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FoxP3+ regulatory T cells (Tregs) are a central element of immuno-
logical tolerance. FoxP3 is the key determining transcription factor of
the Treg lineage, interacting with numerous cofactors and transcrip-
tional targets to determine the many facets of Treg function. Its
absence leads to devastating lymphoproliferation and autoimmunity
in scurfy mutant mice and immunodysregulation polyendocrinop-
athy enteropathy X-linked (IPEX) patients. To finely map transcrip-
tionally active regions of the protein, with respect to disease-causing
variation, we performed a systematic alanine-scan mutagenesis of
FoxP3, assessing mutational impacts on DNA binding and transcrip-
tional activation or repression. The mutations affected transcrip-
tional activation and repression in a variegated manner involving
multiple regions of the protein and varying between different tran-
scriptional targets of FoxP3. There appeared to be different modal-
ities for target genes related to classic immunosuppressive function
vs. those related to atypical or tissue-Treg functions. Relevance to in
vivo Treg biology was established by introducing some of the subtle
Foxp3 mutations into the mouse germline by CRISPR-based genome
editing. The resulting mice showed Treg populations in normal num-
bers and exhibited no overt autoimmune manifestations. However,
Treg functional defects were revealed upon competition or by sys-
tem stress, manifest as a strikingly heightened susceptibility to pro-
voked colitis, and conversely by greater resistance to tumors. These
observations suggest that some of the missense mutations that seg-
regate in human populations, but do not induce IPEX manifestations,
may have unappreciated consequences in other diseases.
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CD4+ regulatory T cells (Tregs) are of central importance in
immunological tolerance to self and in the control of in-

flammatory processes. They play versatile roles to balance ho-
meostasis, regarding both immunological (autoimmunity, allergy,
responses to pathogenic and commensal microbes, cancer) and
nonimmunological (tissue regeneration, metabolic control)
contexts (1–3). FoxP3, a winged-helix transcription factor (TF)
of the Forkhead (FKH) family, is specifically expressed in Tregs,
where it has pivotal roles for differentiation and function and is
considered to be the defining factor of the lineage (2, 4). Treg
cells have a core transcriptional signature, transcripts that are
over- or under-represented relative to their naive CD4+ T cell
counterparts (Tconv) (5–9). Much of this signature is controlled
by FoxP3, although FoxP3 alone cannot drive the entire Treg
signature (6, 7, 10–12).
Germline deletion of FoxP3 leads to Treg deficiency and to

devastating multiorgan inflammation. In human immunodysre-
gulation polyendocrinopathy enteropathy X-linked (IPEX) pa-
tients, complete loss of FoxP3 function leads to the absence of
Tregs, and there is also a spectrum of missense mutations that
allow the differentiation and maintenance of some Tregs with
partial function (13–15). IPEX typically begins very early in life
with a typical triad of enteropathy, endocrine autoimmunity
(primarily type-1 diabetes and thyroiditis), and eczematous
dermatitis. Of these features, gut pathology is essentially con-

stant, while endocrinopathies are more variable. Other manifes-
tations occur more sporadically, such as autoimmune hepatitis,
nephropathy, and cytopenias (14, 16–18). The root of this range of
pathologies in IPEX patients is incompletely understood. On one
hand, complete loss-of-function mutations (frameshifts, nonsense
mutations, large deletions) with complete absence of FOXP3
protein are more deleterious than missense and small deletions
(reviewed in ref. 15), and siblings carrying the same mutation tend
to develop disease with comparable course and severity. But the
range of manifestations and severity can also vary between pa-
tients with the same mutation, suggesting that modifier loci in the
genetic background and/or environmental exposures modify the
course of disease.
The FoxP3 protein contains several structural modules (Fig.

