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AAA+ disaggregases solubilize aggregated proteins and confer
heat tolerance to cells. Their disaggregation activities crucially de-
pend on partner proteins, which target the AAA+ disaggregases to
protein aggregates while concurrently stimulating their ATPase ac-
tivities. Here, we report on two potent ClpG disaggregase homo-
logs acquired through horizontal gene transfer by the species
Pseudomonas aeruginosa and subsequently abundant P. aerugi-
nosa clone C. ClpG exhibits high, stand-alone disaggregation poten-
tial without involving any partner cooperation. Specific molecular
features, including high basal ATPase activity, a unique aggregate
binding domain, and almost exclusive expression in stationary
phase distinguish ClpG from other AAA+ disaggregases. Conse-
quently, ClpG largely contributes to heat tolerance of P. aeruginosa
primarily in stationary phase and boosts heat resistance 100-fold
when expressed in Escherichia coli. This qualifies ClpG as a potential
persistence and virulence factor in P. aeruginosa.

protein disaggregation | AAA+ protein | heat tolerance |
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M aintenance of protein homeostasis is essential for all living
organisms from bacteria to humans. Crucial components
of the protein quality control system are diverse and include
degradation and refolding factors that are preventing the accu-
mulation of misfolded proteins (1, 2). Severe stress conditions
can overwhelm these protective activities, leading to massive
aggregation of cellular proteins. The loss of proteins by aggre-
gation impedes multiple cellular processes and can ultimately
lead to cell death. Additionally, protein aggregates might cause
toxicity by depleting cellular factors, including molecular chap-
erones. Cellular survival during aggregation causing adverse
growth conditions therefore relies on the solubilization of ag-
gregated proteins (3). This specific protein quality control ac-
tivity is particularly important for bacteria, fungi, and plants as
they are routinely exposed to heat (4, 5).

The major front line against severe heat stress is formed by ring-
forming, hexameric AAA+ disaggregases that exert an ATP-fueled
translocation activity enabling them to extract single polypeptides
from the aggregate by threading them through their central pore.
Tandem AAA+ domains, mediating ATP binding and hydrolysis,
provide the energy for the disaggregation process. Notably, all
characterized AAA+ disaggregases do not function on their own
but strictly require cooperation with partner proteins. These
partners (also called adaptors) target AAA+ disaggregases to the
aggregate surface and concurrently stimulate AAA+ ATPase and
threading activities. Variable N-terminal (N) and inserted middle
(M) domains of AAA+ disaggregases mediate specific binding
partners and are therefore essential for protein disaggregation.

The central disaggregation machinery of most bacteria, fungi, and
plants is formed by an aggregate-binding Hsp70 protein (DnaK in
bacteria) that acts as a partner of central homologous disaggregases:
ClpB (bacteria), Hsp104 (fungi), or Hsp101 (plants). This bicha-
perone system is most important for conferring heat tolerance (4-8).
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Some Gram-positive bacteria (e.g., Bacillus subtilis) lack a ClpB
homolog and protein disaggregation is taken over by the AAA+
chaperone ClpC (9, 10). ClpC activity essentially depends on co-
operation with adaptor proteins, which function mechanistically
similar to Hsp70 by recruiting substrates and stimulating ClpC
ATPase activity (11, 12). The role of Clp disaggregases extends
beyond heat tolerance though, being involved in e.g., virulence,
persistence, oxidative stress, and antibiotic resistance (6, 7, 13-15).
Although the molecular basis of virulence phenotypes mainly re-
mains to be unraveled, ClpB has been shown to be required for
type VI secretion system functionality in Francisella tularensis (16).
Pseudomonas aeruginosa is a highly successful opportunistic
pathogen, which causes a broad range of infections (17). A
worldwide dominating group of P. aeruginosa strains is the clone
C cluster, with members prevalent in the environment and in a
broad spectrum of acute and chronic diseases (18-22). Although
extensive inter- and intraclonal genome variability has been ob-
served, the genetic determinants underlying the successful
spread of P. aeruginosa clone C strains are poorly understood.
The P. aeruginosa core genome and a transmissible locus for
protein quality control 1 (TLPQC-1) present in clone C strains
code for two horizontally transferred AAA+ disaggregases,
termed ClpG/ClpGg; (this work and ref. 23). TLPQC-1 and
ClpG homologs have previously been shown to confer heat re-
sistance in various environmental and clinically relevant bacteria
(23, 24). Here we show that ClpG/ClpGg; work independently
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from partner proteins in contrast to previously characterized
AAA+ disaggregases. ClpG/ClpGg; exhibit high disaggregation
activity in vitro, confer superior heat tolerance to P. aeruginosa
clone C strains, and upon expression in Escherichia coli boost
protein disaggregation and survival during severe heat stress
independent of aggregate-binding Hsp70. Our work leads to the
hypothesis that horizontal transfer of ClpG accompanied the
development of the species P. aeruginosa to increase resistance
toward adverse stress conditions, and acquisition of ClpGgy
contributed to the worldwide transmission of the clone C pop-
ulation in patients and the aquatic habitat.

Results

P. aeruginosa CIpG, a AAA+ Protein, Was Acquired by Horizontal Gene
Transfer. P. aeruginosa clone C strains harbor the so far unchar-
acterized AAA+ proteins ClpG and ClpGgj, which are phyloge-
netically distant from other functionally characterized AAA+
chaperones of Gram-negative and -positive bacteria (SI Appendix,
Fig. S1). ClpG is encoded on the core genome of P. aeruginosa,
while ClpGg; is encoded by TLPQC-1, a part of the Pseudomonas
aeruginosa clone C genomic island 1 (PACGI-1) (Fig. 14) (25).

ClpG and ClpGg; exhibit 63% sequence identity and 76% se-
quence homology and share the same domain organization (Fig. 1B
and SI Appendix, Fig. S2). They harbor two AAA+ domains, an N1
N-terminal domain, an M domain inserted into the first AAA+
domain, and a C-terminal extension (Fig. 1B and SI Appendix, Fig.
S2). The N1 N-terminal domain can be further divided into two
subdomains. The N2 N-terminal subdomain is unique to ClpG/
ClpGg; and includes a putative zinc binding motif containing three
conserved cysteines and a single histidine residue. The N-terminal
subdomain N shows sequence and structural homology to N do-
mains of other Hsp100 protein family members (ClpA, ClpB, and
ClpC). The ClpG/ClpGg; M domains are predicted to form a
coiled-coil structure, similar to ClpB and ClpC M domains (26, 27).
ClpG/ClpGg; lack the conserved tripeptide sequence L/I/V-G-F/L
in the second AAA+ domain, which mediates interaction with the
peptidase ClpP in ClpC (Fig. 1B and SI Appendix, Fig. S2) (28) and
are therefore expected to work independently from ClpP, similar to
ClpB, the major disaggregase in E. coli (29). A ClpB homolog is also
encoded on the P. aeruginosa core genome with 45/62% and 47/64%
sequence identity/similarity to ClpGg; and ClpG, respectively.

