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Deep convolutional neural networks have been successfully
applied to many image-processing problems in recent works. Pop-
ular network architectures often add additional operations and
connections to the standard architecture to enable training deeper
networks. To achieve accurate results in practice, a large number
of trainable parameters are often required. Here, we introduce a
network architecture based on using dilated convolutions to cap-
ture features at different image scales and densely connecting all
feature maps with each other. The resulting architecture is able to
achieve accurate results with relatively few parameters and con-
sists of a single set of operations, making it easier to implement,
train, and apply in practice, and automatically adapts to differ-
ent problems. We compare results of the proposed network archi-
tecture with popular existing architectures for several segmenta-
tion problems, showing that the proposed architecture is able to
achieve accurate results with fewer parameters, with a reduced
risk of overfitting the training data.
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Machine learning is successful in many imaging applications,
such as image classification (1–3) and semantic segmen-

tation (4–6). Many applications of machine learning to imaging
problems use deep convolutional neural networks (DCNNs), in
which the input image and intermediate images are convolved
with learned kernels in a large number of successive layers, allow-
ing the network to learn highly nonlinear features. The pop-
ularity of machine learning has grown significantly due to (i)
recent developments that allow for effective training of deeper
networks, e.g., the introduction of rectified linear units (7) and
dropout layers (8); (ii) the public availability of highly optimized
software to both train and apply deep networks, e.g., Tensor-
Flow (9) and Caffe (10); and (iii) the public availability of large
pretrained networks and large training datasets, e.g., VGG (2)
and ImageNet (11), and will continue to be an active research
area (12).

To achieve accurate results for difficult image-processing
problems, DCNNs typically rely on combinations of additional
operations and connections including, for example, downscaling
and upscaling operations to capture features at various image
scales (4, 5). To train deeper and more powerful networks, addi-
tional layer types (8, 13) and connections (14, 15) are often
required. Finally, DCNNs typically use a large number of inter-
mediate images and trainable parameters [e.g., more than 100
million (2)] to achieve results for difficult problems.

The large size and complicated nature of many DCNNs bring
significant challenges. For example, the chosen combination of
layers and connections can significantly influence the accuracy of
trained networks. Determining which combination is best for a
given problem is difficult to predict a priori. Consequently, a net-
work that works well for one problem is not guaranteed to work
well for a different problem and can require significant changes
to achieve accurate results. Furthermore, the large number of
parameters to learn during training requires careful choices of
hyperparameters (e.g., learning rates and initialization values)
to avoid problems such as overfitting (8) and vanishing gradi-

ents (13) that result in inaccurate trained networks. As a result,
image analysis often relies on problem-specific traditional meth-
ods instead.

Here, we introduce a network architecture specifically de-
signed to be easy to implement, train, and use. All layers of the
network use the same set of operations and are connected to
each other in the same way, removing the need to choose which
operations and connections to use for each specific problem. Our
proposed network architecture achieves accurate results with
relatively few intermediate images and parameters, eliminating
both the need to tune hyperparameters and additional layers or
connections to enable training. The network uses dilated convo-
lutions instead of scaling operations to capture features at vari-
ous image scales, using multiple scales within a single layer and
densely connecting all intermediate images with each other. Dur-
ing training, the network learns which combinations of dilations
to use for the given problem, allowing the same network to be
applied to different problems.

This paper is structured as follows. We first introduce nota-
tion and discuss the general structure of existing deep convolu-
tional networks. We then introduce the proposed network archi-
tecture. We explain the experiments we performed to investigate
the performance of the architecture, comparing them with pop-
ular existing architectures, and discuss their results. Finally, we
conclude with a summary and final remarks.

Notation and Concepts
Problem Definition. In this paper, we apply our approach to
real-valued 2D images. We define an image as a set of pixels
x∈ Rm×n×c with m rows, n columns, and c channels. We denote
the image corresponding to a single channel j of x as xj . Many

Significance

Popular neural networks for image-processing problems often
contain many different operations, multiple layers of con-
nections, and a large number of trainable parameters, often
exceeding several million. They are typically tailored to spe-
cific applications, making it difficult to apply a network that
is successful in one application to different applications. Here,
we introduce a neural network architecture that is less com-
plex than existing networks, is easy to train, and achieves
accurate results with relatively few trainable parameters. The
network automatically adapts to a specific problem, allowing
the same network to be applied to a wide variety of different
problems.