1): (i) a short zinc finger (ZF); (ii) a leucine zipper (LZ) domain
implicated in homodimerization or heterodimer formation with
other FoxP proteins (19, 20); and (iii) the family-defining FKH
domain at the C terminus, which is the primary DNA-binding
site but also interfaces with transcriptional coregulators (21).
The structure of the FKH domain has been determined (22, 23),
showing that it adopts an unusual “domain-swapped” configu-
ration, in which two FKH domains are intertwined and can
bridge two distinct DNA molecules. In contrast, the proline-rich
N-terminal region appears to be an intrinsically disordered
protein region (24) in computational and structural analyses
(25), suggesting that it can adopt different conformations upon
binding to different partners. Indeed, FoxP3 interacts with many
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other TFs (reviewed in ref. 2). Many of these interactions are
functionally relevant and modulate specific aspects of Treg
function (26–29).
Genetic variation at the human FOXP3 locus includes missense

variants identified in patients presenting with more or less severe
IPEX, and these are preferentially represented in the FKH domain
(Fig. 1). But a set of missense mutations have also been identified in
systematic exome-sequencing programs among healthy donors or
patients with diseases other than IPEX [e.g., aggregated in gno-
mAD (30)]. These non-IPEX variants are typically rare, and some
are unique to one individual, but occur at a combined frequency of
∼1/300 chromosomes, mapping uniformly throughout the protein
(Fig. 1). Most are likely to be completely silent, but since exome
sequence aggregation efforts include a surfeit of patients with an
array of diseases, their presence raises the possibility that FOXP3
missense mutations might contribute to diseases other than IPEX.
How these functional, structural, and variability aspects are in-

tegrated, and how FoxP3 operates as a transcription factor to reg-
ulate its target genes, is incompletely understood. Several studies
have analyzed the functional impact of a few natural or engineered
mutations of FoxP3 and identified several important positions (20,
25, 31–36). However, an integrated perspective of how FoxP3’s
domains collaborate is lacking. Are there discrete, modular, regions
of the protein to which specific functions can be uniquely ascribed
(as would be suggested, for example, by schematic “repressor do-
main” representations)? Or does FoxP3 function rather as a mal-
leable globular entity, with functional interactions being determined
combinatorially by several structural elements? In an attempt to
provide a wide perspective of FoxP3’s mode of operation, we per-
formed a systematic alanine-scan of the protein. We constructed a
set of 130 FoxP3 mutants and tested how this fine-grained array of
mutations affects its ability to bind DNA and to regulate tran-
scription. The results brought about a nuanced and variegated
perspective on FoxP3’s structure–function relationship. Assessing
the impact of some mutations by germline editing in mice suggests
that variation in FoxP3 may impact diseases beyond the confines of
the IPEX syndrome.

Results
Construction and Verification of the FoxP3 Alanine-Scan Library. We
constructed by site-directed mutagenesis an alanine-scan library
with 130 mutations in the coding region for mouse FoxP3, the
positions of which are outlined in Fig. 1. Amino acids in the es-
sential FKH domain (P338 to P429) were replaced by alanine one-
by-one, while in the less-charted N-terminal region (M1 to R337)
replacements were by blocs of six alanines. Some of the alterations
correspond to mutations in IPEX patients, but some also corre-
spond to variants detected in large exome sequence projects in
healthy controls or non-IPEX pathologies (Fig. 1 and Dataset S1)
(30). A subset of these mutant2s was reported recently in a study
that focused on the relationship between the interactions of
FoxP3 with chromatin or other cofactors and its transcriptional
activity (37); these results are included here for completeness.
After verification of sequence integrity, the mutants were

placed in the retroviral vector MSCV-IRES-THY1.1 (with an N-
terminal FLAG-tag for identification), and high-titer viruses were
used to infect activated primary CD4+CD25− Tconv cells (10).
This cellular setting was chosen as practical for a project on this
scale, and relevant to physiological activity, since FoxP3 operates
in CD4+ T cells (7, 38). Overall results are compiled in Dataset S1.
Proper expression of the mutant FoxP3 proteins was first

