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Compressive Temporal Summation in Human Visual Cortex
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Combining sensory inputs over space and time is fundamental to vision. Population receptive field models have been successful in
characterizing spatial encoding throughout the human visual pathways. A parallel question, how visual areas in the human brain process
information distributed over time, has received less attention. One challenge is that the most widely used neuroimaging method, fMRI,
has coarse temporal resolution compared with the time-scale of neural dynamics. Here, via carefully controlled temporally modulated
stimuli, we show that information about temporal processing can be readily derived from fMRI signal amplitudes in male and female
subjects. We find that all visual areas exhibit subadditive summation, whereby responses to longer stimuli are less than the linear
prediction from briefer stimuli. We also find fMRI evidence that the neural response to two stimuli is reduced for brief interstimulus
intervals (indicating adaptation). These effects are more pronounced in visual areas anterior to V1-V3. Finally, we develop a general
model that shows how these effects can be captured with two simple operations: temporal summation followed by a compressive
nonlinearity. This model operates for arbitrary temporal stimulation patterns and provides a simple and interpretable set of computa-
tions that can be used to characterize neural response properties across the visual hierarchy. Importantly, compressive temporal sum-
mation directly parallels earlier findings of compressive spatial summation in visual cortex describing responses to stimuli distributed
across space. This indicates that, for space and time, cortex uses a similar processing strategy to achieve higher-level and increasingly
invariant representations of the visual world.
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Combining sensory inputs over time is fundamental to seeing. Two important temporal phenomena are summation, the accumu-
lation of sensory inputs over time, and adaptation, a response reduction for repeated or sustained stimuli. We investigated these
phenomena in the human visual system using fMRI. We built predictive models that operate on arbitrary temporal patterns of
stimulation using two simple computations: temporal summation followed by a compressive nonlinearity. Our new temporal
compressive summation model captures (1) subadditive temporal summation, and (2) adaptation. We show that the model
accounts for systematic differences in these phenomena across visual areas. Finally, we show that for space and time, the visual
system uses a similar strategy to achieve increasingly invariant representations of the visual world. j

ignificance Statement

several robust phenomena. First, spatial summation in visual
cortex is subadditive: the response to two stimuli presented in
different locations at the same time is less than the sum of the
responses to the stimuli presented separately. This phenomenon
is observed in all cortical areas studied and has been measured
with both fMRI (Kastner et al., 2001; Kay et al., 2013a) and elec-
trophysiology (Rolls and Tovee, 1995; Britten and Heuer, 1999;
Heuer and Britten, 2002; Winawer et al., 2013); such nonlineari-

Introduction

A fundamental task of the visual system is to combine sensory
information distributed across space and time. How neural re-
sponses sum inputs across space has been well characterized, with
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ties may reflect an adaptation to achieve efficient encoding of
natural images (Schwartz and Simoncelli, 2001). In addition, in
higher visual areas, receptive field size increases (Maunsell and
Newsome, 1987) and subadditive summation becomes more
pronounced (Kay et al., 2013a, b). As the subadditivity becomes
more pronounced in later areas and receptive fields get larger, a
stimulus that occupies only a small fraction of a neural receptive
field can produce a large response. As a result, responses in higher
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Parallels between spatial and temporal processing. Itis well established that spatial receptive fields are smallin V1 (left) and grow larger in later visual areas, such as the TO maps (right).

[t was recently shown that there is also a gradient of an increasingly pronounced compressive summation over space from early to later areas (Kay et al., 2013a). Here, we hypothesize that temporal
summation, as well as the temporal receptive field size, follows a similar pattern, with increasingly long temporal windows and more compressive summation over time in the more anterior visual
areas. We propose that the combination of larger spatiotemporal windows and more compressive nonlinearities is part of a coding strategy whereby higher visual areas achieve increasing invariance

to changes in stimulus size, position, and duration.

visual areas become increasingly insensitive to changes in the size
and position of stimuli (Tovee et al., 1994; Grill-Spector et al., 2001;
Kay et al., 2013a). The tendency toward increasing tolerance for size
and position in higher areas trades off with the increasing specificity
of tuning to higher-level stimulus information (Rust and Dicarlo,
2010, 2012).

Here, we hypothesize that the same organizational principles
for the visual cortex apply in the temporal domain (Fig. 1). Just as
natural images tend to vary slowly over space, image sequences
typically vary slowly over time (Dong and Atick, 1995; Weiss et
al., 2002). As a result, an efficient code would prioritize abrupt
changes in time over sustained or repeated stimuli (Snow et al.,
2016); this would result in subadditive temporal summation for sus-
tained or repeated stimuli (also referred to as adaptation or repeti-
tion suppression). Evidence for such temporal nonlinearities are
abundant in single-cell recordings of primary visual cortex (e.g., Tol-
hurst et al., 1980) but have not been systemically characterized
across visual areas or with a forward model. Atlonger time scales,
the fMRI BOLD signal sums contrast patterns close to, but
slightly less than, linearly (Boynton et al., 1996, 2012). We hy-
pothesize that (1) at the time scale of neuronal dynamics in
sensory cortex (tens to hundreds of milliseconds), temporal sum-
mation will be substantially subadditive; and (2) more anterior
visual areas will show greater subadditivity. This greater subad-
ditivity in later areas will make these responses less sensitive to the
precise duration and timing of a stimulus, paralleling size and
position tolerance in the spatial domain. This prediction is con-
sistent with the logic that later visual areas trade off position and
duration specificity for increased tuning for high-level stimulus
properties.

In this paper, we used fMRI to study temporal summation and
adaptation. We characterized responses to brief stimuli (tens to
hundreds of milliseconds) in many visual areas, measured with

fMRI, which has the advantage of being noninvasive and record-
ing from many visual areas in parallel. To quantify and under-
stand how temporal information is encoded across visual cortex,
we implemented a temporal population receptive field (pRF)
model, which predicts the fMRI response amplitude to arbitrary
stimulus time courses.

Materials and Methods

fMRI procedure

Participants

Data from 6 experienced fMRI participants (2 males and 4 females, age
range 21-48 years, mean age 31 years) were collected at the Center for
Brain Imaging at New York University. All participants had normal or
corrected-to-normal visual acuity. The experimental protocol was ap-
proved by the University Committee on Activities Involving Human
Subjects, and informed written consent was obtained from all partici-
pants before the study. For each participant, we conducted a 1 h session
for visual field map identification and high-resolution anatomical vol-
umes, and either one or two 1.5 h sessions to study temporal summation.
Two of the 6 participants (1 male, 1 female) were included in both the
main temporal summation experiment and the self-replication experi-
ment (hence, two 1.5 h sessions). The other 4 participants (1 male and 3
females) were included in only the main temporal summation experi-
ment or the self-replication experiment.

Visual stimuli

Stimuli. For the main experiment, stimuli were large-field (24° diameter)
bandpass noise patterns (centered at 3 cycles per degree), independently
generated for each trial. The pattern was chosen because it was previously
shown to be effective in eliciting responses in most visual areas (Kay et al.,
2013b; for details on stimulus construction, see Kay et al., 2013b). A
second experiment replicated all aspects of the main experiments, except
that the stimulus patterns differed. For this experiment, the patterns were
either pink noise (1/f amplitude spectrum, random phase) or a front-
view face image embedded in the pink noise background. The face stim-
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uli were the front-facing subset of the faces used by Kay et al. (2015). For
both experiments, stimuli were windowed with a circular aperture (24°
diameter, 768 X 768 pixels) with a raised cosine boundary (2.4°). All stimuli
were grayscale. Stimulus generation, presentation, and response recording
were coded using Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) and
vistadisp (https://github.com/vistalab/vistadisp). We used a MacBook Air
computer to control stimulus presentation and record responses from the
participants (button presses) during the experiment.