Author contributions: D.M.P. and J.A.S. designed research, performed research, and
wrote the paper.

Reviewers: S.E.F., University of Southern California; and R.K., Technion–Israel Institute of
Technology.

The authors declare no conflict of interest.

Published under the PNAS license.
1To whom correspondence should be addressed. Email: sethian@math.berkeley.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1715832114/-/DCSupplemental.

254–259 | PNAS | January 9, 2018 | vol. 115 | no. 2 www.pnas.org/cgi/doi/10.1073/pnas.1715832114

http://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:sethian@math.berkeley.edu
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715832114/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715832114/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1715832114
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1715832114&domain=pdf


A
PP

LI
ED

M
A

TH
EM

A
TI

CS

Fig. 1. A schematic representation of a two-layer CNN with input x, output
y, and feature maps z1 and z2. Arrows represent convolutions with nonlin-
ear activation.

image-processing problems can be written as the problem of find-
ing a function f that takes a certain image x and produces an out-
put image y; i.e., f : Rm×n×c→ Rm′×n′×c′ . Note that the dimen-
sions of the output image can be different from those of the input
image. In image classification problems, for example, the output
image consists of a single probability value for each of the c′ pos-
sible classifications; i.e., m ′=n ′=1. In the rest of this paper,
however, we focus on problems with dense outputs, i.e., with the
number of rows and columns of the output image identical to
those of the input image: m ′=m and n ′=n , similar to “pixel to
pixel” architectures (16).

Convolutional Neural Networks. Convolutional neural networks
(CNNs) model the unknown function f by using several layers
that are connected to each other in succession. Each layer i
produces an output image zi∈ Rmi×ni×ci , called a feature map,
using output of the previous layer zi−1 as input. The dimensions
of the layer output zi can be different from those of the layer
input zi−1. The input image x is taken as the first layer z0, and
the final layer produces the output image y.

Each individual layer can consist of multiple operations. A
common layer architecture first convolves each channel of the
input feature map with a different filter, then sums the resulting
convolved images pixel by pixel, adds a constant value (the bias)
to the resulting image, and finally applies a nonlinear operation
to each pixel. These operations can be repeated using different
filters and biases to produce multiple channels for the output fea-
ture map. Thus, the output zji of a single channel j of such a con-
volutional layer is given by

zji =σ (gij (zi−1) + bij ). [1]

Here, σ : Rmi × ni → Rmi × ni is a nonlinear operation such as
the popular sigmoid function or rectified linear unit (ReLU) (7),
bij ∈R is the bias, and gij : Rmi−1 × ni−1 × ci−1 → Rmi × ni con-
volves each channel of the input feature map with a different
filter and sums the resulting images pixel by pixel,

gij (zi−1)=

ci−1∑
k=0

Chijk zki−1, [2]

where Cga is a 2D convolution of image a with filter g. Different
ways of handling the boundaries of the image during convolution
are possible: Here, we use reflective boundaries. Often, the filters
hijk are relatively small (e.g., 3 × 3 pixels), enabling faster com-
putation of network outputs and making the network easier to
train. The architecture of the final layer can differ from other lay-
ers and can depend on the application: Common choices include
using a fully connected layer instead of a convolutional one (2) or
using a softmax function as the nonlinear operation for classifica-
tion problems (5). A schematic of a two-layer CNN architecture
is shown in Fig. 1.

The goal of training a CNN is to find filters hijk , biases bij ,
and potential other parameters, such that the CNN performs the
task that is required. In supervised learning, training is achieved
by using a set of Nt representative inputs X= {x̂1, . . ., x̂Nt } with
corresponding correct outputs Y = {ŷ1, . . ., ŷNt

} and iteratively
minimizing a chosen error metric between Y and the CNN out-
put for X. Because of the specific architecture of CNNs, partial

gradients of the error with respect to the filters and biases can
be computed accurately and efficiently through backpropagation
for several popular error metrics, enabling the use of efficient
gradient-based optimization algorithms (17).