assessed. Flow cytometric analysis of transduced cells, standardiz-
ing FoxP3-staining intensity against the cotranscribed THY1.1 re-
porter, showed for almost all mutants an expression similar to that
of wild-type (WT) FoxP3 (Fig. 2). These FoxP3 levels reach, for
cells in the higher range of the Thy1.1 reporter, that of FoxP3 in ex
vivo Treg cells stained in parallel (Fig. 2, Bottom Right). A few
mutants (M350, M363, M385, M389, M395, and M406) did show a
significant reduction in FoxP3 expression. M350 is the position
of a complete loss-of-function mutation of FoxP3 uncovered in
an ENU screen (MGI:3817855). M85 prevents recognition by
the anti-FoxP3 mAb used for detection. Immunoblotting of
extracts from transduced cells largely confirmed the flow
cytometric data and also showed that all mutant proteins were
full length (Fig. S1).
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FoxP3 localizes to the nucleus in Tregs and in transfected cells
(5, 19, 39), and we verified the proper nuclear localization of the
mutants by immunofluorescence microscopy (Fig. S2A). The vast
majority of mutant proteins showed the correct pattern, with
strictly nuclear staining, but a few showed cytoplasmic staining as
well, with cell-to-cell variation in the nuclear:cytoplasmic ratios
(M331, M345, M363, M385, and M389, in addition to mutants
with low total FoxP3) (Fig. S2A). When positioned with refer-
ence to the 3D crystal structure of the FoxP3 FKH domain (22,
23), several of these mutations mapped to a hydrophobic pocket
within the domain-swapped FoxP3 dimer structure (Fig. S2B).
The M331 result was consistent with one of the nuclear locali-
zation domains previously mapped (40), but other reported
motifs (19, 32) are more difficult to reconcile with our findings.
Overall, these data suggest that most of the mutants in our li-
brary were properly expressed and localized, with only a minority
leading to unstable or mislocalized FoxP3 (most of which were
not analyzed further).

Mapping DNA-Binding Activity.We then tested how the alanine-scan
mutations affected DNA binding by FoxP3 in a solution assay with
a biotinylated dimer of the canonical 5′-AAACA Forkhead Re-
sponsive Element (FKRE) motif to capture epitope-tagged protein
from whole-cell extracts (Fig. 3A). Binding was detected relative to
background levels observed with empty vector (EV), irrelevant
recombinant protein (EBNA), or a scrambled-sequence oligonu-
cleotide (Fig. 3B). Overall, the set of mutants showed substantial
variation in the ability to bind FoxP3’s cognate motif (Fig. 3C,
where results are normalized relative to binding by WT FoxP3, and
Dataset S2; position highlighted on the domain structure in Fig.
3D). Several points are worth highlighting. The mutants with poor
nuclear localization showed the most severely affected DNA-
binding activity in vitro, which suggests that DNA binding may
be important for nuclear retention of FoxP3. Aside from M350, no
single mutation completely abolished binding to DNA, implying a
degree of resilience. Most alterations at the very N terminus had
little effect, if anything slightly enhancing binding, while those in
the LZ domain were predictably deleterious. Less expected was
that several mutations in the ZF also significantly decreased DNA-
binding activity. Many mutations in the FKH domain had a dele-
terious impact, as expected from the domain’s structure, in par-
ticular those within the main DNA-contact helix (e.g., M383N383A,
M386R386A, M390S390A, M397R397A) or the domain-swap coil (e.g.,

M340F340A, M345L345A, M348W348A, M381W381A). However, sev-
eral FKH-domain mutants unexpectedly enhanced DNA binding
(e.g., M369R369A, M370M370A, M377H377A, M378P378A, M380T380A).
Similarly, the A384T mutation in H3 was recently reported to also
increase DNA binding (36). These enhancing mutations mapped to
helix H2 and to a loop immediately N-terminal to the main DNA
contacts in helix H3 (Fig. 3D). This nonbinding helix has previously
been shown to modulate DNA-binding specificity in other Fork-
head family members and has been proposed to constitute a mode
of determination and evolution of binding specificity (41, 42). In this
light, the enhancing mutations may be relieving H2 structural con-
straints on DNA binding.