Display. Stimuli were displayed via an LCD projector (Eiki LC_XG250;
resolution: 1024 X 768 pixels; refresh rate: 60 Hz) onto a back-projection
screen in the bore of the magnet. Participants, at a viewing distance of
~58 cm, viewed the screen (FOV, horizontal: ~32°, vertical: ~24°) through
an angled mirror. The images were confined to a circular region with a radius
of 12°. The display was calibrated and gamma corrected using a linearized
lookup table.

Fixation task. To stabilize attention level across scans and across par-
ticipants during the main experiment, all participants were instructed to
do a one-back digit task at the center of fixation throughout the experi-
ment, as in previous publications (Kay et al., 2013a, b). The digit (0.24° X
0.24°) was presented at the center of a neutral gray disk (0.47° diameter).
Within a scan, each digit (randomly selected from 0 to 9) was on for 0.5s,
off for 0.167 s before the next digit appeared at the same location. Par-
ticipants were asked to press a button when a digit repeated. Digit repe-
tition occurred at ~29%-3%, with no more than two identical digits being
presented successively. To reduce visual adaptation, all digits alternated
between black and white, and on average participants pressed a button
every 30 s. During the retinotopy task, the fixation alternated pseudo-
randomly between red and green (switches on average every 3 s), and the
participant pressed a button to indicate color changes.

Experimental design

We used arandomized event-related experimental design (see Fig. 2 A, B)
to prevent participants from anticipating the stimulus conditions. An
event is a stimulus presented according to 1 of 13 distinct time courses
(<800 ms in total), either a single pulse with variable duration or a
double pulse with fixed duration and variable interstimulus interval
(ISI). Durations and ISIs were powers of 2 times the monitor dwell time
(1/60 s). Each pulse in the double-pulse stimuli lasted 134 ms. The 0 ms
stimulus was a blank (zero-contrast, mean luminance, and hence identi-
cal to the preceding and subsequent blank screen between stimulus
events). For the main experiment, each participant completed 7 scans;
and within a scan, each temporal event repeated 4 times. A temporal
event started with the onset of a pattern image, and the intertrial interval
(stimulus plus subsequent blank) was always 4.5 s. For stimuli with two
pulses, the two noise patterns were identical. The design was identical for
the self-replication experiment, except that each time course repeated 3
times per scan instead of 4, and each participant completed 6 scans.

MRI data acquisition

All fMRI data were acquired at New York University Center for Brain
Imaging using a Siemens Allegra 3T head-only scanner with a Nova
Medical phased array, 8-channel receive surface coil (NMSC072). For
each participant, we collected functional images (1500 ms TR, 30 ms TE,
and 72° flip angle). Voxels were 2.5 mm ? isotopic, with 24 slices. The slice
prescription covered most of the occipital lobe, and the posterior part of
both the temporal and parietal lobes. Images were corrected for BO field
inhomogeneity using Center for Brain Imaging algorithms during offline
image reconstruction.

In a separate session, we acquired 2 or 3 T1 weighted whole-brain
anatomical scans (MPRAGE sequence; 1 mm ). Additionally, a T1 weighted
“inplane” image was collected with the same slice prescription as the
functional scans to aid alignment of the functional images to the high-
resolution T1 weighted anatomical images. This scan had an inplane
resolution of 1.25 X 1.25 mm and a slice thickness of 2.5 mm.

Data preprocessing and analysis

Data preprocessing. We coregistered and segmented the T1 weighted
whole-brain anatomical images into gray and white matter voxels using
FreeSurfer’s autosegmentation algorithm (http://surfer.nmr.mgh.harvard.
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edu/). Using custom software vistasoft (https://github.com/vistalab/
vistasoft), the functional data were slice-time corrected by resampling the
time series in each slice to the center of each 1.5 s volume. Data were then
motion-corrected by coregistering all volumes of all scans to the first
volume of the first scan. The first 8 volumes (12 s) of each scan were
discarded for analysis to allow longitudinal magnetization and stabilized
hemodynamic response.

GLM analysis. For analysis of the temporal summation functional
data, we used a variant of the GLM procedure, GLM denoise (Kay et al.,
2013c), a technique that improves signal-to-noise ratios by entering
noise regressors into the GLM analysis. Noise regressors were selected by
performing principle component analysis on voxels whose activities were
unrelated to the task. The optimal number of noise regressors was se-
lected based on cross-validated R? improvement (coefficient of determi-
nation). The input to GLM denoise was the preprocessed EPI data and a
design matrix for each scan (13 distinct temporal profiles X number of
volumes per scan), and the output was 3 weights for each temporal
profile for each voxel, bootstrapped 100 times across scans (see Fig. 2B).
For analysis, we normalized all 13 3 weights per voxel by the vector length
and selected a subset of voxels (see Voxel selection). We then averaged the 8
weights for a given temporal condition from the first bootstrap across voxels
within each region of interest (ROI) and across all participants to get a mean;
this gives one estimate of the mean response per ROI for a given condition.
This was repeated for each condition and then repeated for each of the 100
bootstraps, yielding a matrix of 100 X 13 for each ROI (bootstraps by tem-
poral condition). GLM denoise was not applied to the visual field map mea-
surements because these experiments did not have an event-related design,
and hence are not amenable to a GLM analysis.

ROI identification. We fitted a linear population (pRF) model (Du-
moulin and Wandell, 2008) to each subject’s retinotopy data (average of
2 scans). We made an initial guess of ROI locations by first projecting the
maximum likelihood probabilistic atlas from Wang et al. (2015) onto the
cortical surface. Then we visualized eccentricity and polar angle maps
derived from the pRF model fits and modified ROI boundaries based on
visual inspection. For each participant, we defined nine bilateral ROIs
(V1,V2,V3,hV4,VO-1/2,LO-1/2, TO-1/2,IPS-0/1; see Fig. 2C). For the
second experiment (self-replication), in addition to the nine ROIs from
the main experiment, we also identified a bilateral face-selective ROL.
This ROI included face-selective voxels in the inferior occipital gyrus
(IOG faces, or occipital face area) and in the posterior fusiform (pFus, or
fusiform face area-1) (Gauthier et al., 2000; Weiner and Grill-Spector,
2010). We identified these areas by taking the difference between the
mean fMRI response to all face images and the mean response to all noise
images, and then thresholding the difference for voxels at the two ana-
tomical locations (inferior occipital gyrus and posterior fusiform), as
described previously (Weiner and Grill-Spector, 2010; Kay et al., 2015).

Voxel selection. All analyses were restricted to voxels that satisfy the
following three criteria. First voxels must be located within 2°~10° (ec-
centricity) based on the pRF model. Second, voxels must have a positive
B weight for the average across all nonblank temporal conditions (and
averaged across bootstraps). The bootstraps, computed by GLM denoise,
were derived by sampling with replacement from the repeated scans.
Third, voxels must have >2% GLM R?. Voxels that satisfy all criteria
were averaged within a participant to yield 13 8 weights per ROI per
participant per 100 bootstraps. The data were then averaged across par-
ticipants. Averaging within a participant before averaging across partic-
ipants ensures that the contribution for each participant has the same
weight, regardless of the numbers of voxels per participant.