DCNNs. DCNNs use a network architecture similar to standard
CNNs, but consist of a larger number of layers, which enables
them to model more complicated functions. In addition, DCNNs
often include downscaling and upscaling operations between lay-
ers, decreasing and increasing the dimensions of feature maps to
capture features at different image scales. Many DCNNs incre-
mentally downscale feature maps in the first half of the lay-
ers, called the encoder part of the network, and subsequently
upscale in the second half, called the decoder part. Skip connec-
tions are often included between feature maps of the decoder
and encoder at identical scales (5). A schematic representation
of a common encoder–decoder DCNN architecture is shown in
Fig. 2.

In general, the increased depth of DCNNs compared with
shallow CNNs makes training more difficult. The increased
depth often makes it more likely that training gets stuck in a
local minimum of the error function and can result in gradi-
ents that become either too large or too small (13). Further-
more, DCNNs typically consist of many parameters (e.g., fil-
ters and biases), often several million or more, that have to be
learned during training. The large parameter space can make
training more difficult, by increasing both training time (18)
and the likelihood of overfitting the network to the training
data (8), thereby forcing large training sets. Several additions
to standard DCNN architectures have been proposed, includ-
ing batch normalization layers (13), which rescale feature maps
between layers to improve the scaling of gradients during train-
ing; highway connections (14); residual connections (15); frac-
tal networks (19), which allow information to flow more easily
through deep networks by skipping layers; and dropout layers
(8), in which feature maps are randomly removed from the net-
work during training, reducing the problem of overfitting large
networks.

Although these additions have advanced image processing in
several fields (12), they can be difficult to routinely apply in areas
such as biomedical imaging and materials science. Instead, tradi-
tional imaging algorithms are used, such as the Hough transform
(20) and template matching (21), or manual processing [e.g., bio-
logical image segmentation (22)].

Theory and Algorithms
Our goal is to enable easier application of DCNNs to many imag-
ing problems by introducing a less complicated network archi-
tecture with significantly fewer parameters to learn and which is
able to automatically adapt to different problems. To do so, we
introduce “the mixed-scale dense (MS-D)” network architecture,
which (i) mixes scales within each layer and (ii) densely connects
all feature maps.

Mixing Scales. Instead of using downscaling and upscaling oper-
ations to capture features at different scales, the MS-D

Fig. 2. A schematic representation of a common DCNN architecture with
scaling operations. Downward arrows represent downscaling operations,
upward arrows represent upscaling operations, and dashed arrows repre-
sent skip connections.
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Fig. 3. Schematic representation of an MS-D network with w = 2 and
d = 3. Colored lines represent 3 × 3 dilated convolutions, with each color
representing a different dilation. Note that all feature maps are used for
the final output computation.

architecture uses dilated convolutions. A dilated convolution
Dh,s with dilation s∈ Z+ uses a dilated filter h that is nonzero
only at distances that are a multiple of s pixels from the center.∗

Recently, it was shown that dilated convolutions are able to cap-
ture additional features in DCNNs that use the traditional scal-
ing approach (23). Furthermore, instead of having each layer
operate at a certain scale as in existing DCNNs, in the mixed-
scale approach each individual channel of a feature map within a
single layer operates at different scale. Specifically, we associate
the convolution operations for each channel of the output image
of a certain layer with a different dilation:

gij (zi−1)=

ci−1∑
k=0

Dhijk ,sij zki−1. [3]

The proposed mixed-scale approach alleviates many of the dis-
advantages of the standard downscaling and upscaling approach.
First, large-scale information about the image quickly becomes
available in early layers of the network through relatively large
dilations, making it possible to use this information to improve
the results of deeper layers. Furthermore, information at a cer-
tain scale can be used directly to inform decisions at other scales
without having to pass through layers at intermediate scales. Sim-
ilar advantages were recently found when training large multi-
grid architectures (24). No additional parameters have to be
learned during training, since the mixed-scale approach does not
include learned upscaling operations. This results in smaller net-
works that are easier to train. Finally, although dilations sij must
be chosen in advance, the network can learn which combina-
tions of dilations to use during training, making identical mixed-
scale DCNNs applicable across different problems (experi-
ments below).

