution of AM neuron rates. The abscissa gives the firing rate for each
AM neuron, and the ordinate is the cumulative probability. The distribu-
tion functions for 2,000 faces are superimposed (black band), and an expo-
nential distribution with a mean of 9.7 Hz (thin white line) and the aver-
age across all 2,000 observed distribution functions (thicker white line) are
superimposed.

constrained to be constant, the associated maximum entropy dis-
tribution for rates is an exponential (section 14-4, The Maximum
Entropy Method, examples 14–18 of ref. 9). Maximum entropy
codes are of interest because, roughly speaking, they are the ones
that encode the most faces with the fewest neurons. Note that
the notion of “face code” has two distinct aspects: (i) the rules
that map face identity to the firing rates of neurons, and (ii) the
rules that firing rates follow that are independent of which face
is being encoded. Here, I consider only the second aspect of the
face code.

I therefore compiled a cumulative firing rate distribution for
each face and show all 2,000 distribution functions superim-
posed in Fig. 2B. Also, I superimposed on Fig. 2B a cumu-
lative exponential distribution with a mean of 9.7 (thin white
curve) and the cumulative distribution obtained by averaging
across the 2,000 individual observed distributions (thicker white
curve); in this figure, the two curves are indistinguishable. Note
that no adjustable parameters were used in this superimposi-
tion. Although some scatter is seen in the observed distributions
that are superimposed, the exponential distribution describes the
data well and is very close to the average across the observed
distributions.

How might the scatter in the observed rate distributions arise?
Because the number of neurons that responded to each face
ranged between 61 and 88, this relatively small sample size used
to estimate an exponential rate distribution would be an unavoid-
able source of scatter. To evaluate this source for scatter, I gen-
erated 2,000 samples from a cumulative exponential distribution
(mean = 9.7 Hz), each with the same ample size (number of AM
neurons) as the observed distributions. Much of the scatter in
the empirical distributions could be accounted for from what was

expected from the sample sizes of the number of responding neu-
rons for each face.

Discussion
My main conclusion was that the AM face patch uses a combi-
natorial rate code, one with an exponential distribution of AM
neuron rates that has the same mean for all face stimuli. The
interpretation of my conclusion depends on the Chang and Tsao
result that the firing of a population of AM cells has all of the
information necessary to faithfully distinguish the 2,000 faces
studied.

Until the recent Chang and Tsao paper, many of the AM face
cells were often thought to encode a single, specific face (10,
11). This idea was based on the observation that some AM cells
appeared to respond to just one face out of many presented. An
important conclusion, then, of the Chang and Tsao paper was
that AM face cells are not selective for just one, or a few, faces,
but rather responded to many faces. A conclusion of my work is
that AM neurons use a combinatorial code and thus respond to
many faces. This conclusion supports the Chang and Tsao result
that each AM neuron responds to many faces, but is based on an
alternative approach to their data that does not make use of prin-
cipal components analysis or the special properties of the Chang
and Tsao face space.

The Chang and Tsao database of face stimuli was generated in
the following way: First, they started with a dataset with frontal
views of 200 actual faces and then used a two-step procedure to
find an average of these faces (12, 13). The first step was to find
each face shape from landmarks defining specific features (loca-
tion of mouth, eyes, etc.), and the second step was to determine
the local facial textures. From the averages across face shape and
spatial texture, the authors extracted 200 shape descriptors and
200 local texture descriptors that were used to find the 50 prin-
cipal components describing the average face (25 for shapes and
25 for textures). Starting from the average face and morphing
along each of the 50 principal components (basis vectors for their
face space), the authors constructed a 50-dimensional face space
with realistic face stimuli. The 2,000 face stimuli presented were
a random sample of this face space. Any actual face could also be
projected onto the set of 50 basis vectors (the principal compo-
nents) to characterize it. And the firing rates of the AM neurons
could be used to find the projection of any face stimulus onto the
50-dimensional face space. For a more complete description of
the construction of the face stimuli, refer to Chang and Tsao.

The point of reviewing the construction of the Chang and Tsao
face space was to note the distinctive characteristics of the face
stimuli studied here. Because morphing was used to produce face
stimuli along the 50 basis vectors, the faces in this database might
have been more similar to each other than would be the case for
a “random” sample of faces. By comparing the nearly 2 million
face pairs in the Chang and Tsao database, the most similar faces
should then have had a higher correlation coefficient, and some
face pairs might have been more similar than usual because of
the use of morphing in generating the face space. Of course, any
database with a large number of faces will have some pairs that
are similar. To decide whether generating a database by mor-
phing along principal components would give more similar faces
than a database of randomly selected faces would require a sep-
arate detailed study.