Mapping Transactivation and Transrepression. We then used several
assays to evaluate how mutations in different regions of FoxP3
affect its impact on transcriptional targets in transduced cells.
Initially, we used two short-term reporter systems in which FoxP3
has been shown to have repressive activity. One tested the in-
hibition of the Il2 promoter (Il2pro), which is activated by NFAT1/
AP1 but repressed by NFAT1/FoxP3 complexes (21); the second
assessed the inhibition of a minimal promoter by an eightfold
repeat of the FKRE motif (8×FKRE) (43). Luciferase activity
generated after transfection of these reporters and cell activation
was strongly repressed by cotransfection of WT FoxP3 (Fig. S3A).
Introduction of the FoxP3 mutant panel in these systems (Fig. 4)
revealed a range of effects. First, mutation effects were generally
similar for the two reporters (Fig. 4), with significant correlation
(Fig. S3B), although there were differences, such as the impact of
N-terminal mutations in the Il2pro but not the 8xFKRE assay.
Second, the most severe effects tended to map to the FKH do-
main. Third, and as already observed in our narrower study (37),
there was only limited correlation between DNA-binding ability
and activity in these assays (Fig. S3C).
For a broader perspective, we profiled the response of a panel

of FoxP3-responsive genes, using a nanostring codeset of 200
transcripts (37). Activated CD4+CD25− Tconv cells were trans-
duced with a selected set of 70 mutants and sorted after 72 h
within a constant window of Thy1.1 reporter expression to ensure
a level of FoxP3 equivalent to that of ex vivo Tregs to avoid
overexpression artifacts. We profiled the expression of a specific
set of genes with a custom codeset for transcripts typical of the
Treg signature and of tissue-Tregs and known FoxP3 targets (37).
As previously reported (37), WT FoxP3 induced and repressed a
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set of genes relative to EV-transduced controls, including many
of the Treg “usual suspects” (Icos, Lrrc32, Dusp4, Foxp3 up-
regulated; Il2, Il4, Id2, Pde3b down-regulated). Complex pat-
terns were revealed when we analyzed these induced or repressed
gene sets after transduction with the selected mutants (results
clustered in Fig. 5). The following observations merit bringing
forth, as they have direct relevance to understanding FoxP3
function and to Tregs physiology: (i) There are general trends,
several mutants being generally less active than others, captured
by computing for every mutant an activation and a repression
index (mean normalized expression of all FoxP3-induced or
FoxP3-repressed transcripts, respectively), which are highly cor-
related (Fig. S4A). The activation index also correlated with the
results of the reporter assay (Fig. S4B). However, we observed a
diversity of effects with subtly different patterns. The heatmap
(Fig. 5) groups the mutants into nine different blocs, membership
being highly consistent for independent duplicate transductions of
the same construct. There were even further nuances; for exam-