Dense Connections. When using convolutions with reflective
boundaries, the mixed-scale approach has an additional advan-
tage compared with standard scaling: All network feature maps
have the same number of rows and columns as the input and
output image, i.e., mi =m and ni =n for all layers i , and hence,
when computing a feature map for a specific layer, we are not
restricted to using only the output of the previous layer. Instead,
all previously computed feature maps {z0, . . ., zi−1}, including
the input image x, can be used to compute the layer output zi .
Thus, we change the channel image computation 1 and the con-
volutional operation 3 to

zji = σ (gij ({z0, . . ., zi−1}) + bij )

gij ({z0, . . ., zi−1}) =
i−1∑
l=0

cl−1∑
k=0

Dhijkl ,sij zkl . [4]

∗Alternatively, dilated convolutions can be defined without using dilated filters by
changing the convolution operation itself; see ref. 23 for a detailed explanation.

Similarly, to produce the final output image y, all feature maps
can be used instead of only those of the last layer. We call this
approach of using all previously computed feature maps densely
connecting a network.

In a densely connected network, all feature maps are maxi-
mally (re)used: If a certain useful feature is detected in a fea-
ture map, it does not have to be replicated in other layers to
be used deeper in the network, as in other DCNN architec-
tures. As a result, significantly fewer feature maps and train-
able parameters are required to achieve the same accuracy in
densely connected networks compared with standard networks.
The smaller number of maps and parameters makes it easier to
train densely connected networks, reducing the risk of overfitting
and enabling effective training with relatively small training sets.
Recently, a similar dense-connection architecture was proposed
which relied on a relatively small number of parameters (25);
however, in ref. 25 the dense connections were used only within
small sets of layers at a single scale, with traditional downscal-
ing and upscaling operations to acquire information at different
scales. Here, we combine dense connections with the mixed-scale
approach, enabling dense connections between the feature maps
of the entire network, resulting in more efficient use of all feature
maps and an even larger reduction of the number of required
parameters.

MS-D Neural Networks. By combining mixed-scale dilated convo-
lutions and dense connections, we can define a DCNN archi-
tecture that we call the MS-D network architecture. Similar to
existing architectures, an MS-D network consists of several lay-
ers of feature maps. Each feature map is the result of apply-
ing the same set of operations given by Eq. 4 to all previous
feature maps: dilated convolutions with 3 × 3 pixel filters and
a channel-specific dilation, summing resulting images pixel by
pixel, adding a constant bias to each pixel, and finally apply-
ing a ReLU activation function. The final network output is
computed with the same set of operations applied to all fea-
ture maps, using 1 × 1 pixel filters instead of 3 × 3 pixel fil-
ters. In other words, channels of the final output image are com-
puted by taking linear combinations of all channels of all feature
maps and applying an application-specific activation function to
the result:

yk =σ′
(∑

i,j

wijk zji + b′k

)
. [5]

Different ways of choosing the number of channels per layer are
possible. Here, we use a simple approach with each layer hav-
ing the same number of channels, denoted by the network width
w , and the number of noninput and nonoutput layers of the net-
work denoted by the network depth d . A graphical representa-
tion of an MS-D network with w =2 and d =3 is shown in Fig. 3.
The parameters that have to be learned during training are the
convolution filters hijkl and biases bij of Eq. 4 and the weights

Fig. 4. (A–C) Example of the segmentation problem of the simulated
dataset, with (A) the single-channel input image, (B) the correct segmen-
tation with labels indicated by color, and (C) the output of a trained MS-D
network with 200 layers.