The phylogenetic clustering of ClpG and ClpGg; is different
from the major bacterial disaggregase ClpB and, in contrast to
ClpB, does not reflect the species relationship represented by 16S
rRNA alignment (Fig. 1C and SI Appendix, Fig. S34). This sug-
gests that P. aeruginosa acquired clpG and clpGg; by horizontal
gene transfer. Accordingly, close homologs of ClpG present in
individual Pseudomonas species strains are located at a different
position on the genome and such is ClpG of E. coli strain KTE154
located on a genomic island (SI Appendix, Fig. S3B), indicating
frequent acquisition of ClpG homologs by horizontal gene transfer
in proteobacteria.

The phylogenetic distribution of ClpG and ClpGg; is restricted,
compared with widespread ClpB, as these proteins are only found
in selected Gram-negative bacteria (Fig. 1C and SI Appendix, Fig.
S3A4). Furthermore, ClpG is specific to the species P. aeruginosa
within the Pseudomonas genus, while ClpGg; seems to be a clone
rather than a species-specific protein present in isolates of un-
related genera of Gram-negative bacteria, suggesting its recent
acquisition. Summing up, ClpG/ClpGg; proteins form a subgroup
of bacterial AAA+ chaperones that have been acquired by a set of
Gram-negative bacteria via horizontal gene transfer.

ClpG Confers Superior Heat Tolerance to P. aeruginosa Strains. To
elucidate physiological functions of ClpG and ClpGg;, we con-
structed single and double mutants in the P. aeruginosa SG17M
clone C strain. As the most closely related AAA+ chaperones
ClpB, ClpC, and the biochemically uncharacterized ClpG homolog
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ClpK contribute to survival during nonlethal heat stress (4, 9,
24, 30), we tested the mutants for alteration in heat tolerance.
For comparison, we additionally generated a P. aeruginosa AclpB
mutant. As the dna-shsp20¢,-clpGg; operon of TLPQC-1 of the
aquatic isolate SG17M is largely expressed during stationary phase
(25), we compared survival of cells in logarithmic and stationary
growth phases upon lethal heat shock from 20 °C to 50 °C (Fig.
1D and E).

Both ClpGgr and ClpB contribute to heat tolerance in loga-
rithmic growth, while enhanced heat sensitivity is observed in the
AclpB AclpGgr double deletion strain. Subsequent deletion of
clpG further increased heat sensitivity in the triple mutant. Low
levels of ClpGg; and ClpB production can be detected in the
logarithmic growth phase, consistent with the moderate approxi-
mately 10-fold decrease in heat tolerance phenotype of the single
mutants (Fig. 1F). In contrast, in stationary phase, only AclpG
AclpGgy cells showed pronounced 100-fold reduced survival
60 min after heat shock, indicating a dominant role of ClpG/
ClpGg; proteins (Fig. 1D). Additional deletion of cipB in AclpG
AclpGgy cells, however, further increased heat sensitivity, sug-
gesting that ClpB can partially compensate for ClpG function.
Western blot analysis indicated substantial production of ClpGg
during stationary phase and >10-fold lower expression of ClpG,
but barely detected ClpB production (Fig. 1F). These findings are
in agreement with the pronounced and redundant roles of ClpGg;
and ClpG in stationary phase heat tolerance. Together these
findings indicate distinct, but overlapping contributions of ClpG/
ClpGg; and ClpB proteins to bacterial heat tolerance in loga-
rithmic and stationary growth phase. Inducing the expression of
either ClpG or ClpGg; in single copy from the araC promoter at
the chromosomal Tn7 site was sufficient to restore heat shock
tolerance to wild-type levels in the AclpB AclpG AclpGgy triple
deletion mutant (SI Appendix, Fig. S4); thus, the function of ClpB
and ClpG chaperones in thermotolerance is interchangeable.

Since various bacterial AAA+ chaperones cooperate with the
peptidase ClpP in protein quality control, we tested whether
ClpG/ClpGg; function in heat tolerance depends on ClpP (SI
Appendix, Fig. S5). P. aeruginosa SG17M AclpP cells were by far
not as heat sensitive as AclpG AclpG; mutant cells. Addition-
ally, single copy Tn7-based genomic expression of either clpG or
cIlpGg; was sufficient to restore heat tolerance in the AclpG
AclpGr AclpP triple deletion mutant to AclpP cell levels (S
Appendix, Fig. S5). This demonstrates that ClpG/ClpGg; func-
tion independently from ClpP in thermotolerance, consistent
with the absence of the ClpP interaction motif L/I/V-G-F/L in
ClpG/ClpGg; chaperones (Fig. 1B and SI Appendix, Fig. S2).

To generalize the roles of ClpG and ClpB in heat tolerance, we
constructed respective AclpB and AclpG mutants in the well-
investigated nonclone C P. aeruginosa reference strain PAOL,
harboring ClpG, but not ClpGg;. Equally as in SG17M, the con-
tribution of ClpB to heat tolerance was dominant during loga-
rithmic growth, while clpG did not contribute (Fig. 1E). Notably,
heat shock survival of the SG17M strain 30 min after heat shock is
more than 10°-fold higher compared with PAO1 (Fig. 1 D and E).
As the survival rate of the SG17M AclpG s; mutant is still superior
compared with wild-type PAO1, components in addition to ClpGg;
must contribute to survival of clone C SG17M wild-type cells.

Analysis of heat tolerance of strain PAO1 during stationary
phase revealed a major contribution of ClpG as deletion of clpG,
but not clpB, enhanced heat sensitivity (Fig. 1E). Simultaneous
deletion of clpB and clpG substantially increased heat sensitivity,
again revealing overlapping and independent contributions of ClpB
and ClpG chaperones to heat tolerance in P. aeruginosa cells.