ple, even though M14 and M276 mapped to the same bloc, they
differed in the activation of Gpr83 and Lag3. Thus, varying
FoxP3’s conformation or interactions with cofactors modulates
diversely the effects on any one target gene. (ii) For the most part,
these groupings of mutants with similar footprints did not relate to
the positions of the mutations on the protein. For example, of the
two mutants of bloc 4, the effects of which were quasi-identical,
one mapped to the LZ and one to the FKH. This distribution
suggested that the variegated effects of the mutations did not
reflect local perturbations of a given interaction, but more global
alterations, e.g., in multimolecular complexes. (iii) Several muta-
tions had essentially no consequence and clustered with WT
FoxP3 (bloc 6). Others appeared as gain-of-function but only for
specific targets (e.g., Izumo1r, Il1rl1, and Ccl5 by bloc 3 and Rorc
by bloc 5 mutations). (iv) At the other end of the spectrum (bloc
9), even the most severely affected mutants maintained some ac-
tivity, including three mutants with poor or absent DNA binding
(M331, M350, M406) that retained activity on some genes (e.g.,
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Tnfrsf4/18, Eomes) and paradoxically gained induction of un-
expected targets like Il4 and Il5. This remaining activity echoed a
previous report of FoxP3 regulation as independent of direct
DNA binding (44). However, the DNA-binding–independent ac-
tivity observed here was quite specific and restricted to a small set
of targets, contrary to this report (44). (v) Il1rl1 represents an
interesting divergence from most other targets of FoxP3 trans-
activation. It encodes the receptor for the alarmin IL33 and is
expressed by several tissue Treg populations (3). It was moderately
activated by WT FoxP3, but markedly more so by several mutants.
To capture such differences, we computed a “normalcy index”
(how the expression pattern of each transcript correlated with the
generic FoxP3 induction index above) (Fig. S4C). Il1rl1 was clearly
an outlier, along with Rorc, Ccl5, and Il5. This observation sug-
gests that FoxP3 may have an inherent ability to activate Il1rl1,
which is normally inhibited, but can be relieved when cofactors
vary in response to tissue localization or activation cues. Rorc was
also an outlier among FoxP3-induced genes, but was clearly dif-
ferent from Il1rl1 (Fig. 5), which is of interest considering the
interactions between FoxP3 and RORγ during T cell differentia-
tion and in the control of tissue-Tregs. (vi) The Th2 cytokines Il5
and Il4 were repressed by WT FoxP3, as expected, but were ac-
tually induced by several severe FoxP3 mutations (especially the
poor DNA-binding mutants of bloc 9). Il2, on the other hand, was
repressed by almost all mutants, except for those of bloc 8, which
slightly induced it.
Overall, these data denote specificity in the involvement of

FoxP3 relative to its transcriptional targets, with a diversity that
does not fit with simple domains of the protein being involved in
either activation or repression, and suggests that the control of
different targets involves an array of mechanisms and cofactors.

In Vivo Effects of Mild FoxP3 Mutations. The alanine-scan muta-
genesis thus brought forth a highly nuanced perspective on
structure–function relationships within FoxP3, with variegated
effects across the range of FoxP3 targets. Many of these muta-
tions mapped to regions of the protein that are also affected by
genetic variation in humans, some with recognized effects in the
case of IPEX mutations, some unnoticed in the case of mutations
uncovered in large exome-sequencing projects. Thus, it seemed
important to assess the mutations’ effects in vivo at the tran-
scriptional level to verify that the patterns observed in transduced

CD4+ T cells also applied in true Tregs and at the phenotypic level
to ascertain their consequence on Treg function. We chose two
mutations, one with very mild effects (M176, mapping to the N-
terminal region, bloc 5) and one transcriptionally more severe
(M354, in the FKH domain, bloc 2). Mutant mouse lines were
generated through CRISPR-based homologous recombination in
fertilized oocytes (45). After screening and verification by se-
quencing, we obtained faithful replicas of the mutations (at 5%
efficiency). Young mice homozygous for the two mutations were
initially healthy and fertile with no overt phenotype. Tregs were
present in essentially normal numbers and proportions in lymphoid
organs and, in the colonic lamina propria, if anything slightly more
abundant in the periphery (Fig. 6A). The mutant mice showed no
indication of the widespread lymphoproliferation typical of scurfy
or other Treg-deficient mice, histologically or from weight loss
(Fig. 6B), and their Tconv cells remained mainly unactivated,
judging from the CD44 and CD62l markers (Fig. 6C).
On the other hand, Tregs from the mutant mice did present