256 | www.pnas.org/cgi/doi/10.1073/pnas.1715832114 Pelt and Sethian

http://www.pnas.org/cgi/doi/10.1073/pnas.1715832114


A
PP

LI
ED

M
A

TH
EM

A
TI

CS

Fig. 5. The class accuracy of a set of 100 simulated images (Fig. 4) as a
function of the number of trainable parameters for the proposed MS-D net-
work architecture and the popular U-Net architecture. For each U-Net net-
work (U-Net-q), q indicates the number of scaling operations used. For the
MS-D architecture, results are shown for dilations sij ∈ [1,10] (solid line) and
sij ∈{1,2,4,8,16} (dashed line).

wijk and biases b′k of Eq. 5. Given a network depth d and width
w and number of input channels cin and output channels cout,
the number of trainable parameters Npar =Nflts + Nwgts + Nbias is
given by Nflts =9

∑d−1
i=0 w(iw + cin), Nwgts =(wd + cin)cout, and

Nbias =wd + cout.
Compared with existing DCNN architectures, the MS-D net-

work architecture has several advantages. Due to the mixing
of scales through dilated convolutions and dense connections,
MS-D networks can produce accurate results with relatively few
feature maps and trainable parameters. Furthermore, an MS-
D network learns which combination of dilations to use during
training, allowing the same network to be effectively applied to a
wide variety of problems. Finally, all layers are connected to each
other in the same way and computed using the same set of stan-
dard operations, making MS-D networks easier to implement,
train, and use in practice. MS-D networks do not include learned
scaling operations or advanced layer types to facilitate training
and do not require architecture changes when being applied to
different problems. These advantages can make MS-D networks
applicable beyond semantic segmentation, with potential value
in classification, detection, instance segmentation, and adversar-
ial networks (16).

Experiments
Setup. We implemented the MS-D architecture in Python, using
PyCUDA (26) to enable GPU acceleration of computationally
expensive parts such as convolutional operations. We note that
existing frameworks such as TensorFlow (9) or Caffe (10) typ-
ically do not support the proposed mixed-scale approach well,
since they assume that all channels of a certain feature map
are computed in the same way. Furthermore, existing frame-
works are mostly optimized for processing large numbers of rel-
atively small images by efficiently implementing convolutions
using large matrix multiplications (27). To allow the application
of MS-D networks to problems with large images, we imple-
mented the architecture using direct convolutions. Computations
were performed on two workstations, with an NVidia GeForce
GTX 1080 GPU and four NVidia Tesla K80 GPUs, respectively,
all running CUDA 8.0.

In general, deeper networks tend to produce more accurate
results than shallower networks (2). Because of the dense con-
nections in MS-D networks, it is possible to effectively use net-
works that have many layers and few channels per layer, result-
ing in very deep networks with relatively few channels. Such very
deep networks might be more difficult to train than shallower

networks, as explained above. However, we did not observe such
problems and were able to use the extreme case of each layer
consisting of only one channel (w =1) and the number of layers
d controlling the number of trainable parameters. We initialize
all convolution filter parameters based on the same considera-
tions as in ref. 3 by sampling random values from a zero-mean
normal distribution with a SD of

√
2/nc , where nc is the number

of incoming and outgoing connections of a feature map channel:
nc =9(cin +w(d − 1)) + cout. All other trainable parameters are
initialized to zero. Finally, in most experiments we use equally
distributed dilations sij ∈ [1, 10] by setting the dilation of chan-
nel j of layer i equal to sij =((iw + j )mod 10) + 1.

In segmentation problems with L labels, we represent correct
outputs by images with L channels, with channel j set to 1 for
pixels that are assigned to label j and set to 0 for other pixels.
We use the soft-max activation function in the final output layer
and use the ADAM optimization method (17) during training to
minimize the cross-entropy between correct outputs and network
outputs (5). To compare results of MS-D networks with existing
architectures for segmentation problems, we use the global accu-
racy metric (4), defined as the percentage of correctly labeled
pixels in the network output, and the class accuracy metric (4),
computed by taking the average of the true positive rates for each
individual label.