AclpG/AclpGg, Mutant Cells Exhibit Increased Protein Aggregation
and Defects in Protein Disaggregation. Thermotolerance in bacte-
ria and fungi is linked to protein disaggregation processes (31,
32) and any defect in this process will therefore cause increased
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Fig. 1. The Hsp100 protein ClpG substantially contributes to heat tolerance of P. aeruginosa. (A) Genomic context of ClpG and ClpGg, located on the core
genome and on the TLPQC-1 part of PACGI-1 in P. aeruginosa SG17M (23). Locus: dna (EWH27923.1), shsp20s, (EWH27924.1). (B) Domain organization of E.
coli ClpB, B. subtilis ClpC, and P. aeruginosa ClpG/ClpGg, proteins. The Hsp100 proteins are composed of two ATPase domains (AAA-1 and AAA-2), an N-
terminal domain (Clp_N), and an inserted middle (M) domain. Clp_N2 of ClpG/ClpGg, includes a potential Zn**-binding motif composed of three cysteines and
a histidine residue. (C) ClpG of P. aeruginosa has a unique position within the phylogenetic tree of CIpG homologs deviating from the phylogenetic position
of ClpB, which is in congruence with the 165 RNA phylogenetic tree. (D and E) Heat tolerance of clone C P. aeruginosa SG17M (D) or nonclone C P. aeruginosa
PAO1 (E) and indicated mutant cells in logarithmic (log) and stationary (stat) growth phase. Cells were grown at 20 °C and subjected to lethal heat shock at
50 °C for 10, 30, and 60 min. Cellular viabilities were determined by spotting serial dilutions (10°~107°) on LB plates. (F) Western blot analysis of ClpG, ClpGg,
and ClpB protein levels in logarithmic and stationary growth phase. 1: SG17M wild type; 2: AclpG, AclpGg, or AclpB deletion mutant; and 3: AclpB AclpG
AclpGg; triple deletion mutant. Purified proteins serve as standards for protein amount.
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protein aggregation at elevated temperatures. To test whether
reduced heat tolerance can be correlated to increased protein
aggregation, we first compared the amount and pattern of ag-
gregated proteins in P. aeruginosa SG17M wild-type and AAA+
chaperone mutant cells after growth at the elevated temperature
of 42 °C for 24 h (Fig. 24 and SI Appendix, Fig. S64). We ob-
served slightly increased protein aggregation in AclpB and
AclpG gy cells; however, a significant increase in protein aggre-
gation required simultaneous deletion of clpG/clpG g, copies and
cIpB correlating with the high heat sensitivity of the triple mutant
(Fig. 1D). Isolated protein aggregates included a vast variety of
cellular proteins. A 15-kDa protein particularly elevated in the
aggregate fraction of the AclpB AclpG AclpGgy triple mutant
was identified by mass spectrometry as the small heat shock
protein IbpA (SI Appendix, Table S1). sHsps coaggregate with
misfolded proteins thereby representing sensitive aggregation
reporters to underline the aggregation phenotype. Similarly, we
found the bacterial Hsp90 chaperones HtpG to be enriched in
the aggregate fraction of triple mutants (Fig. 24 and SI Appen-
dix, Table S1). These findings indicate that ClpB and ClpG/
ClpGg; have overlapping functions in preventing and/or re-
versing protein aggregation. Notably, we also observed single
protein species that already strongly aggregated in AclpB (Lasl)
or AclpGgr (NuoCD) single deletion mutants (Fig. 24 and SI
Appendix, Table S1). This suggests that DnaK-ClpB and ClpGg;
exhibit, to a certain degree, substrate-specific activities.

In an alternative approach, we shifted P. aeruginosa SG17M
wild-type, AclpG AclpGgr, and AclpB AclpG AclpGg; mutant
cells from 30 °C to 42 °C for 60 min and allowed for recovery
upon subsequent incubation at 30 °C (Fig. 2B and SI Appendix,
Fig. S6B). Protein aggregates were enhanced in AclpG AclpGgy
and AclpB AclpG AclpGgy cells and subsequent heat shock in-
creased the amount of aggregated proteins in all cells. Upon
return to 30 °C, protein aggregates were partially removed and
this process occurred with similar relative speed, although AcipB

N 1 2 3 4
A & B vV oy v
o 220G
R 60 min
L 6 60 &Q,é' onsoc[ | 30¢
S RIIFIE " 0 60 120min
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Fig. 2. Enhanced protein aggregation in P. aeruginosa SG17M cells lacking
ClpB and ClpG/ClpGg,. (A) P. aeruginosa SG17M and mutants were cultured
at 42 °C for 24 h and protein aggregates were isolated. Proteins that spe-
cifically aggregate in AclpGg, (NuoCD) and AclpB (Lasl) cells are indicated.
Aggregation of the HtpG and IbpA chaperones is most pronounced in the
AclpB AclpG AclpGg, triple mutant. (B) P. aeruginosa SG17M and mutants
were grown at 30 °C overnight (1) and incubated at 42 °C for 60 min (2).
Next, cells were shifted to 30 °C for 60 min (3) and 120 min (4) for recovery.
Protein aggregates were isolated at indicated steps and analyzed by SDS-
PAGE. For semiquantitative comparison, the density of the entire lane was
estimated by ImageJ with SG17M (A) or lane 1 of SG17M (B) arbitrarily set as
1. These experiments were repeated twice with similar results and one
representative shown.

E276 | www.pnas.org/cgi/doi/10.1073/pnas.1712051115

AclpG AclpG gy cells still contained a high aggregate load after a
120-min incubation. These findings support complementary ac-
tivities of ClpB and ClpG/ClpGg; chaperones in P. aeruginosa
protein quality control and point to a function of ClpG/ClpGgy
in handling of protein aggregates.

ClpG Is a Potent Disaggregase Without Any Accessory Factor. As
ClpB and ClpG proteins seem to exert overlapping activities in
P. aeruginosa cells, we wanted to compare their biochemical prop-
erties. As ClpGg; is more widespread than ClpG, and AclpGg; cells
are more heat sensitive compared with AclpG (Fig. 1D), we focused
our analysis largely on ClpGg; and subsequently confirmed key
features for the ClpG counterpart.

We purified ClpGg; and first tested for nucleotide-driven
hexamer formation as a common feature of AAA+ chaper-
ones. ClpGg; oligomerization was analyzed by size exclusion
chromatography (SEC) (SI Appendix, Fig. S7) and transmission
electron microscopy (TEM) (SI Appendix, Fig. S8). In the ab-
sence of ATP, ClpGg; is mainly present as a monomer (S Ap-
pendix, Fig. S7). ClpGg;j oligomers formed upon addition of ATP
(2 mM), although oligomerization was not complete under the
given experimental conditions (SI Appendix, Fig. S7). Partial
oligomer formation of ClpGg; was also observed in TEM
(+ATPyS), although less efficient compared with E. coli or P.
aeruginosa ClpB (SI Appendix, Fig. S84). The electron density
map of ClpGg; oligomeric particles revealed the formation of a
hexameric ring structure composed of two layers, likely formed
by AAA-1 and AAA-2 domains (SI Appendix, Figs. S8 B and C
and S9). While ClpGg; has an extended N-terminal domain, the
electron density map of ClpGg; is flattened in the N-terminal
region and the map is likely restricted by a high mobility of the
N-terminal extension. Fitting of the ClpGg; map with a ClpB
structural model (Protein Data Bank ID code 4D2Q) (33)
revealed missing density for ClpB M domains, which can be
explained by the reduced size of the ClpGg; M domain, but also
by the limited resolution of the map. Together these findings
show that ClpGg; forms hexamers in an ATP-dependent manner
as reported before for other AAA+ chaperones.