transcriptomic variations. First, FoxP3 levels in Tregs from both
mutant lines were reduced by 40–50% relative to WT littermates
(Fig. 6D). Since there was no notable difference in CD4+ T cells
transduced in vitro with these mutants, when expression was driven
by the vector’s retroviral promoter, these lower levels of FoxP3
suggest that the feedback that locks in Foxp3 expression may not be
fully operative in the mutant Treg cells. Cell-surface markers on
those Tregs (Fig. 6E, Right) mimicked changes observed in trans-
duced cells in vitro (Fig. 6E, Left): Tregs from M354 mice displayed
lower CD25, GITR, and CTLA4 but higher PD1. The M176 Tregs
shared the altered CD25 and PD1 expression, but had more normal
GITR and CTLA4. In gene expression profiles of Tregs from these
mice, transcripts earlier seen to be overexpressed in mutant-trans-
duced relative to WT-transduced CD4+ T cells in vitro were mostly
overexpressed in mutant Tregs ex vivo, with the converse for in vitro
underexpressed transcripts (Fig. 6F).
There were also marked shifts in expression of some Treg-

associated signatures, but these were different in the two mutant
lines. The canonical Treg signature (7) was strongly biased, but
only in M176 Tregs, with underexpression of transcripts normally
overexpressed in Tregs (and vice versa) (Fig. 6G). We noted an
up-regulation of the signature associated with “activated Tregs”
[also known as eTregs or aTregs (46)] in M354 Tregs, but the
opposite in M176 Tregs (Fig. 6H). Similarly, a signature that
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generally distinguishes tissue from lymphoid Tregs was strongly
shifted in M176, but in the opposite direction for M354 (Fig. 6I).
These results indicate that the subtle transcriptional consequences

of the mutations observed in vitro were also present in Tregs in
vivo, each mutation differently affecting specific segments of the
Treg transcriptome.
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Steady-state Treg pools seemed normal in young mutant mice, but
we tested their behavior in conditions of competition or challenge.
First, to sensitize the Treg population analysis, we constructed ra-

diation bone-marrow chimeras with a 50/50 mutant/WT mix of do-
nor cells. In this context, mutant Tregs were markedly outcompeted
by WT Tregs in the same mice, unlike other lineages (Fig. S5A).
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Mutant Tregs showed the same reduction in FoxP3 levels noted
above, indicating that this is a cell-autonomous phenomenon, as
was the lower CD25 in M354 (Fig. S5B).
Second, we aged the mice. Older M354 mice failed to thrive

after ∼35 wk and uniformly lost weight, while M176 mice stayed
healthy (Fig. 7A). Even though Treg numbers and frequency
remained normal in aged mice (Fig. 7B), CD4+ Tconv cells
shifted to an activated CD44hiCD62Llo phenotype, as did CD8+

T cells, particularly in M354 (Fig. 7C). Widespread inflammation

was detected in the skin of aged M354 mice, but not in any
other tissues usually affected in fully deficient scurfy mice,
pointing to a specific autoimmune or inflammatory attack (Fig.
7D). Third, we challenged M176 and M354 mice in the trini-
trobenzenesulfonic acid (TNBS)-induced colitis model. At the
normal dose, mutant mice of both lines succumbed within a few
days of recall (Fig. 7E). At a lower dose of TNBS, which elicited
only limited colitis in WT littermates, both M176 and
M354 showed severe disease (Fig. 7F).
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As a further evaluation of Treg function, we tested the sus-
ceptibility of the FoxP3 mutant mice to tumor growth by s.c. in-
jection of MC38 colon tumor cells. M176 and M354 mice showed
strikingly delayed tumor progression (Fig. 7G), suggesting a more
effective antitumor response. Tregs normally form the majority of
infiltrating CD4+ T cells in MC38 tumors, but these Tregs were far
less abundant in mutant hosts, especially for M354 (Fig. 7H). This
deficiency was accompanied by heightened production of TNFα
and IFNγ by tumor-infiltrating CD4+ Tconv and CD8+ T cells
(Fig. 7I), especially in M354 hosts, confirming that the functional
Treg deficiency allowed stronger activation of T-effector pathways
in the tumor microenvironment. This phenotype is similar to the
poor Treg function described for Nrp1-deficient Tregs in the tu-
mor environment (47). Overall, these missense mutations in
FoxP3 led to Tregs with reduced fitness and function, the deficit of
which became manifest only upon challenge. These subtle defects
markedly influenced immune response in disease contexts, but in a
manner that bore little or no relation to known pathology of
FoxP3 deficiency.