Simulated Data. In a first experiment, network input consist of
512× 512-pixel single-channel images of objects with two shapes
(circles and squares), 3 different sizes, and 6 possible textures,
with added Gaussian noise. From all 36 combinations of shape,
size, and texture, we train networks to detect 6 specific combina-
tions, e.g., large squares with a horizontal texture, small circles
with a diagonal texture, etc. We chose this segmentation prob-
lem because it requires DCNNs to combine features at small
scales (pixel intensity and texture) with features at larger scales
(size and shape) to produce accurate results. An example input
is shown in Fig. 4A, with colors indicating the six combinations
that have to be detected in Fig. 4B. We compare segmentation
results of trained MS-D networks with those of the popular U-
Net architecture (5): We use a TensorFlow implementation (28).
U-Net architectures are similar to that shown in Fig. 2. Two main
parameters influence performance: the number of downscaling
(and subsequent upscaling) operations and the number of chan-
nels per feature map. We train each network with the same set of
105 randomly generated images, using a batch size of one image,
and stop training once global accuracy for a different set of 100
validation images has not improved for 105 iterations.

In Fig. 5, class accuracy for an independent test set of 100
images is shown as a function of the number of trainable param-
eters for MS-D networks with w =1 and d ∈ {25, 50, 100, 200}
layers and U-Net networks with two, three, four, and five scal-
ing operations and various numbers of channels. The perfor-

Table 1. The number of trainable parameters (Pars) in millions
(M), global accuracy (GA), and class accuracy (CA) for the CamVid
test set

Method Pars (M) GA CA

MS-D-Net (100 layers) 0.048 85.1 56.8
MS-D-Net (200 layers) 0.187 87.0 63.9
U-Net (3 scaling operations) (5) 1.863 83.2 50.4
U-Net (4 scaling operations) (5) 1.926 85.5 48.4
SegNet-Basic-EncoderAddition (4) 1.425 84.2 56.5
SegNet-Basic (4) 1.425 84.0 54.6
Boosting + Detectors + CRF (31) 83.8 62.5
Super Parsing (32) 83.3 51.2

The highest global accuracy, highest local accuracy, and smallest number
of parameters out of all tested methods are shown in bold.
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Fig. 6. The global accuracy of a U-Net network and an MS-D network as a
function of the training epoch for the CamVid dataset. Given are the accu-
racies for the validation set (solid lines) and the training set (dashed lines).

mance of the U-Net networks depends significantly on the
chosen number of scaling operations. Networks with three scal-
ing operations are able to achieve around 80% accuracy with
relatively few parameters, but do not improve significantly when
using more channels per feature map, while networks with four
scaling operations are able to achieve around 95% accuracy, but
require a large number of parameters to do so. For a given
number of parameters, MS-D networks are able to achieve sig-
nificantly higher accuracies than all tested U-Net architectures,
especially with relatively few parameters, and the performance
of MS-D networks is similar for different choices of dilations.

CamVid Dataset. Next, we compare results for the CamVid
dataset (29), using 367 training, 101 validation, and 233 test-
ing color images of road scenes with 360 × 480 pixels (4). The
goal is to segment 11 classes such as cars, roads, sidewalks, and
pedestrians. We train MS-D networks and U-Net networks with
local contrast-normalized images (30) until there is no improve-
ment in global accuracy of the validation set, using minibatches
of 10 images for MS-D networks and smaller minibatches of 3
images for U-Net networks due to memory constraints. We also
report results for the SegNet architecture (4), showing the two
best global accuracy results from table 1 of ref. 4, and two tra-
ditional segmentation methods (31, 32), showing the two best
results from table 2 of ref. 4. For U-Net networks, the number of
feature map channels was chosen such that the number of param-
eters was similar to that of the SegNet.

Table 1 shows global and class accuracies. MS-D segments
with highest global and class accuracy, while using roughly 10
times fewer parameters. Furthermore, an MS-D network with
100 layers achieves similar accuracies to other network architec-
tures while using 30–40 times fewer parameters.† Fig. 6 shows
global accuracy during training for validation and training sets,
for both the U-Net network and an MS-D network. Lack of
improvement for the U-Net network in validation set accuracy
and its difference with training set accuracy indicate overfitting
of the chosen training set. Due to the smaller number of trainable
parameters, the MS-D network improves validation set accuracy
for more training iterations, with a significantly smaller differ-
ence with training set accuracy, showing reduced risk of overfit-
ting of MS-D networks and the ability to accurately train with rel-
atively small training sets. In addition, MS-D networks are able
to achieve accurate results without pretraining additional large
datasets, e.g., ImageNet (11), or relying on large pretrained net-
works, e.g., VGG (2).