Hemodynamic response function (HRF) for individual ROIs

In the section, The CTS model is more accurate than a two temporal
channels model in later visual areas, we estimate an HRF for each ROI to
test whether the use of ROI-specific HRFs, rather than a single HRF for
each subject, altered the pattern of results. We estimated the HRFs using
two experiments: the retinotopic mapping experiment and the temporal
summation experiment. In both cases, we assumed that the HRF was
parameterized by the difference between two gamma functions with five
free parameters (Friston et al., 1998; Worsley et al., 2002). For the reti-
notopy HRF, we used the vistasoft pRF code, which uses an iterative
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approach alternating between fitting the pRF parameters and the HRF
parameters: first, the HRF is assumed to have default parameters for all
voxels and the pRF parameters are fit; then the pRF parameters are fixed
and the HRF is found, which maximizes the mean variance explained across
voxels in an RO finally, the HRF parameters are fixed and the pRF param-
eters are refit. This procedure was done separately for each ROI.

To estimate HRFs from the temporal experiment, we first selected
voxels for each ROI as described in Voxel selection. We averaged the
output time series from GLMdenoise (0-mean, polynomial detrended,
and noise PCs regressed-out) from the selected voxels within each ROI to
estimate a set of B weights. As with the retinotopy experiment, we esti-
mated the HRF and a set of B weights for each ROI using an iterative
procedure. Each HRF was parameterized using the difference between
two gamma functions with five free parameters (same as for retinotopy),
and was seeded using the same vistasoft default parameters (see rmHrfT-
wogamms.m). The iterative fitting procedure terminates when the two
types of fits converge.

Temporal pRF models

We used two variants of a temporal pRF model, one linear and one
nonlinear, to predict neuronal summation measured using fMRI. All
model forms take the time course of a spatial contrast pattern as input
(T;pur)> and produce a predicted neuronal response time course as out-
put. To predict the fMRI data (BOLD), we summed the predicted time
course within a trial (<1 s) to yield one number per temporal condition.
For model fitting, these numbers were compared with the fMRI
weights, derived from the GLM denoise analysis.

Models

Linear model. The linear model prediction is computed by convolving a
neuronal impulse response function (IRF) with the stimulus time course
(T},,pur)> and scaling by a gain factor ( g) as follows:

nput
Rlinenr = g[IRF * Tinpur]

The time course is then summed for the fMRI predictions ( plus an error
term, e) as follows:

BOLDjyeq = 2 8[IRF # Tipp] + €

For the IRF, we assumed a gamma function, parameterized by 7,, of the
form,

IRF =t * exp(—t/7)

Because the IRF was assumed to have unit area, the specific shape of the
IRF has no effect on the predictions of the linear model, and the predic-
tion reduces to the following:

BOLDlinem = g|: ETinput:| te

and the only value solved for is the gain factor, g.

Compressive temporal summation model (CTS). The CTS model is
computed with a linear convolution, followed by a divisive normaliza-
tion. The linear step is identical to the linear model. For the divisive
normalization:

2

X
BOLDCTS = gzm +e

X = IRF(T) * Tinpul

we solved for 7, 0, and gain factor g for the CTS model. Additionally, we
implement two variations of this model. In the first variation, we relaxed
the exponent from 2 to #, and fitted 4 parameters, 7, 0, 1, and the gain
factor g, as follows:

le
BOLD¢rs = gEm +e
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In the second variation, we allowed the exponent in the numerator to be
different from that in the denominator, and we fitted 5 parameters, 7, o,
n, m, and g, as follows:

x"l
BOLDCTS = gzm +e
CTS with power-law implementation. In Alternative implementations of
CTS model, we implement the CTS model with a power-law nonlinearity
rather than divisive normalization. To compute the model predicted neuro-
nal response, we first computed the linear response by convolving an IRF
(gamma function with variable time to peak 7) with an input stimulus time
course, identical to the normalization implementation. Then, an exponent &
is applied point-wise to the predicted linear output as follows:

Rers = glIRF(T) * Tivxput]s

To fit the CTS model with a power law to the fMRI data, we again
summed the predicted response time series as follows:

BOLDcrs = g ) [IRF(7) # Tyl + €

and solved for 7, €, and g.

Because of the nonlinearity, the specific shape of the IRF does matter,
in contrast to the linear model. This version of the CTS model is identical
to the normalization implementation, except that the shape of the com-
pressive nonlinearity due to the power law is slightly different from the
shape obtained using divisive normalization.

Two temporal channel (TTC) model. We implemented a TTC model,
previously used for fitting V1 responses to temporal variation in lumi-
nance (Horiguchi et al., 2009). The TTC model consists of a linear com-
bination of the outputs from a sustained and a transient temporal
channel. The output of the sustained channel is computed by convolving
an IRF with the stimulus. The output of the transient channel is com-
puted by convolving the transient IRF with the stimulus time course,
then squared point-wise in time. The sustained IRF has a positive mean
and the transient IRF has a zero mean, as implemented by Horiguchi et al.
(2009) for fMRI data. This IRF form was previously used for modeling
psychophysical data (Watson, 1982; McKee and Taylor, 1984). The out-
puts from both channels are weighted by parameter a and b as follows:

BOLD’I"I‘C = E{G[IRFsusmined * Tinput] + b[IRthnsient * Tinpur]z}

The form of both the sustained and the transient channel IRFs is the same

as follows:
REe = (5) e L ()
rre =\ e y\z e

with ¢ being time, and x, y, and z take values (3.29, 14, and 3.85), respec-
tively for the sustained IRF, and (2.75, 11, 3.18) for the transient IRF.

Parameter estimation and model fitting
All models except the linear model were fit in two steps, a grid fit followed
by a search fit, as described below (see also script #1f_fitModel.m).

CTS model-normalization implementation. For the grid fit, we com-
puted the model response to the 13 temporal conditions for 100 combi-
nations of 7and o (7 values from 10 > to 1 with 10 equal steps, and o
from 10 > to 0.5 with 10 equal steps). For each ROI, the parameter pair
generating the predictions with the highest correlation to the data was
then used as a seed for the search fit. This was repeated 100 times per ROI,
once for each bootstrap of the data (see trf_gridFit.m and trf_fineFit.m).

We then did a search fit using a bounded nonlinear search algorithm in
MATLAB (The MathWorks; fminsearchbnd.m), 100 times per RO, using
the 100 sets of bootstrapped 3 weights, and the 100 seed values as derived
above. The search finds the parameters that minimize the squared error
between predicted and measured 3 weights. The lower bound used for
the search fitis (10 3,10 %, 0) for 7, o, and g ascaling factor. The upper
bound was (1, 1, 1). This gave us 100 estimates of each model parameter
for each ROI, which we summarized by the median and 50% CI.
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Additionally, for Alternative implementations of CTS model, we im-
plement the normalization model with additional free parameters. To fit
the first variation of the normalization model (free parameters: 7, o, 11, g),
we used the same 10 steps grid fit for Tand o-as in the previous model. For
n,a 10 step grid with equal steps from 0.1 and 6 was used. In the search fit
stage, same bound was used for 7, 0, and g as in the previous model, and
the bound for 1 was (0, 10). To fit the second variation of the normaliza-
tion model (free parameters: 7, o, 1, m, g), the same 10 step grid was used
for both n and m in the search stage, and the same bound for both
exponents was used in the search stage.