Next, we tested whether the complementary functions of ClpB
and ClpGg; observed in vivo can be documented as complemen-
tary chaperone activities in vitro and therefore tested for disag-
gregation activity of ClpGg;. We monitored the disaggregation of
heat-aggregated malate dehydrogenase (MDH), which can be ef-
ficiently rescued by the DnaK-ClpB bichaperone system. To cou-
ple the fast solubilization of MDH aggregates with fast MDH
refolding, all assays were performed in the additional presence of
the E. coli GroEL/GroES chaperone system. The GroEL/GroES
system on its own does not exhibit any disaggregation activity and
only accelerates refolding of soluble, unfolded MDH after its re-
moval from protein aggregates (34). E. coli ClpB (EcClpB) did not
exhibit disaggregation activity on its own and essentially required
cooperation with the E. coli DnaK chaperone system (Dnak,
Dnal, GrpE: EcKJE). The EcClpB-EcKIJE bichaperone system
reactivated 80% of aggregated MDH in 60 min (Fig. 34). A
comparable disaggregation activity was determined for the P. aer-
uginosa bichaperone system (PaClpB-PaDnaK-EcJE) (SI Appen-
dix, Fig. S104). Also, PaDnaK and PaClpB were interchangeable
with their E. coli counterparts (SI Appendix, Fig. S104), demon-
strating full disaggregation potential of P. aeruginosa ClpB and
DnaK. Strikingly and in contrast to EcClpB and PaClpB, P. aer-
uginosa ClpGg; exhibited high disaggregation potential on its own
and rescued heat-aggregated MDH with an activity comparable to
the EcClpB-EcKJE bichaperone system (Fig. 34).

To substantiate this stand-alone disaggregation activity of
ClpGgr, we used heat-aggregated luciferase as alternative sub-
strate. ClpGg; was again highly active without assistance by ad-
ditional factors and even showed a twofold increased yield of
disaggregation/refolding of aggregated luciferase compared with
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Fig. 3. ClpGg shows potent disaggregating activity in vitro and ex vivo. (A
and B) Refolding of heat-aggregated malate dehydrogenase (MDH) and
luciferase by the E. coli DnaK-ClpB bichaperone system (EcClpB and EcKJE) or
ClpGg,. The activities of native enzymes were set as 100%. (C) Refolding of
aggregated luciferase was monitored in the absence or presence of EcKJE
and increasing concentrations of ClpGg (*P < 0.05; **P < 0.01). (D) Resolu-
bilization of heat-aggregated P. aeruginosa proteins by ClpGg, ex vivo.
Soluble P. aeruginosa SG17M crude extract from cells grown at 30 °C for 24 h
was heat treated at 42 °C for 15 min. Insoluble protein aggregates were
isolated and subsequently subjected to resolubilization by ClpGg/ATP
(2 mM) for 60 min. Insoluble and soluble protein fractions were separated
and analyzed by SDS-PAGE.

EcClpB-EcKJE (Fig. 3B). A robust, stand-alone luciferase
reactivation activity was also determined for P. aeruginosa ClpG,
confirming the potent and independent disaggregation activity of
this AAA+ chaperone (SI Appendix, Fig. S10B).

EcKIJE initiates protein disaggregation by the bichaperone
system by recruiting and activating EcClpB at the aggregate surface.
As ClpG can act on protein aggregates on its own, we tested
whether DnaK and ClpG can cooperate at the aggregate surface or
whether they compete for binding to the aggregated substrate. To
this end, we compared the luciferase disaggregation activity of
ClpGg; at different concentrations (0.25-2 pM) either alone or in
the presence of EcKJE (1 uM DnaK, 0.2 pM Dnal, 0.1 pM GrpE),
which exhibits only low level disaggregation activity in the absence of
EcClpB (Fig. 3C). EcKJE reduced reactivation of heat-aggregated
luciferase by ClpGg; if ClpGg; was present at lower concentration
(0.5 pM) and a comparable inhibitory effect was noticed in the
presence of PaKEcJE (Fig. 3C and SI Appendix, Fig. S10C). In-
creasing the ClpGg; concentration to 2 pM restored efficient lu-
ciferase reactivation in the presence of EcKJE and proceeded with
the same disaggregation rate as determined in the absence of
EcKIJE (Fig. 3C). These findings indicate that the DnaK chaperone
system and ClpGg; do not cooperate in protein disaggregation but
instead compete for binding to the aggregate surface. The DnaK-
ClpB bichaperone system and ClpG/ClpGg; therefore form in-
dependent disaggregase systems operating on the same substrate.

Next, we tested whether the uncovered disaggregation activity
of ClpGg; is promiscuous and active toward aggregated proteins
from P. aeruginosa SG17M. For this purpose, a lysate of soluble
proteins was derived from P. aeruginosa stationary phase cells,
subjected to heat denaturation and protein aggregates were
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isolated (Fig. 3D). Aggregates were incubated with and without
ClpGg; in the absence and presence of ATP. We observed a
spectrum of solubilized protein species for ClpGg; + ATP, al-
though some minor bands were also observed without ATP,
likely representing ClpGg; degradation products present in the
ClpGg sample. The ATP-dependent disaggregation activity of
ClpGgr was most evident from the significant reduction in pro-
tein aggregate levels compared with control reactions (Fig. 3D
and SI Appendix, Fig. S10D). We infer that ClpGg; resolublizes
aggregates of heat-denatured proteins with a broad specificity.