The data presented here highlight a problem relating to under-
standing how the face code is used for face recognition and learn-
ing and what role the properties of the combinatorial face code I
describe here play in these processes. Perhaps unexpectedly, the
combinatorial face code is quite similar to the odor code used by
the fruit fly olfactory system (14). Flies have a gene family with
∼50 members, genes that encode the fly odorant receptors (15).
Each odorant receptor neuron in the fly’s nose expresses a single
member of this family, so there are 50 distinct types of odorant
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receptor neurons, each of which responds to most odors. Thus,
every odor is represented as a point in a 50-dimensional space
by a combinatorial code. Information from the fly’s nose is trans-
mitted to the first olfactory brain structure, the antennal lobe.
The antennal lobe has ∼50 types of projection neurons (16), one
for each olfactory neuron type, that send information to another
olfactory brain structure called the mushroom body (17, 18).

The combinatorial code used by the fly projection neurons has,
for each odor, an exponential distribution of firing rates with the
same mean for all odors (14), just like the AM neurons. Also,
flies can learn to recognize any odor, a recognition they exhibit
by approaching or avoiding the odor according to whether they
have been rewarded or punished in the presence of that odor
(19, 20). Once an odor has been learned, a fly can recognize it
in a fraction of a second, just as we can learn to recognize any
face and can identify a familiar face in a fraction of a second.
Thus, the same problem—identifying an arbitrary point in a high-
dimensional space—is solved by the fly for odor recognition and
the monkey for face recognition.

The fly learns to identify an odor by generating a “tag” in
the mushroom body calyx, a tag being a small population of
neurons, ∼100, that substitutes for the combinatorial odor code
for learning (14). This tag has two main properties: First, all of
the odor information the fly has can be recovered from the tag
(although the tag bears no obvious resemblance to the code for
that odor), and, second, the tags for two odors selected at ran-
dom use nonoverlapping populations of neurons. Having a tag
that is as close to unique as possible for each odor is essential for
learning (which occurs in lobes of the mushroom body) because
only active synapses can have their synaptic strength modified
by learning. If two tags overlap, then each tag would be modi-
fying the strength of the same synapses, and confusion between
the odors could result. Note that the combinatorial code itself
could not be used for learning because the code for any specific
odor would alter synaptic strengths for many other odors. For
the fly, the mechanism through which disjoint tags are generated
depends on having the exponential distribution of firing rates for
every odor (see discussion in ref. 14).

As Quiroga pointed out (21), one of the important next steps
for face cell research will be to go from perception-dominated
face responses to face learning. If we could believe that the same
general strategy works for fly olfaction and monkey face recog-
nition, we can anticipate that the face code would be sent to the
dentate gyrus, where a tag for each face would be generated. This
tag would then be used for learning faces in the CA3 and CA1
regions of the hippocampus.

Possible parallels between the fly and monkey systems can sug-
gest mechanisms, but only new experiments can establish how the
face code is actually used.

Materials and Methods
Experimental Procedures. All of the analysis presented here was based on
a data file supplied by Chang and Tsao. Their original Matlab file was con-
verted to a .csv text file for use with an R script running under RStudio.

Cumulative Histograms. The original .csv data file was converted in R to a
98 ×2,000 data matrix (called D) for the 98 AM neurons and the 2,000 face
stimuli. Each face was associated with 98 firing rates. Two additional matri-
ces were then derived from D. The first was a version of D, called Ds, in which
all 2,000 columns were sorted in increasing order of firing rates, and the sec-
ond version was O, which resulted from applying the R function order( ) to
each column of D. This order( ) function gave the index for each neuron (the
index identifies the AM neurons) in order of increasing firing rates. Having
both Ds and O let me keep track of which neurons were associated with
which rates in Ds. The three matrices D, Ds, and O were used throughout
the rest of the analysis.

The Fig. 2 Graphs. The next step in the analysis was to discover how many
(and which) of the AM neurons failed to respond to each face (AM neurons

that have a firing rate = 0 for a given face). Using the Ds matrix, I con-
structed a 2,000-long vector z with the number of zeros in each column of
Ds, and with O I constructed a list of vectors Z with the AM neuron indices
that corresponded to nonresponding AM neurons. Subtracting each entry
in Z from 98 (total number of AM neurons in each column), I found the
number of neurons that did respond to each face. Also, using Ds and Z, I
found a 2,000-long list (called P) of vectors with the responding AM neu-
ron rates rank ordered. These vectors excluded AM neurons with a firing
rate = 0.