CTS model-exponential implementation. For the grid fit, we computed
the model responses to the 13 temporal conditions for 100 combinations
of 7and & (7 values from 10 > to 1 with 10 equal steps; & values from
10~ to 2 with 10 equal steps). The procedure to select the best fitting
parameter pair and the search fit step is the same as above. The lower bound
we used for the search fit is (0.02, 0.001, 0) for 7, &, and g (a scaling factor).
The upper bound was (1, 2, 1) (see trf_gridFit.m and trf_fineFit.m).

TTC model. For the grid fit, we generated a 10 X 10 grid for the
sustained and the transient weight (from 10 > to 1 with 10 equal steps).
Then we implemented the search fit step as above, with lower bound (0,
0) and upper bound (1, 1) (see trf_gridFit.m and trf_fineFit.m).

Linear model. The linear model does not require a search or seeds.
Instead, we fit the 100 bootstrapped datasets per ROI by linear regression,
giving us 100 estimates of the gain factor, g, per ROL

Statistical analysis

We compared model accuracy of the CTS and the linear model. Because
the models have different numbers of free parameters, it is important to
obtain an unbiased estimate of model accuracy, which we did by leave-
one-out cross validation. For each ROI, and for each of the 100 boot-
strapped sets of B weights, we fit 13 linear models and 13 CTS models by
leaving out each of the 13 temporal stimuli. For each bootstrap, we thus
obtained 13 left-out predictions, which were concatenated and compared
with the 13 8 weights by coefficient of determination, R? as follows:

> (MODEL — DATA)>
> DATA®

R2=100><[1

This yielded 100 R? values per ROI, and we summarized model accuracy
as the median and 50% CI derived from these 100 values.

The coefficient of determination, R?, is bounded by (=, 1), as the
residuals between model and data can be larger than the data. In contrast,
2 is bounded by (0, 1).

Noise ceilings. The noise ceiling represents the highest accuracy a
model can achieve given the signal-to-noise ratio in the data, regardless
of the specific model used. We computed noise ceilings stochastically
based on the mean and SE of the GLM-f weights from bootstrapped
estimates, as implemented by Kay et al. (2013a).

Flat model. We computed a model that assumes that the BOLD re-
sponses to all stimuli are identical (“flat model”) as a further basis of
comparison with the CTS and linear models. Like the CTS and the linear
model, the accuracy of the flat model was computed by leave-one-out
cross validation. The cross-validated predictions from the flat model are
not quite identical across conditions, because the mean is affected by the
left-out data.

Parameter recovery. To estimate how well model parameters are spec-
ified, for each visual area, we simulated the CTS model responses by first
generating the predicted fMRI 3 weight for each temporal condition. The
parameters used for simulation were the median of each of the parame-
ters from the bootstrapped fits to the data. We then added noise to each
B weight by randomly sampling from a normal distribution whose SD
was matched to the SE in the bootstrapped data, averaged across the
temporal conditions. We added noise 1000 times per ROI and then
solved the CTS model for the 1000 simulated responses using the same
procedure used with the actual data. The parameters recovered from this
fitting procedure provide an estimate of how well specified each param-
eter is given the form of the model (including the parameters) and the
noise level in the data.
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Public datasets and software code

To ensure that our computational methods are reproducible, all data and
all software are made publicly available via an open science framework
site: https://ost.io/v843t/. The software repository includes scripts of the
form trf_mkFigure2 to reproduce Figure 2, etc., as in prior publications
(e.g., Winawer and Parvizi, 2016).

Results

Measuring temporal summation in visual cortex

In each trial of the experiment, participants viewed either one or
two pulses of a static spatial contrast pattern. The pattern was an
independently generated bandpass noise image (24° diameter),
used in prior studies of spatial encoding (Kay et al., 2013a, b). For
the two-pulse trials, the two spatial patterns were identical. Each
trial used 1 of 13 distinct time courses (Fig. 2A). The durations of
the one-pulse stimuli and the ISIs of the two-pulse stimuli were
thesame:0, 1,2, 4, 8,16, 32, or 64 video frames of a 60 Hz monitor
(ie., 0, 17, 33, 67, 134, 267, 533 ms). Each pulse in the 2-pulse
stimuli was 8 frames (134 ms). The 0 ms one-pulse stimulus was
ablank (mean luminance), and the two-pulse stimulus with 0 ISI
was identical to the one-pulse stimulus of twice the length (16
frames, 267 ms). Four participants were scanned, and data were
binned into nine bilateral, eccentricity-restricted (2°-~10°) visual
areas defined from a separate retinotopy scan (Fig. 2C).

The fMRI data were analyzed in two stages. First, we extracted
the amplitude (B weight) for each of the 13 temporal conditions
using a variation of the GLM denoise (Kay et al., 2013c), a technique
that improves the signal-to-noise ratio by including noise regressors
in the GLM (Fig. 2B). Second, we fitted the temporal pRF model to
the GLM B weights, averaged across voxels within ROIs.

Temporal summation in visual cortex is subadditive

We tested the linearity of the fMRI BOLD signal in each visual
area. To do so, we assume a time-invariant linear system such that
the BOLD amplitude (GLM S weight) is proportional to the total
stimulus duration within the trial. Because of the linearity as-
sumption, the form of the neural IRF does not affect the pattern
of the predicted BOLD amplitudes. For example, the linear pre-
diction is that a stimulus of duration 2t produces twice the am-
plitude as a stimulus of duration ¢, and the same amplitude as a
two-pulse stimulus, with total duration 2¢ (Fig. 3A). This predic-
tion is not borne out by the data. The response to a stimulus of
length 2t is ~75% of the linear prediction in V1 and 50% in area
TO (a homolog of macaque areas MT and MST) (Fig. 3B, left).
This systematic failure of linearity is found in all visual areas
measured, with temporal summation ratios <0.8 for all ROIs,
and a tendency toward lower ratios in later areas (Fig. 3C). The
BOLD amplitudes to all stimuli are low (<1%) because the stim-
uli are brief, compared with measurements of visual cortex using
moving stimuli or a block design with multiple static stimuli,
where percentage BOLD changes can be several percent.

A further failure of linearity occurs for trials with two pulses
and variable ISI: the response is larger when the ISI is longer,
especially in V1. The linear prediction is that the amplitudes are
the same, and double the response to the one-pulse stimulus (Fig.
3B, right). When the ISI is relatively long (528 ms), the response
in V1 is close to the linear prediction made from the one-pulse
stimulus. In TO, even with a long ISI, the response is still well
below the linear prediction. This pattern, whereby the response
to a second stimulus is reduced for short ISIs, and larger for
longer ISIs, is often called adaptation and recovery (Priebe et al.,
2002; Kohn, 2007). For TO, the recovery time is longer than V1,
and longer than the longest ISI we tested.
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Figure 2.

variable duration variable ISI

Experimental design and analysis. A, Participants were presented with one or two pulses of large field (24°) spatial contrast patterns. One-pulse stimuli were of varying durations, and

two-pulse stimuli were of varying ISI (with each pulse lasting 134 ms). B, The temporal conditions were presented in random order, indicated by the white bars in the 13-column design matrix (one
column per temporal condition). To analyze the data, we extracted a 3 weight for each temporal condition per area using a variant of the GLM denoise. C, Nine visual field maps or visual field maps
pairs were bilaterally identified for each participant (V1; V2; V3; hV4; V0-1/2; V3A/B; IPS-0/1; L0-1/2; T0-1/2).