ClpGg Can Replace DnaK-ClpB and Hsp104 Disaggregase Functionality.
To demonstrate that the identified ClpG/ClpGg; disaggregation
activity is operative in diverse genetic backgrounds (35), we tested
whether ClpGg;y can replace ClpB and Hsp104 activities in E. coli
and Saccharomyces cerevisiae cells. We first expressed ClpG and
ClpGg in E. coli wild-type and AclpB mutant cells and tested for
heat tolerance upon temperature upshift from 30 °C to 50 °C (Fig.
4A). E. coli AclpB cells were less heat tolerant compared with wild-
type cells and viability was 10*-fold reduced 60 min after heat shock,
in agreement with literature (4). Expressing either ClpG or ClpGg;
in AclpB cells fully restored thermotolerance, demonstrating that
ClpG/ClpGg; can entirely take over ClpB disaggregase function in
vivo. Notably, expressing ClpGg; in E. coli wild-type cells conferred
superior thermotolerance, increasing the fraction of viable cells
100-fold after heat shock (120 min) compared with wild-type cells
harboring an empty control plasmid (Fig. 44).

In a complementary approach we assessed the ability of
ClpGg; to reactivate aggregated proteins in E. coli AclpB cells
using thermolabile YFP-luciferase as disaggregation reporter
(Fig. 4B). YFP-luciferase produced at 30 °C in E. coli wild-type
and AclpB cells additionally expressed ClpGgr. After a heat
shock to 45 °C in the presence of the protein synthesis inhibitor
erythromycin and subsequent incubation at 30 °C, E. coli wild-
type cells recovered 15% of luciferase activity within 90 min,
whereas AclpB cells only allowed for 3% luciferase refolding.
This ClpB-specific resolubilization defect of AclpB cells could be
rescued by ClpGg; expression (Fig. 4B). Here, 30% of YFP-
luciferase was refolded within 90 min, exceeding the reac-
tivation potential of E. coli wild-type cells. This confirms that the
presence of the alternative ClpGg; disaggregation system in-
creases the ability of E. coli cells to rescue aggregated proteins.

As ClpB cooperates with the accessory chaperone DnakK, we
tested the effect of clpG¢; expression in E. coli dnakl03 mutant
cells, which synthesize a truncated nonfunctional DnaK protein
(36). clpG; expression restored the temperature-sensitive growth
phenotype of dnaK103 mutant cells at 42 °C (Fig. 4C). Further-
more, clpGg; expression reestablished heat tolerance upon 50 °C
heat shock to dnaK103 mutant cells, which otherwise lost viability
within 10 min (Fig. 4D), again with an efficiency similar to plasmid-
encoded DnaK wild type. The presence of ClpGg; in dnaK103
cells reduced the amount of protein aggregates isolated at 30 °C
and allowed for aggregate removal during a subsequent recovery
period after heat shock to 45 °C, in contrast to dnaK103 control
cells harboring an empty vector (Fig. 4E and SI Appendix, Fig.
S11). Together these findings substantiate a DnaK-independent
disaggregation activity of ClpGgj, which can compensate for the
broad protein folding defects associated with loss of functionality
of the DnaK (Hsp70) partner chaperone.

In an additional approach, we analyzed whether ClpGg; can
replace Hspl04 function in the propagation of amyloid-like
protein aggregates, prions, in yeast cells. Prion fibril fragmen-
tation, which leads to the production of smaller propagons that
are transmitted to daughter cells, is executed by the Hsp104
disaggregase. To monitor propagation of the yeast prion states
[PSI+] and [URE3], originating from amyloid-formation of the
Sup35 and Ure2 proteins, we made use of the yeast reporter
strains 779-6A and 1075. In these strains, the production of the
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Fig. 4. ClpGg, restores disaggregase function in the absence of E. coli ClpB and DnaK. (A) E. coli wild-type and AclpB cells expressing clpG or clpGg, were grown at
30 °C and shifted to 50 °C. Cellular viabilities were determined by spotting serial dilutions (10°-107%) of cells on LB plates. (B) E. coli wild-type and AclpB cells (with and
without c/pGg) expressing YFP-luciferase were grown to midlogarithmic growth phase at 30 °C. Protein synthesis was stopped by addition of erythromycin and cells
were shifted to 45 °C for 20 min followed by a recovery period at 30 °C. Luciferase activity was determined prior to (set to 100%) and post heat shock and at the
indicated time points during cellular recovery. p = pJN105; p clpG, p clpGg, = respective genes cloned in pJN105 (A and B). (C) Serial dilutions of E. coli dnaK103 mutant
cells expressing dnak or clpGg, were spotted on LB plates with and without 100 M isopropyl $-D-1-thiogalactopyranoside (IPTG) and incubated at 30 °C and 42 °C.
(D) E. coli dnaK103 mutant cells expressing dnaK or clpGg were grown at 30 °C in the presence of 250 pM IPTG and shifted to 50 °C. Cellular viabilities were de-
termined by spotting serial dilutions (10~'-1075) of cells on LB plates. (E) E. coli dnak 103 mutant cells harboring an empty vector (p) or expressing clpGg, (p clpGg) were
grown at 30 °C in the presence of 250 uM IPTG and shifted to 45 °C for 20 min followed by a recovery period at 30 °C. Soluble and insoluble protein fractions were

isolated at the indicated time points and analyzed by SDS-PAGE (S/ Appendix, Fig. S11). p = pUHE21; p dnaK, p clpGg = respective genes cloned in pUHE21 (C-E).

Ade?2 reporter protein required for adenine biosynthesis depends
on the respective prion state. We expressed ClpGg; in the yeast
reporter cells and concurrently inhibited the endogenous Hsp104
disaggregase by low concentrations of guanidine hydrochloride
(GuH(l), a specific inhibitor of Hsp104 activity (37). We confirmed
that ClpGg; disaggregation activity is only mildly affected by 5 mM
GuHC], in contrast to Hsp104, which is strongly inhibited (SI Ap-
pendix, Fig. S124). On adenine-limiting medium, the yeast re-
porters form white colonies if the prion state is maintained but turn
red upon prion loss because of the accumulation of a metabolite of
the Ade2 substrate. Hsp104 inhibition led to formation of red re-
porter colonies, indicating prion loss, while the presence of ClpGg;
changed colony color to pink (SI Appendix, Fig. S12B). This sug-
gests a weak [PSI+] and [URE3] phenotype and thus partial
ClpGg; activity in prion maintenance. On medium lacking adenine,
loss of the prion state abolishes growth of the reporter strains. On
such a medium, ClpGg; allowed for growth of the 1075, but not the
779-6A strain, again suggesting that ClpGg; can partially rescue
Hsp104 functionality in yeast prion propagation. Notably, a com-
parable, partial activity in yeast prion propagation had been de-
termined for E. coli ClpB, when coexpressed with cooperating
E. coli DnaK in yeast prion reporter cells (38).