†The authors of ref. 4 report improved results for the SegNet architecture with 90.4%
global accuracy by training with a significantly larger set of around 3,500 images. How-
ever, since this larger set is not publicly available, we cannot directly compare this result
with the MS-D network architecture.

A B C

Fig. 7. (A–C) A tomographic slice of the test cell (A), with the correspond-
ing manual segmentation (B) and output of an MS-D network with 100
layers (C).

Segmenting Biomedical Images. To test whether an MS-D network
can be easily applied to a new problem without adjustments, we
use the same network parameters as above, with w =1, d =100,
and dilations sij ∈ [1, 10] applied to segmenting cell structures.
We use eight manual segmentations of 512 × 512 × 512 tomo-
graphic reconstructions of (mouse) lympoblastoid cells, consist-
ing of five labels: nuclear envelope, euchromatin, heterochro-
matin, mitochondria, and lipid drops. A sample tomographic
slice and corresponding manual segmentation are shown in Fig.
7 A and B. The labeling of cell structures depends on multi-
ple factors at different image scales, such as the position of the
structure relative to other structures, and the pixel intensity dif-
ferences between two structures can be relatively small, mak-
ing it difficult to use traditional methods to perform automatic
labeling. Instead, researchers rely on time-consuming manual
segmentation.

To learn limited 3D features, we use five channels in the input
image of the MS-D network: the current slice to be segmented
and four adjacent slices. Of eight manual cell segmentations, we
randomly chose six for training and one for validation and report
results for the remaining cell. During training, we used a batch
size of 10 images and stopped after no improvements in global
accuracy for the validation cell, yielding network parameters with
the best global accuracy. Fig. 7C shows network output for the
slice in Fig. 7A, showing high similarity to manual segmentation.
The remaining differences between network output and manual
segmentation, indicated by an arrow in Fig. 7, typically repre-
sent ambiguous cell structure (see Figs. S1 and S2 for additional
results). Final global accuracy and class accuracy of the trained
network for the test cell are 94.1% and 93.1%, indicating that
identical MS-D networks can be trained for different problems.
Results for two other challenging problems are given in Figs. S3
and S4.

A B C

Fig. 8. (A–C) Tomographic images of a fiber-reinforced minicomposite,
reconstructed using 1,024 projections (A) and 128 projections (B). In C,
the output of an MS-D network with image B as input is shown. Bottom
Right Insets in A–C show enlarged images of small regions indicated by
red squares.
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Denoising Large Tomographic Images. Finally, we use the above
architecture, changing only the nonlinear function of the final
layer from the soft-max function to the identity, and train on
the different task of denoising tomographic reconstructions of
a fiber-reinforced minicomposite. A total of 2,160 images of
2,5602 pixels were reconstructed using 1,024 acquired X-ray pro-
jections to obtain images with relatively low amounts of noise
(Fig. 8A). Noisy images of the same object were obtained by
reconstructing using 128 projections (Fig. 8B). The input is a
noisy image, with a corresponding noiseless image used as target
output during training. From the sample top, 500 images were
used for training, and 100 images were used for validation. Fig.
8C shows output for a tested image near the sample bottom, com-
puted in 2.05 s using a GTX 1080 GPU (see Fig. S5 for addi-
tional timings). The MS-D network accurately denoises highly
noisy images by learning image features from the training set,
and identical MS-D networks can be easily applied to different
problems with minimal changes.

Conclusions
We have presented a deep convolutional MS-D network architec-
ture for image-processing problems, using dilated convolutions
instead of traditional scaling operations to learn features at dif-
ferent scales, using multiple scales in each layer, and computing

the feature map of each layer using all feature maps of earlier
layers, resulting in a densely connected network. By combining
dilated convolutions and dense connections, the MS-D network
architecture can achieve accurate results with significantly fewer
feature maps and trainable parameters than existing architec-
tures, enabling accurate training with relatively small training
sets. MS-D networks are able to automatically adapt by learning
which combination of dilations to use, allowing identical MS-D
networks to be applied to a wide range of different problems.
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