The temporal subadditivity is captured by a CTS model

We modeled the temporal subadditivity with a CTS model (Fig.
4A). The CTS model has a linear—nonlinear structure. The linear
stage convolves the stimulus time course with a temporal IRF
(parameterized by the time constant 7). The nonlinear stage
passes the linear output through a static nonlinearity, divisive
normalization. The normalization is implemented by squaring
the linear response at each time point (as in Heeger, 1992), and
dividing this by the sum of two terms, a semisaturation constant
(o) and the linear response, both of which are squared (Heeger,
1992). Squaring is widely used for modeling neural computa-
tions, such as color (Helmholtz, 1886; Koenderink et al., 1972)
and motion (Adelson and Bergen, 1985; Simoncelli and Heeger,
1998). The normalization model was developed to describe re-
sponses at the level of single neurons. However, we can generalize
it to an fMRI voxel by assuming that the neurons within a voxel
share a normalization pool, and the voxel sums across neurons
within it. In this case, the normalization equation has the same
term in the numerator and denominator, as implemented in the
CTS model (see also Kay et al., 2013a).

We illustrate the effect of the CTS model with example re-
sponses to brief stimuli (17 and 33 ms), assuming an IRF with
time constant 100 ms (Fig. 4B). For a linear model, the predicted
response to the longer stimulus peaks at almost double the value
of the briefer stimulus. For the CTS model with a large o, the
response more than doubles for the long stimulus compared with
the brief stimulus, due to the squaring in the numerator. When o
is small, the model is compressive, as the response to the longer
stimulus is very similar to the brief stimulus.

To relate the CTS model output to the BOLD signal, we summed
the predicted CTS output for a trial, and scaled this by a gain param-
eter, g, to convert to units of percentage BOLD change. We sum the
CTS output to give a single value per temporal condition, which can
be compared with the 8 weight in each condition, fit from the GLM.
If we instead convolve the time-varying CTS model prediction with
an HREF, rather than convolving the summed CTS model prediction
with the HRF, the predicted BOLD response is nearly identical (Fig.
4C). We note that while we refer to the model as compressive, tech-
nically the normalization model amplifies the output when the in-
stantaneous linear response is low due to the squaring in the
numerator, and compresses the response when the amplitude is
high. However, for all temporal conditions we tested, the model
output is compressive in the sense that the predicted response for
any of our single pulse stimuli is less than the linear prediction from
a briefer stimulus.

We compared the CTS model with a linear model by measur-
ing cross-validated accuracy. The CTS model is more accurate
than the linear model for all areas (Fig. 5). The linear model
substantially underpredicts responses to short durations and over-
predicts responses to long durations, whereas the CTS model does
not. Further, the predictions of the linear model do not depend
on ISI, whereas the CTS model correctly predicts that the re-
sponse amplitude increases with longer ISI. The cross-validated
CTS model predicts the left-out fMRI responses with accuracy
between 81% and 98% across the 9 ROIs. This represents a large
improvement compared with the linear model for every area (Fig.
5B). The improvement is especially pronounced in later than
early areas (LO/TO/IPS vs V1-V3).
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The CTS model is also more accurate than a flat model (Fig.
5B). The flat model predicts the same response amplitude to all
stimuli. This indicates that, although the BOLD responses are
relatively small (low percentage signal change) and compressive
(similar for different duration stimuli), there are nonetheless mean-
ingful differences in the response amplitudes to different temporal
conditions. Importantly, the CTS model accurately captures these
differences, as it is substantially more accurate than the flat model.
One notable exception is area TO, where the BOLD responses are
most compressive: here the CTS model is only slightly more ac-
curate than the flat model (and both are much more accurate
than the linear model). In contrast, the linear model is more
accurate than the flat model only in early visual areas (V1-V3)
and less accurate in higher visual areas.

Opverall, all three models have a high cross-validated accuracy
(from ~70% to 98%). There are several factors to consider in
these summary metrics. First, the analysis takes place in two stag-
es: an initial general linear model that yields one coefficient per
condition, and then a model fitted to these coefficients. The
model accuracy is computed on the 13 coefficients, not the com-
plete BOLD time series, for which the model accuracy would be
lower. Second, the model accuracy is computed per ROI, not per
voxel, attenuating the noise in individual voxels. Finally, the met-
ric we used to summarize accuracy, R?, or coefficient of determi-
nation (see formula in Statistical analysis), is influenced by the

degree to which the model predictions get the mean right across
conditions. This contrasts with, for instance, the squared Pearson
correlation (72), which subtracts the mean from both the model
predictions and the data. We do not subtract the means because
getting the mean right is part of the model (gain parameter, g).
For all of these reasons, it is important to compare the R* across
the models (linear, CTS, flat). Doing so shows that the CTS model
is most accurate in all ROIs.

Finally, we note that, although the cross-validated accuracy of
the CTS modelis high (close to the noise ceiling in all areas), some
data points appear to deviate systematically from the model pre-
dictions; for example, the response to the 17 ms single-pulse
stimulus is underpredicted in TO, and the 67 ms single pulse
stimuli are underpredicted in multiple areas. We do not try to
interpret these particular data points as they were not robust to
replication (see The CTS model fits replicate across experiments).

The CTS model fits capture systematic differences

between areas

The CTS model is parameterized by 7, o, and a gain factor, g. 7is
the time to peak in the temporal IRF and therefore is related to
temporal summation window length; o is the semisaturation
constant and reflects how much the CTS prediction deviates from
the linear prediction. When ¢ is lower, the response is more com-
pressive. The intuition for this is that, when o is small, the numera-
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just scaled in amplitude.

tor and denominator have similar values, so that the model
output is relatively invariant to stimulus duration (hence, more
compressive). In contrast, when o is very large, the denominator
is approximately a constant, so there is little normalization. In
later visual areas (hV4-IPS), o is ~10 times lower than earlier
areas (V1-V3ab) (~0.003 vs ~0.03; Fig. 6A, right), consistent
with temporal summation being more sublinear in the model-
free summary (Fig. 3C). The more pronounced sublinearity later in
the visual hierarchy is qualitatively similar to the pattern found for
spatial summation (Kay et al., 2013a). A consequence of more com-
pressive temporal summation is that the response amplitude varies
less with minor changes in stimulus duration, just as greater com-
pression of spatial summation predicts more tolerance to changes in
size and position (Kay et al., 2013a). From the current fMRI dataset,
there is also a tendency toward shorter time constants (7) in earlier
areas, with some exceptions (except for VO, V1-V3 have the smallest
7, ~50 ms; Fig. 6A).

The precision of our parameter estimates in each area depends
on the BOLD noise level (the CI of the B weights), as well as the
specific parameters estimated for that area. To understand how

these factors interact, we simulated 1000 datasets for each of three
areas: V1, V3ab, and LO. The simulations used the median pa-
rameter fits for each area (7and o) to generate a noiseless predic-
tion. We then added noise independently for each of the 1000
predictions, according to the noise level in the fMRI measures for
that area. Finally, we solved the CTS model for each of the predicted
set of responses and analyzed the parameters. This parameter recov-
ery analysis reveals two important results. First, it shows that the
parameters for the different areas are distinguishable: models solved
from simulations matched to V1, for example, are not confusable
with models solved from simulations matched to V3ab or LO
(Fig. 6B). Second, the analysis shows that the precision of the
parameter estimates differs across areas. For example, for V1, Tis
more precisely specified than o, whereas for LO, o is more pre-
cisely specified than 7 (Fig. 6B, insets). V3ab is intermediate.
These simulations are consistent with the observation that model
solutions on the bootstrapped data show a smaller CI for 7 than
for o in V1, and the reverse for LO (Fig. 6A).