ClpG Overcomes Mechanistic Restrictions of ClpB, Rationalizing Its

Factor-Independent Disaggregation Activity. ClpG/ClpGg; show
high stand-alone disaggregation activity, whereas ClpB strictly re-
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quires cooperation with its Hsp70 (DnaK) partner chaperone. ClpB
has low basal ATPase activity and does not bind protein aggregates
efficiently, while DnaK targets protein aggregates to ClpB to con-
currently stimulate ClpB ATPase activity (39-42). We speculated
that the partner-independent ClpG/ClpGg; and DnaK-dependent
ClpB disaggregation activities must be reflected in different bio-
chemical properties of the AAA+ chaperones. We therefore tested
whether ClpG/ClpGg; and ClpB differ in (i) ATPase activities and
(i) their abilities to bind model protein aggregates.

ClpGg; and ClpG show a 12-fold higher basal ATPase activity
compared with EcClpB (Fig. 5 and SI Appendix, Fig. S13). ClpG/
ClpGg; therefore do not require stimulation by a partner protein to
reach increased ATPase activities. The ATPase activity is specific,
as a double Walker B mutant in ClpGg; (ClpGgr g3s3a E723a) did
not display ATPase activity (SI Appendix, Fig. S13). We next
assessed substrate-stimulated ATPase activities by using casein and
peptide Bl (AHAWQHQGKTLFISRKTYRIC) as these model
substrates are directly recognized by ClpB without DnaK assistance.
Casein binds to the N-terminal domain and the substrate processing
pore site of ClpB, whereas peptide B1 exclusively interacts with the
central ClpB pore site (43). Casein and peptide B1 stimulated ClpB
ATPase activity by 8- and 12-fold, respectively (Fig. 5). ClpGgr
ATPase activity was also increased by peptide Bl (1.8-fold) while
casein showed no effect, indicating that ClpGg; and ClpB differ in
substrate recognition in parts.
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Difference in substrate binding can be likely attributed to differ-
ences between the N-terminal domains of ClpG/ClpGg; and ClpB.
Its unique N1 domain might hinder ClpG/ClpGg; to interact with
casein while enabling the binding to protein aggregates at the same
time. To assess the role of the ClpG/ClpGg; N-terminal domains we
either deleted the entire N-terminal region (AN1) or only N2, the
very N-terminal, ClpG/ClpGgr-specific extension harboring a puta-
tive Zn”*-binding motif (AN2) (Fig. 64). ClpG/ClpGg; wild-type
and N-terminal deletion constructs were expressed at increased lev-
els largely comparable for all constructs in P. aeruginosa AclpB
AclpG AclpG sy mutant cells and analyzed for their ability to restore
heat tolerance upon temperature upshift to 50 °C (Fig. 6B and SI
Appendix, Fig. S14). All ClpG/ClpGg; N-terminal deletion variants
failed to restore heat tolerance, indicating that the unique N-terminal
extensions are essential for functionality (Fig. 6B and SI Appendix,
Fig. S2). In contrast, deletion of the N-terminal domain of P. aeru-
ginosa ClpB (AN-ClpB) still conferred heat tolerance, in agreement
with former studies showing that the N-terminal domain of EcClpB
is not essential for protein disaggregation (Fig. 6B) (44-47).

To further characterize the role of the unique N2 N-terminal
extension, we purified and characterized AN2-ClpG/AN2-ClpGg;
deletion mutants. The deletions did not affect global ClpG/
ClpGg protein structure as revealed by CD spectroscopy (S
Appendix, Fig. S15). Also ATP-dependent oligomerization of
AN2-ClpGg; was similar to ClpGgy and ClpG (S Appendix, Fig.
S7). Consistent with the in vivo results, reactivation of aggregated
luciferase by ClpG/ClpGg; in vitro was strongly reduced (ClpGar)
or entirely abrogated (ClpG) upon deletion of the N2 N-terminal
extensions in contrast to ClpB (Fig. 6C and SI Appendix, Fig. S16).

The crucial role of the ClpG/ClpGg; N2 N-terminal extension
for heat tolerance and protein disaggregation could be explained
by the N-terminal domain to control ClpG/ClpGgr ATPase
function or to target ClpG/ClpGg; to protein aggregates. Whereas
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Fig. 5. ClpGg exhibits high basal ATPase activity and differs in substrate
specificity. Basal and substrate-stimulated ATPase activities of EcClpB and
ClpGg, were determined. The substrates, casein and peptide B1, enhanced
the ATPase activity of ClpB, while ClpGg, activity was only further enhanced
by peptide B1 (***P < 0.001; EcClpB compared with ClpGg, and ClpGg/
EcClpB + substrate stimulation).
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basal ATPase activity of AN2-ClpG was comparable to ClpG,
AN2-ClpGg; exhibited a 5.8-fold increased ATPase rate com-
pared with ClpGgy, indicating that the N2 part of the N-terminal
extension down-regulates ATPase activity (Fig. 6D). We next
performed an in vitro binding assay with ClpG/ClpGg; wild-type
and the N2 deletion variants using aggregated luciferase as sub-
strate to test for N2 subdomain-mediated aggregate targeting. The
binding of ClpG/ClpGg; to aggregated luciferase was monitored
in the presence of nonhydrolyzable ATPyS, which stabilizes
Hsp100-substrate interaction. As luciferase aggregates are insol-
uble, binding of ClpG/ClpGg; was monitored by separating sol-
uble and insoluble protein fractions by centrifugation (Fig. 6F).
We ensured that only very minor amounts of ClpG/ClpGg; and
their N-terminal deletion variants are found in the pellet fraction
in the absence of protein aggregates (SI Appendix, Fig. S17). We
observed substantial binding of full-length ClpG/ClpGg; to both
aggregated substrates and stronger binding compared with ClpB
(Fig. 6E), confirming that ClpB requires DnaK as crucial acces-
sory factor for aggregate binding (48). Binding to ClpG was en-
tirely dependent on its unique N-terminal extension as AN2-ClpG
no longer bound aggregated proteins (Fig. 6E). In contrast, AN2-
ClpGg; binding to protein aggregates was not affected, unraveling
an unexpected difference between ClpG and ClpGg;. Notably,
AN2-ClpGg; still retained minor disaggregation activity in con-
trast to AN2-ClpG (Fig. 6C), consistent with its ability to still bind
aggregated luciferase (Fig. 6F).

Together these finding provide a mechanistic rationale for why
ClpG/ClpGg; act as potent, stand-alone disaggregases and un-
ravel distinct functions of the unique N-terminal extensions in
ATPase control in ClpGg; and aggregate targeting in ClpG ra-
tionalizing their crucial roles in protein disaggregation.