Using probability distributions (represented by cumulative histograms)
rather than the more familiar probability density functions had several
advantages, one of which was that no binning was required. To estimate
a probability distribution for a face that has N neurons firing, the rank-
ordered firing rates were placed on the abscissa of a graph and a vector with
entries (1, 2, 3, · · · , N)/N was put on the ordinate of the graph to provide a
cumulative histogram that was a good approximation to the distribution
function. That is, for each rate on the abscissa, the ordinate was stepped up
by 1/N. Note that this procedure assigned the cumulative probability = 1
for the fastest-firing neuron for each face. As long as the number of firing
neurons was large enough, the most rapidly firing AM neuron would have
a probability distribution value that is close to P(1). The plots in Fig. 2B are
superimpositions like this for the 2,000 vectors in the list P of cumulative
histograms.

To make Fig. 2A, a 2,000-long vector with the mean of each of the
elements in the list P (the AM neuron firing rates for each face) was
constructed, and the values in this list were plotted against the numbers
(1, 2, 3, · · · , 2000) on the abscissa. The superimposed exponential distribu-
tion function just used the R function pexp(x,1/9.7), where the mean across
all 2,000 means of individual distributions was 9.7 Hz.

Because a different number of AM neurons responded to each face, the
sample size varied from face to face, and calculating the mean across vec-
tors of different lengths required care. The way I did this was to use the R
function approx(x, y) that took unequally spaced vectors (like those in the
list P on the abscissa of the graphs for distribution functions) and linearity
interpolated the corresponding ordinate values so that both were equally
spaced. When this was done, the result was 100 abscissa values and 100
ordinate values, so the mean and SD of each across all 2,000 faces could be
found. The estimates of the average were then plotted in Fig. 2 B and C,
and ± 5 times the SD of the mean appears in Fig. 2C.

With fairly small sample sizes (like 61–88 responsive neurons for each
face) of an exponential distribution function, the result was scatter of the
sort shown for the estimates of the observed distribution functions for the
2,000 faces. To see if observed amount of scatter across 2,000 distribution
functions could be accounted for by the sample sizes, I generated 2,000 ran-
dom samples from an exponential distribution function (with the same sam-
ple sizes found for the 2,000 faces) using the R function rexp(L,1/µ), where
L is the length of the sample and µ = 9.7 is the mean of the exponential
distribution. These simulated distribution functions are plotted in Fig. 2D in
just the same way that the observed distribution functions were plotted in
Fig. 2B.

Fig. 1 Graphs. From the matrix D—which gives the firing rate of AM neurons
for each face (the columns of D) and the firing rate for all faces for each AM
neuron (the rows of D)—I constructed a vector r of length 98 that contained
the number of faces with nonzero firing rates for each AM neuron. This
vector was sorted (entries are put in increasing order of faces). The sorted
vector r is on the abscissa of Fig. 1A, and the number of faces that produced
nonzero responses is on the ordinate.

Fig. 1A establishes that all 98 AM neurons respond to a range of hun-
dreds up to 2,000 faces, one of the hallmarks of a combinatorial code. For
Fig. 1B, I noted that the other defining characteristic of a combinatorial
code is that the same AM neuron fires at different rates for various faces. To
examine this property, I used the matrix O which has the identifying index
(1–98) placed in order of firing rate for each face. For two faces (1 and 2),
I plotted in Fig. 1B the 50 fastest firing neuron indices for face 1 on the
abscissa and for face 2 on the ordinate. It is clear from this plot that the
same AM neurons were firing at different rates (specifically, with a differ-
ent rank order) for the two faces. To quantify this difference, I calculated
the correlation coefficient for faces 1 and 2 and obtained value close to
zero. Fig. 1B was just an illustration of the method. I also used the R func-
tion cor( ) to calculate the 2,000 by 2,000 correlation matrix for all pairs of
faces and used the R function upper.tri( ) to replace entries in the matrix
with zeros everywhere in the correlation matrix, except in the upper trian-
gle (which contained correlation coefficients for all pairs of different faces).
This modified correlation matrix was then used to find the mean, range,
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and absolute value of all correlation coefficients for face pairs. Note that
the absolute value was necessary to prevent positive and negative correla-
tion values (which are present in about equal numbers) from canceling in
finding the mean value.
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