To further examine the differences in temporal processing be-
tween ROIs, we summarized the CTS model predictions to each ROI
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response in terms of two metrics that have more directly interpreta-
ble units: Ry e and Tig; (Fig. 6C). Ryoupie 1S the ratio between the
CTS-predicted BOLD response to a 100 ms stimulus and a 200 ms
stimulus. Lower Ry, means more compressive temporal summa-
tion. Later visual areas have lower R, ,,j. than earlier ones. Tyg; is the
minimal duration separating two 100 ms pulses such that the re-
sponse to the paired stimuli is close to the linear prediction from the
single stimulus. Similar to previous measurements at longer time
scales (Weiner et al., 2010; Mattar et al., 2016), the recovery time is
longer for later than earlier visual areas.

The CTS parameters do no vary systematically with
eccentricities from 2° to 12°

Prior work has shown that temporal encoding in V1 differs be-
tween fovea and periphery (Horiguchi et al., 2009). In a separate
analysis, we asked whether the CTS model parameters differed as
a function of eccentricity. We did not find reliable differences for
parafovea (2°-5°) versus periphery (5°-10°), either in the re-
sponse amplitude (Fig. 7A) or in the summary metrics (Fig. 7B).
This may be due to the limited range of eccentricities. Horiguchi
et al. (2009) found the biggest difference in temporal sensitivity
between fovea and the far periphery (20°-60°), with only mini-

mal differences between the low-to-mid eccentricity bins we
tested.

The CTS model fits replicate across experiments

We conducted a separate experiment with the identical temporal
profiles and two different classes of images: pink noise and faces
embedded in pink noise (Fig. 8A). This experiment tests the gen-
eralizability across spatial pattern. Because faces were used as one
of the textures in this experiment, we included an additional
ROI-a face-selective area, which is a combination of the occipital
face area and the fusiform face area. A single model was fit to each
ROI for each participant, assuming independent gain parameters
for the two stimulus classes, and the same time constant and
semisaturation constant. The results from the main experiment
hold: all visual areas in the second experiment sum sublinearly in
time, with the CTS model fitting the data more accurately than
the linear model (Fig. 8B). Moreover, as with the main experi-
ment, later areas tended to sum more sublinearly compared with
the earlier ones (Fig. 8C). The response amplitudes are slightly
lower than those in the main experiment due to stimulus selec-
tivity, and the responses are noisier due to fewer trials per condi-
tion; otherwise, the pattern of responses is highly similar.
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Differences in parameters across ROIs are not explained by
differences in HRFs
We found that the CTS parameters representing temporal pro-
cessing differed systematically along the visual hierarchy, with a
tendency toward a pronounced nonlinearity and longer time
constant in later visual areas. These results were obtained with a
model in which a single HRF was fitted to each individual subject,
but not to each ROI separately. Fitting a single HRF to each area
is robust in that it reduces sensitivity to noise within an area as
signal. However, if the actual HRF differs systematically across
areas, then it is possible that enforcing a single HRF will result in
biased estimates of the 3 weights. In this section, we consider the
possibility that the differences in derived metrics (R and
Tys1) across ROIs might be explained by variations in the HRF
rather than differences in the underlying neuronal responses.
To address this question, we estimated a separate HRF for
each ROI and each subject. We estimated the ROI-specific HRF
in two ways: from the retinotopy experiment and from the first
temporal experiment. For each area, the HRFs were parameter-
ized as a difference of two gamma functions (Friston et al., 1998;
Worsley et al., 2002). The resulting HRFs were broadly similar
across ROIs. For example, the time course of the HRF of an
intermediate area, hV4, is within 1 SD of the time course of all
other ROIs at almost all time points from both retinotopy and the

temporal experiment (Fig. 9A, B). There are some qualitative dif-
ferences, such as a larger poststimulus undershoot in later areas,
particularly as estimated by the temporal experiment (VO, LO,
TO, IPS). To assess the impact of these modest differences in the
HRFs across areas, we recomputed the CTS model parameters
and the two derived summary metrics, Ry and Tig; (Fig. 9C).
The general pattern of results is the same whether the HRFs are fit
to each area or to each individual: R, tends to decrease along
the visual hierarchy, and T\ increases.

The CTS model is more accurate than a TTC model in later
visual areas

The CTS model was implemented to capture subadditive tempo-
ral summation using canonical neural computations (filtering,
exponentiation, normalization). An alternative model, in which
neuronal responses are thought to reflect the outputs of TTC, has
been proposed to account for psychophysical temporal sensitiv-
ity (Watson and Robson, 1981; Hess and Plant, 1985; Watson,
1986) and fMRI responses in V1 (Horiguchi et al., 2009) and
extrastriate cortex (Stigliani et al., 2017). This TTC model linearly
combines the output from a sustained and a transient temporal
frequency channel. The sustained channel has a mostly positive
IRF and is linear and the transient channel has a balanced (zero-
sum) IRF and its output is squared (Fig. 10A). The TTC model
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both the TTC model and the CTS model
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observed in the data and predicted from
+ the models arises from retinal ganglion

* cells, normalization within visual cortex,
feedback from higher areas, or a combina-
tion of these.
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contains filtering and exponentiation but not normalization. The
specific forms of the IRFs in the TTC model are derived from
psychophysics, not neural data, and hence are assumed to be the
same in all visual areas; the model is fit only by varying the relative
weights of the two channels.

We fit the TTC model to the bootstrapped B weights esti-
mated from the first temporal experiment, and compared this
with the CTS model fits. In early visual areas (V1-V3), the two
models have similar accuracy (as assessed by cross-validated R?).
In later visual areas (e.g., in LO, TO, and IPS), the CTS model
captures the data better. For the later areas, the TTC model sys-
tematically underpredicts 3 weights for the one-pulse conditions
and overpredicts the two-pulse conditions (Fig. 10 B, C). Because
of the relatively brief time scales of the IRFs in the TTC model, the
predicted response to the second of two pulses is largely unaf-
fected by the first pulse. This will result in an overprediction for
any visual area with long temporal windows. As noted earlier,
measurements further in the periphery of V1 have greater sensi-
tivity to stimulus transients (Horiguchi et al., 2009); it is therefore
likely that, had our measurements extended into the far periph-
ery, the CTS model would need to be augmented with a second,
transient channel.