Discussion

In this work, we characterized the AAA+ chaperones ClpG/
ClpGg; as stand-alone disaggregases, which confer superior heat
tolerance to bacteria (Fig. 7). So far protein disaggregation and
heat tolerance in bacteria have been predominantly linked to the
AAA+ disaggregase ClpB, which forms a bichaperone system
with the DnaK (Hsp70) partner chaperone. ClpB activity is
crucial for thermotolerance in Gram-negative (4, 49, 50), but also
Gram-positive bacteria (6, 51). The lack of ClpB in some Gram-
positive bacteria is compensated by the presence of an alternative
disaggregation system composed of ClpC and its adaptor proteins
for aggregate targeting and ATPase activation (12, 30, 52, 53).
While other bacterial AAA+ proteins (CIpE and ClpL) have also
been implicated in protein disaggregation, a disaggregation ac-
tivity has either not been documented or is very limited in vitro
(51, 54-56). Here, we demonstrate that ClpG/ClpGg; overcome
both mechanistic restrictions of ClpB and ClpC by exhibiting a
high basal ATPase activity and directly binding to protein aggre-
gates. These features allow for efficient ATP-dependent threading
of aggregated proteins explaining why ClpG/ClpGg; function in
protein disaggregation without assistance of accessory factors.
The unique N2 N-terminal extensions are characterized by
distinct amino acid sequences, while ClpGg; harbors an addi-
tional insertion (SI Appendix, Fig. S2). This sequence diversity is
reflected by functional diversity, as the N2 subdomain is essential
for aggregate targeting of ClpG, while its counterpart regulates
ClpGg ATPase activity. Furthermore, the unique N2 N-terminal
extensions likely interplay with the C-terminal “classical” Hsp100
N domains in ClpG/ClpGgr-mediated disaggregation. Hsp100 N
domains can directly bind substrates (57) and coordination of
both ClpG/ClpGg; N-terminal domains might be crucial for ac-
tivity. Dissecting the interplay and specific roles of ClpG/ClpGg
N-terminal domains will be essential to understand the mecha-
nistic basis of these stand-alone disaggregases. Such studies will
also unravel whether substrate specificity of ClpG/ClpGg; is
restricted to thermally aggregated proteins or extends to, e.g.,
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irreversible oxidized proteins as it is the case for ClpB of My-
cobacterium tuberculosis (14).

ClpG/ClpGg; are as potent as the DnaK-ClpB system in
protein disaggregation, can complement the thermotolerance
defect of E. coli AclpB and dnaK103 mutant cells, and together
increase thermotolerance in P. aeruginosa SG17M clone C cells
substantially. We even noticed higher disaggregation activity of
the horizontally transferred ClpGg toward aggregated luciferase
in vitro and in vivo, potentially explaining why ClpGg; is pro-
miscuous and functional in many bacteria, including E. coli, even
compared with ClpG (Fig. 4) (23, 35).

As the well-established disaggregase ClpB, ClpG/ClpGgi-me-
diated protein disaggregation is linked to refolding of aggregated
substrates, independent from the peptidase ClpP. This underlines
the concept that thermotolerance largely relies on reactivation of
essential proteins aggregated upon heat induction (3, 58).

What is the relationship between the coexisting disaggregation
systems, DnaK-ClpB and ClpG/ClpGg;? We show here that both
systems work independently from one another and exert largely
overlapping and compensatory activities. Constitutive expression
of either ClpB or ClpG/ClpGg; to higher levels largely restores
heat tolerance of P. aeruginosa cells lacking the chromosomal
copies of all disaggregases (Fig. 6B and SI Appendix, Fig. S4).
The contribution of the three disaggregase systems to P. aeru-
ginosa heat tolerance differ in logarithmic and stationary phase.
Strong increase of ClpG/ClpGgy levels in P. aeruginosa clone
C SG17M cells during stationary phase, likely enables ClpG/
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Fig. 6. The unique N-domain extensions of ClpG/

ClpGg are essential for disaggregation activity.

(A) Domain organization of ClpG/ClpGg, and ClpB.

The generated N-terminal deletion variants of ClpG/

ClpGg (AN1 and AN2) and ClpB (AN) are indicated

(B) P. aeruginosa SG17M AclpB AclpG AclpGg

expressing full-length, N-terminal truncated ClpG/

ClpGg, or ClpB proteins from the vector pJN105 were

g subjected to heat shock at 50 °C for 10 min and

30 min. Cellular viabilities were determined by spot-

ting serial dilutions (10°-107°) of cells on LB plates. p =

pJN105. (C) Refolding of heat-aggregated luciferase

was monitored in the presence of indicated chaper-

ones. The activity of native luciferase in the presence

of wild-type chaperones ClpG, ClpGg, and ClpB after

90 min of refolding was set as 100%. (D) Basal ATPase

activities of indicated ClpG/ClpGg, variants were de-

termined. (E) Experimental scheme for monitoring

binding of ClpG/ClpGg and ClpB proteins to heat-

aggregated luciferase. (Left) Heat-aggregated lucifer-

ase was incubated with the indicated chaperones in

the presence of 2 mM ATPyS. Soluble (Sup.) and in-

soluble (pellet) fractions were analyzed by SDS-PAGE.

(Right) Intensities of protein bands were quantified by

ImageJ with the fraction (%) of chaperone present in

the pellet fraction versus chaperone without luciferase

aggregates calculated. Binding experiments were

% U, o performed three times with a representative SDS-

"’c',% ‘,’c‘/ “8 PAGE shown. Quantifications are based on three in-
.o% dependent experiments (*P < 0.05; ***P < 0.001).
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ClpGg; to outcompete Dnak, rationalizing their growth phase-
specific contributions to heat tolerance (Fig. 7).

Despite superior biochemical performance, why is ClpG/ClpGgy
not more widespread? No detrimental effect was observed
upon overproduction of ClpG/ClpGg;, but expression of shsp20s;
encoding the small heat shock protein in the dna-shsp20¢,-clpGe
operon has been detrimental in E. coli. Furthermore, we can only
speculate that, for example, the high intrinsic ATPase activity of
ClpG/ClpGg; is hard to control. Alternatively, to covalently link
the substrate binding domain to disaggregase functionality in the
same protein may provide reduced regulatory flexibility. ClpG/
ClpGgp might have developed in bacteria indwelling a demanding
ecological niche in parallel to the Hsp70-ClpB system, or ClpG/
ClpGg; is an evolutionary younger protein. Recent acquisition of
ClpGg; homologs, often on plasmids and in more than one copy,
by unconventional pathogens associated with industrial and clinical
settings (see also below) suggests that certain man-made environ-
ments provide a strong selection pressure aiding predominantly the
spread of the dna-shsp20s-clpGg; core unit (59, 60).