Discussion
The level of resolution provided by this set of 130 FoxP3 mutants
sheds a light on the operation of this transcription factor. The
complexity of FoxP3 structure–function relationships operated at
two levels. First, the mutations diversely affected the trans-
activation of different FoxP3 target blocs, some with subtle dif-
ference within the general axis of activity, others very distinctly.
Second, these functions could not be ascribed to simple modular
architectures, but implicated the whole molecule to some extent.
These variegated mutational effects translated into in vivo phe-
notypes distinct from the usual IPEX/scurfy pathology.
Our recent mutagenesis study, involving a much smaller number

of alterations, showed that FoxP3’s transactivation ability gener-
ally correlated with the potential to bind with multimolecular
complexes that include RelA and Ikzf2 (37). In keeping with this
notion, we found here that a generic “activation index” can effec-
tively summarize the ability of the mutants to activate FoxP3 targets
(and inversely for the overall repression index). However, the results
were also more nuanced than these dominant effects. First, the
response of individual genes showed subtle differences, reflected in
the finely resolved ability of mutants of any one bloc to affect a
particular target (e.g., Il2ra and Tnfrsf18 responded similarly, but
distinctly from Dusp4 or Lag3). Second, some targets showed rad-
ically different patterns, objectivized by the “normalcy index” of Fig.
S4C, which brought out the very different sensitivity to mutations of
Il5, Rorc, or Il1rl1. Interestingly, the expression of the latter two is
found predominantly in tissue-Tregs (3), implying that the adapta-
tion of FoxP3 to functioning in these particular environments har-
nesses functional facets different from those characteristic of its
more usual function in lymphoid tissues.
Transactivation and transrepression of particular targets in-

volved several structural regions identifiable by sequence compo-
sition, with convergent mutational effects of mutations in either the
N-terminal moiety or the FKH domain. This spread was observed
with profiling as well as reporter assays. There was no evidence for
a simple repressor domain or for any region with a dominant ac-
tivating role. This integrated view, in which the entire molecule
takes part in different functions, is at odds with the simpler inter-
pretations of modular TF structure (48), in which well-demarcated
domains are ascribed distinct functions, which can be shuffled
evolutionarily (in fairness, however, the modular model had al-
ready been shown to be an oversimplification; see, e.g., ref. 49). In
the same vein, our study of FoxP3 interactions with transcrip-
tional cofactors also found that the regions of FoxP3 that
conditioned the interactions with specific cofactors encom-
passed multiple domains (37). As a consequence, we cannot
ascribe the different transcriptomes of M176 and M354 Treg
cells to perturbed interactions between FoxP3 and any given

cofactor. These results are consistent with the notion of
FoxP3 assembled into multicomponent “molecular machines”
for transcriptional control, such that many facets of the protein
contribute to assembly of one such complex.
The variegation of mutational effects across the spectrum of

FoxP3 targets and across the phenotypes of M176 and M354 mice
opens perspectives on pathologies associated with FoxP3 deficiency
in humans. First, the phenotype of mutants with more severe mu-
tations suggests that the high IgE levels of many IPEX patients may
be connected to the paradoxical induction of Il5 and Il4 observed
here, in addition to the defective control of Th2 cells. More gen-
erally, the range of transcriptional effects observed here is consistent
with the wide heterogeneity of severity and symptoms that result
from missense mutations in IPEX patients (13–15). Some IPEX
mutations with milder phenotypes (F324L, R347H, V408M) affect
the same position as some of our less dramatic mutants. Similarly, a
recent report also showed a partial scurfy phenotype after in-
troduction of the IPEXA384T mutation (36). Even more divergent,
however, is the absence of an overt phenotype in the M176 and
M354 mutant mice in which Treg defects, clearly apparent by
transcriptional analysis, were revealed only in a competitive context
in response to inflammatory stress or after aging. Had these defects
appeared spontaneously, they would likely not have been ascribed
to Foxp3. This observation suggests the possibility that humans with
comparable rare missense variants in FOXP3 may exist. These
variants would not be recognized because of the marked departure
from the IPEX syndrome, but may contribute to exacerbated sus-
ceptibility to insults in the gut or to isolated skin pathology such as
aged M354 mice. Indeed, a survey of rare missense mutations of
FOXP3 in the Inflammatory Bowel Disease Exomes Browser
(https://ibd.broadinstitute.org) shows 13 such mutations in irritable
bowel disease patients. One might question why FOXP3 does not
appear in genome-wide association study data; the answer may be
in the rare nature of the mutations, which are likely subject to
rapid purifying selection, which cannot be detected by associ-
ation studies that track more frequently distributed variants.
In conclusion, this refined structure–function dissection has