Although the predictions from the two model forms differ in
detail, there are some important commonalities. For example,

V1 V2 V3V3abhV4 VO LO TO IPS

(TS model fits by eccentricity. Data from the main fMRI experiment are replotted, separating each ROl into two
eccentricity bins. A, (TS model fit to low and high eccentricity bins. Left panels, Data and CTS model fits restricted to voxels with pRF
centers within 2°-5°. Right panels, Data and (TS model fits restricted to voxels within 5°~10° eccentricity. B, Summarized metrics
for different eccentricity bins. The summarized metrics do not differ systematically between the two eccentricity ranges. Each dot
indicates the median of the metrics summarized for 100 bootstraps of data (across scans). Error bars indicate 50% CI. Figure made

The nonlinear component of the CTS
model was implemented as a divisive nor-
malization. This model fit the data much
more accurately than a linear model, and
divisive normalization is a good descrip-
tor of a wide range of neural phenomena
(Carandini and Heeger, 2011). However,
there are many choices of static nonlin-
earities. In prior work, a power law static
nonlinearity was used to model compres-
sive spatial summation in fMRI (Kay et al., 2013a; Winawer et al.,
2013). Although the form of the two nonlinearities differ, we
found that refitting the fMRI data with the power-law nonlinear-
ity produced results that were highly similar to the fits with the
divisive normalization implementation (Fig. 11). The model ac-
curacy was not distinguishable when using a power law versus
divisive normalization, and the two derived metrics, Ry, and
T;» showed the same pattern. Hence, the fMRI data in these
experiments do not distinguish the two forms of the compressive
nonlinearity. The power-law nonlinearity has the advantage of
ease of interpretation; the exponent indicates how much the re-
sponse deviates from linear. Divisive normalization has the ad-
vantage of strong support from many neural systems (Carandini
and Heeger, 2011). It might be possible to distinguish the two by
measuring responses to stimuli with very brief durations or very
low contrasts. One difference between the two nonlinearities is
the precision in which parameters are recovered. For example, 7
is recovered with high precision for most visual areas in the divi-
sive normalization implementation; for the power-law imple-
mentation, the exponent ¢ is recovered more accurately than 7
(simulations not shown).

Finally, for completeness, we fit two other variants of the CTS
model: one in which the exponent of 2 in the numerator and
denominator was replaced by a free parameter, n, as follows:
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Figure made from the script trf_mkFigure8.m.
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and one in which the exponents in the numerator and denomi-  These two variants of the CTS model increase the number of free

nator were fit with separate free parameters, m and n as follows: ~ parameters from 3 (7, 0, and g) to 4 and 5, respectively (Fig. 12A).
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For the implementations with more free
parameters, the multiple nonlinear pa-
rameters (o and exponents) appear to
trade off to a certain degree, so that the
error bars on the separate parameters tend
to be larger than those for the simpler im-
plementation of the CTS model. More-
over, as the models become more
complex, the separate parameters are
harder to interpret. For example, o is an
order of magnitude bigger in the right-
most compared with the leftmost model,
but it is also raised to a higher exponent
(n) in the rightmost model; hence, the ef-
fect of normalization may be similar for
the two models (Fig. 12A).

Because the individual model parame-
ters are difficult to interpret, and the
models differ in the number of free pa-
rameters, it is most informative to com-
pare them on summary metrics. This
shows that the same general pattern holds
for all implementations: early visual areas
(V1-V3) tend to have shorter T,; and
larger Ry upie (Fig. 12B). Area TO is at the
opposite extreme, with long T,; and low
Ryoube- All three model variants have very
high cross-validated accuracy, substan-
tially outperforming the linear model
(Fig. 12C). Although the models with
more parameters have numerically higher
accuracy, the difference is small; hence, we
tend to favor the simpler, more interpre-
table implementation. This bias toward
simpler implementations is consistent
with other uses of divisive normalization
(Carandini and Heeger, 2011).

Discussion

Summation and adaptation in

visual cortex

We report that temporal summation is
subadditive throughout human visual cortex.
Across 10 visual areas, BOLD responses to
long stimuli were less than the linear
prediction from briefer stimuli. This sub-
additivity was especially pronounced in
areas anterior to V1-V3. We captured this
effect with a new temporal receptive field
model, comprised of a linear stage fol-
lowed by a static nonlinearity. This
compressive temporal summation model
made highly accurate predictions for the
fMRI data, and in all visual areas was
substantially more accurate than a lin-
ear model. A single model accurately
predicted two phenomena: subadditiv-

<«

derived from the temporal experiment. C, CTS summary met-
1ics (Ryoupie O Tisy) derived from the CTS model, fit either with
subject- and ROI-specific HRFs (black) or only subject-specific
ROIs (red). Figures made from the script trf_mkFigure9.m.
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ity in the duration-response function and adaptation over
short time scales (ISIs ranging from 0 to 528 ms). This indi-
cates that both effects, the subadditivity with respect to dura-
tion and the response reduction to repeated stimuli, may arise
from the same underlying processes.

A wide range of prior experimental measures are consistent
with temporal subadditivities in visual cortex. For example, at the
scale of 3-24 s, the fMRI response in V1 to a long presentation of
a reversing contrast pattern is less than the prediction from a

shorter presentation (Boynton et al., 1996); the fMRI response to
repeated contrast patterns is larger for 1 s ISIs than 3 s ISIs (Heck-
man et al., 2007); the response of a V1 neuron to a steady flash is
not predicted by its temporal frequency tuning and decreases
over time (Tolhurst et al., 1980); the response of a neuron to a
repeated stimulus is less than the response to the first stimulus
(Priebe et al., 2002; Motter, 2006). Here we both quantified tem-
poral subadditivities across the cortical visual hierarchy and ac-
count for the effects with a forward model. The model generalizes
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from the observed effects, as it takes arbitrary temporal patterns
as inputs. The two operations (linear summation and a com-
pressive nonlinearity) provide a simple and interpretable set of
computations that can be used to characterize neural response
properties across visual areas. For example, an implication of the
T\ measures is that, when designing an fMRI experiment, stim-
uli must be spaced by at least 100 ms to avoid significant interac-
tions in V1 responses, and at least 1 s in TO or IPS.

Subadditivities in fMRI
In principle, the subadditivity could arise from the neuronal re-
sponses, coupling between neuronal processes and the BOLD

signal, or a combination of both. There are several reasons to
believe that at least a significant part of the observed nonlinearity
is neuronal in origin. First, single-unit measurements of cortical
neurons show temporal subadditivities (Tolhurst et al., 1980;
Motter, 2006), and it is more parsimonious to attribute subaddi-
tivities in the single-unit and BOLD measurements to a single
cause. Second, we find greater subadditivities in later than earlier
visual areas, consistent with a cascade architecture in which later
areas add additional nonlinearities to the outputs from earlier
areas (Heeger et al., 1996; Simoncelli and Heeger, 1998; DiCarlo
etal., 2012; Kay et al., 2013a, b); in contrast, there is no reason to
expect that the coupling between neuronal signals and the hemo-
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Subadditive spatial and temporal summation. 4, BOLD responses pooled across voxels in V1 (left) and in TO (right) are plotted as a function of stimulus size. Circles and error bars

represent means and SEs across bootstrapped estimates. A compressive spatial summation model (red), fit to separate data, predicts the responses slightly more accurately than a linear model
(green) in V1, and substantially more accurately in TO. Adapted with permission from Kay et al. (20133, their Fig. 8). B, A similar pattern is observed for duration, replotted from Figure 4A.