Bioinformatic analysis indicates that both copies of the ClpG
disaggregase, clpG and clpG sy, have been acquired by horizontal
gene transfer. Growth benefits provided by mobile genetic ele-
ments have been so far largely linked to acquisition of antibiotic
resistance, specific virulence factors, or the utilization of alter-
native carbon sources (e.g., degradation of aromatic compounds)
(61, 62). Recently, a growth advantage provided by transmissi-
ble loci is becoming apparent: increased bacterial fitness during
stress conditions (23, 25, 63). Exposure to elevated temperature
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Fig. 7. The ClpG/ClpGg, disaggregases increase disaggregation potential
and heat resistance of P. aeruginosa SG17M. P. aeruginosa clone C strain
harbors the classical disaggregating DnaK-ClpB bichaperone system and the
ClpG and ClpGg, disaggregases (23). ClpG is located on the core genome,
while ClpGg, is located on the TLPQC-1 locus as part of PACGI-1 genomic
island. The contributions of the different disaggregating systems to heat
tolerance differ at logarithmic and stationary growth. ClpB/ClpGg, are most
important for heat resistance during logarithmic growth, while CIpG/ClpGg,
dominate heat tolerance during stationary phase. Compared with ClpB,
ClpG/ClpGg, have unique and extended N-terminal N1 domains to bind to
substrates. TLPQC-1 encoding ClpGg, is also present in outbreak strains of K.
pneumoniae and E. coli.

represents one of the most adverse conditions for environmental
bacteria, but is also relevant for pathogens in interaction with the
host. Acquisition of the ClpG/ClpGg; disaggregases boosts protein
quality control and increases viability of P. aeruginosa clone C
during severe heat stress. The identification of NuoCD, subunits of
the NAD quinolone oxidoreductase, as potential ClpGg; substrates
(Fig. 2) suggests a role of ClpGg in energy production through
respiration. The ClpB disaggregase plays a role in virulence and
host persistence of pathogenic and commensal bacteria (6, 7, 13—
16). It remains to be tested whether a AclpG AclpGs; mutant ex-
hibits phenotypes beyond heat sensitivity such as in microbial-host
interactions. A potential function in virulence is emphasized as
ClpG is uniquely encoded on the core genome of P. aeruginosa, the
most important human nosocomial pathogen of the Pseudomonas
genus. Remarkably, more clones of P. aeruginosa, such as clone J
strains successful in acute and chronic infections and the aquatic
habitat, additionally harbor ClpGg; on PACGI-1/TLPQC-1 (25),
while the PA14 strain, which is lacking PACGI-1/TLPQC-1, is
predominantly found in acute infections (22). The occurrence of
ClpGg; extends beyond P. aeruginosa as ClpGg is found in ex-
tremely heat-tolerant E. coli from food factories (2% of all strains),
where ClpGgr and TLPQC-1 additively contribute to heat toler-
ance (35). Also 2/3 of Klebsiella pneumoniae strains from the clinical
environment harbor ClpGg; (called ClpK in this species) suggesting
that K. pneumoniae requires the extended heat tolerance phenotype
to successfully colonize the clinical habitat (60). Infections caused
by K. pneumoniae harboring clpG g, are, however, not characterized
by increased virulence (60). This indicates heat tolerance to become
an increasingly important virulence, persistence, or resistance fac-
tor, probably promoted by modern food production and medical

1. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU (2013) Molecular chaperone
functions in protein folding and proteostasis. Annu Rev Biochem 82:323-355.

Lee et al.

sterilization procedures that involve heat treatment. Since ClpG/
ClpGg; are AAA+ chaperones in P. aeruginosa clone C and other
common clonal strains of different genera, they might represent a
potential target to develop novel antimicrobial or antivirulence
compounds and approaches.

Materials and Methods

Detailed information of all experimental procedures is provided in S/ Appendix.

Strains, Plasmids, and Growth Condition. The aquatic isolate P. aeruginosa
SG17M was selected as the representative clone C strain. All strains, plas-
mids, and primers used in this study are listed in S/ Appendix, Tables S2-54.
Growth conditions and construction of mutants and plasmids are described
in SI Appendlix.

Bioinformatic Analysis. Protein sequences of ClpG (acc. no. EWH25562), ClpGg,
(acc. no. EWH27925), and ClpB (acc. no. EWH24017) of P. aeruginosa SG17M
(25) were used as queries to search for ClpG, ClpGg,, and ClpB homologs as
described in S/ Appendix.

Heat Shock Tolerance Assay. P. aeruginosa cells incubated in LB broth with
shaking at 20 °C were harvested from logarithmic (ODgoo = 0.7) and sta-
tionary (ODgoo = 2.5) phase. The cells were exposed to 50 °C for 10, 30, and
60 min and subsequently cell viability was determined by the spotting assay
as described in S/ Appendix.

In Vitro Disaggregating Activity Assay. Disaggregating activity was de-
termined with minor modification (64) as described in S/ Appendix. MDH and
luciferase (both from Roche) were used as model substrates.

In Vivo Chaperone Assay. An E. coli MC4100 AclpB strain expressing YFP-
luciferase and the respective chaperone was cultured in LB medium at
30 °C. To heat shock, cells were incubated at a nonlethal 45 °C for 20 min.
Afterward, the cells were incubated at 30 °C for recovery and luciferase
activity was measured at certain time points as described in S/ Appendix.

ATPase Assay. ATPase activity was determined by a coupled ADP monitoring/
recycling reaction of pyruvate kinase (PK) and lactate dehydrogenase (LDH) as
described in S/ Appendix.

Prion Propagation Test. Propagation of [PSI+] and [URE3] was monitored by
their ability to promote expression of Ade2p using yeast strains, 779-6A
(MATa, kar1-1, SUQ5, ade2-1, his3A202, leu2A1, trp1A63, and ura3-52) and
1075 (MATw, kar1-1, Ppa;s::ADE2, his3A202, leu2A1, trp1A63, and ura3-52)
(38) as described in S/ Appendix.

Disaggregation of Proteins in Heat-Denatured Crude Extracts. Disaggregation
of proteins in heat-denatured crude extracts was performed with minor
modifications (32) as described in S/ Appendix.

Isolation of in Vivo Protein Aggregates. In vivo protein aggregates were ex-
amined with minor modifications (65) as described in S/ Appendlix.

In Vitro Substrate Binding Assay. The interaction between denatured lucif-
erase and Clp protein variants was conducted as described in SI Appendix.
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