brought a very different perspective on FoxP3 and its integration
into flexible molecular machines and the particular dysfunction
of which may affect human disease in unexpected ways.

Materials and Methods
All experimental procedures are described in detail in SI Materials and Methods.

Mice. The C57BL/6J mice (Jackson Laboratory) and mutants were bred in an
specific pathogen-free (SPF) facility at Harvard Medical School (IACUC protocol
02954). The M176 and 354 mutations were introduced by Cas9-targeted mu-
tagenesis with oligonucleotide-directed resealing and direct injection into
mouse zygotes (45). For BM radiation chimeras, recombination-activating
genes (RAG)-deficient recipients were injected 6 h after 6 Gy irradiation
with a 50/50 mix of bone marrow (BM) cells from WT B6.CD45.1 congenic
and M176 or M354 (CD45.2) donors and analyzed 10 wk later. Experiments
were performed under protocol IS00001257 approved by the Harvard
Medical School Institutional Animal Care and Use Committee.

Antibodies and Plasmids. N-terminal FLAG-tagged FoxP3 was cloned into the
MSCV-IRES-THY1.1 retroviral vector, and alanine replacements were gener-
ated by site-directed mutagenesis; the entirety of the coding sequence was
verified by Sanger sequencing.

Retroviral Infection and Expression Analysis. CD4+CD25− Tconv were isolated
by negative magnetic selection and activated with anti-CD3/CD28 beads for
36 h before infection. Cells were spin-infected for 2 h and flow-sorted 72 h
later within a window of Thy1.1 expression determined to correspond to
normal levels of FoxP3 in Tregs.

DNA-Binding Assay. Nuclear extract from EV, WT, or mutant transduced CD4+

T cells was induced with 25-bp double-stranded biotinylated oligo with two
copies of canonical FoxP3-binding motif. FoxP3 binding was measured with
an Episeeker DNA-protein–binding assay kit (ab117139; Abcam).
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Luciferase Reporter Assay. EV, WT, or each mutant FoxP3 plasmid was
cotransfected with luciferase reporter plasmids driven by 8XFKRE (50) or
IL2 promoter with pRL-tk renilla vector in EL4 T cells. Forty-eight hours after
transfection, cells were stimulated with phorbol myristate acetate/ionomycin
for 2 h, and reporter activity was measured.

Tumor and Colitis Challenge.Mice (6 wk old) were sensitized with 50 μL of 1%
TNBS (4:1 acetone:olive oil solution) on their backs. A week later, colitis was
induced by intrarectal administration of 100 μg (standard dose) or 40 μg (low
dose) of TNBS per gram of mouse in 50% ethanol in anesthetized mice. Mice
were injected s.c. with 1 × 105 MC38 colon adenocarcinoma cells. Tumor size
was measured every 2 d with a caliper.

Expression Profiling. RNA was prepared and used for expression profiling on
Affymetrix ST1.0 microarrays per ImmGen SOP (51). Cell lysates were used
directly for profiling by Nanostring nCounter [custom Treg codeset (37)].
Data were processed and normalized using Nanostring or Affymetrix soft-
ware, per refs. 51 and 52.
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