dynamic response would become increasingly compressive along
the visual hierarchy. Third, because even our longest stimuli were
brief (=528 ms), thereby eliciting relatively small BOLD signals
(~0.5%), it is unlikely that saturation of the BOLD signal for
longer stimulus durations could explain the compressive re-
sponse. For example, when similar stimuli are presented in a
sequence of several images, the fMRI responses are several times
larger (1%—-4%) (Kay et al., 2013a, b), indicating that the BOLD
signal measured here was well below saturation. Therefore, over-
all, our results indicate that the neuronal response underlying the
BOLD signal shows significant temporal subadditivities, and that
the subadditivity is more pronounced in later visual areas.
Multiple studies are consistent with the possibility that the
linear approximation of the neural-to-BOLD transform is rea-
sonably good (Boynton et al., 1989; Heeger et al., 2000; Rees et al.,
2000). However, our interpretation of temporal compressive
summation in the neural response does not rely on the assump-
tion that the BOLD signal is exactly a linear transform of local
neuronal activity. If, for example, the coupling reflects an approx-
imately square root compression, as recently suggested by one
group (Bao etal., 2015), then the stimulus-to-BOLD nonlinearity
we observed would still imply a highly compressive neural re-
sponse. This is easiest to appreciate for the power-law implemen-
tation of the CTS model. For example, the median exponent fit to
the BOLD signal across ROIs ranged from 0.1 (IPS) to 0.28 (V1).
If we assume that this includes a neurovascular compressive ex-
ponent of 0.5, then the stimulus-to-neural response would have
exponents ranging from 0.2 (IPS) to 0.56 (V1), still highly com-
pressive. This interpretation is supported by preliminary analyses

<«

(Figure legend continued.) and followed by scaling and summation to predict the BOLD signal, as
indicated in Figure 3. Each of the three implementations s fit to the same data (Experiment 1,
same as Fig. 4). B, The summary metrics, T;and Ry, are similar for the three implementa-
tions, with a general tendency for V1-V3 (circled) to have shorter T;; and higher Ry, e, indi-
cated by the lower right position in the scatter plots. This shows that the three (TS
implementations, despite different parameterizations, manifest in similar model behavior.
C, Cross-validated accuracy is high for all three model forms, well above the linear model for all
areas. Figure made from the script trf_mkFigure12.m.

of intracranial data, which show substantial temporal nonlineari-
ties in the neural response (Zhou et al., 2017).

Spatial and temporal subadditivities
Subadditive temporal summation is likely to have important
functional consequences. The two ways we documented tempo-
ral subadditivities, a compressive function of duration for single
stimuli and a reduced response for paired stimuli with short ISIs,
are consistent with neural adaptation: a reduced response to pro-
longed or repeated stimuli. These phenomena are thought to
reflect adaptive changes to the local environment, rather than
being a passive byproduct of neural responses (Webster, 2015).
For example, adaptation may serve to prioritize new information
or act as gain control (Solomon and Kohn, 2014). An interesting
consequence of subadditive temporal summation is that re-
sponses to stimuli of different durations are more similar to one
another than they would be if summation were linear. This may
be thought of as a form of duration or timing tolerance, analo-
gous to size and position tolerance in spatial encoding, which are
increasingly prominent in higher visual areas (Kay et al., 2013a).
For example, in V1, as the stimulus size increases or the stimulus
duration lengthens, the response amplitude increases substantially,
whereas in area TO, the response amplitudes increase only slightly,
indicating greater tolerance for size and duration (Fig. 13).
Although spatial and temporal subadditivities share some
properties, they are independent findings and differ in detail. For
example, V2 shows substantially more spatial subadditivity than
V1 (Kayetal., 2013b, their Fig. 9b; Kay et al., 2013a, their Fig. 7b),
but a similar degree of temporal subadditivity (Figs. 6, 7). Moreover,
temporal subadditivities are directional: the future cannot affect the
past, whereas responses to two spatial locations can affect each other.
Further, a system that is space-time separable could, in principle,
exhibit saturation with space but be linear in time, or vice versa. It
will be important in future work to develop an integrated model that
accounts for spatial and temporal nonlinearities.

Temporal window length
Our finding that time scales lengthen across the visual hierarchy
is consistent with measurements of temporal dynamics at a larger
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scale. For example, temporal receptive window length was stud-
ied by measuring response reliability to scrambled movie seg-
ments (Hasson et al., 2008; Honey et al., 2012). In visual cortex,
responses depended on information accumulated over ~1 s,
whereas in anterior temporal, parietal, and frontal areas the time
scale ranged from ~12 to 36 s. Similarly, in event-related fMRI,
the influence of prior trials was modeled with an exponential
decay, with longer time constants in later areas: Boynton et al.
(1996) reported a time constant of ~1 s in V1 for contrast revers-
ing checkerboards, and Mattar et al. (2016), using static face im-
ages, reported short time constants in V1 (~0.6 s) and much
longer constants in face areas (~5 s). In macaque, the timescale of
autocorrelations in spike counts was longer for areas higher in the
hierarchy (~300 ms) compared with sensory areas (~75-100
ms) (Murray et al., 2014). These studies used very different meth-
ods and resulted in a wide range of time-scale estimates. It will be
important in future work to ask whether a forward model can
account for the range of values.

Analyzing visual information at multiple temporal scales has
benefits. First, accumulating information in the past is necessary
for predicting the future, and a hierarchy of temporal windows
may be useful for predictions over different time-scales (Heeger,
2017). Second, signal-to-noise ratios are optimized when the
temporal scale of analysis is matched to the temporal scale of the
event of interest (a “matched filter”); different visual areas extract
information about different image properties, which in turn are
likely to have different temporal (or spatiotemporal) distribu-
tions in natural viewing. For example, V1 cells are highly sensitive
to the spatially local orientation, contrast, and spatial frequency
in an image. These properties are likely to change with even small
eye movements, such that integrating over too long a time period
will blur the dimensions of interest. In contrast, higher-order
image statistics may be stable over larger image regions and lon-
ger viewing durations, and hence an area sensitive to such prop-
erties may benefit from longer periods of integration. Whether or
not the time scales of the different cortical areas are fixed, or
adjust based on the ongoing statistics of visual input, is an impor-
tant question for future work.

Just as understanding natural image statistics may lead to better
theories of neural coding (Olshausen and Field, 1996; Schwartz and
Simoncelli, 2001), understanding neural coding can help us un-
derstand behavior. For example, the time-scale of cortical areas
may set the time-scale of integration for behavior. Words, faces,
and global motion patterns are integrated over periods 5-10
times longer than textures and local motion patterns (Holcombe,
2009). These effects have not been connected to a neural model;
modeling the time-scale of cortical areas critical for these tasks
may help explain these large behavioral effects.

Generalization and future directions

The CTS model parameters estimated from our main experiment
are similar to those from the second experiment (self-replica-
tion), in which we used different stimulus images. Yet, just as with
spatial pRF models, it is likely that our model will fail for certain
tasks or stimuli (Wandell and Winawer, 2015). For example, sus-
tained attention to the stimulus (Self et al., 2016), presence of a
surround (Bair et al., 2003), nonseparable spatiotemporal pat-
terns (motion), and stimulus history of many seconds or more
(Weiner et al., 2010), can all affect the time course, hence subad-
ditivity of the response. By formulating a forward model of re-
sponses to large-field contrast stimuli during passive viewing, we
provide a quantitative benchmark that can be used to guide in-
terpretation of how other factors influence response dynamics,
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and a platform upon which to extend the model to new stimulus
or task features. An important goal for future work is to develop
a space-time model that simultaneously accounts for nonlinearities
in spatial (Kay et al., 2013a) and temporal summation. Finally, our
fMRI model contains a static nonlinearity. Measurements with finer
temporal resolution, such as intracranial EEG, will be informative
for understanding the time scale of the nonlinearities.
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