Skip to main content
. Author manuscript; available in PMC: 2018 Mar 1.
Published in final edited form as: Comput Med Imaging Graph. 2017 Jan 31;56:38–48. doi: 10.1016/j.compmedimag.2017.01.002

Table 1.

Comparison of average nucleus segmentation performance of RGVF snake (Li et al., 2012), multi-scale watershed (Gençtav et al., 2012), FCM (Chankong et al., 2014), and our graph-search based methods on the abnormal cervical cells from the Herlev data (Jantzen et al., 2005). Bold values indicate the best performance for each column.

Methods Mild dysplasia (182 cells)
Moderate dysplasia (146cells)
Severe dysplasia (197 cells)
Carcinoma (150 cells)
Precision Recall Precision Recall Precision Recall Precision Recall
Li et al. (2012) 0.92 ±0.13 0.90±0.16 0.89 ±0.15 0.87 ±0.17 0.88 ±0.15 0.90 ±0.13 0.84 ±0.18 0.88 ±0.11
Gençtav et al. (2012) 0.88 ±0.17 0.86 ±0.16 0.91 ± 0.10 0.86 ±0.14 0.90 ± 0.12 0.89 ±0.11 0.89 ±0.15 0.90 ± 0.08
Chankong et al. (2014) 0.80 ±0.31 0.86 ±0.26 0.81 ±0.25 0.88 ±0.19 0.79 ±0.28 0.88 ±0.21 0.70 ±0.29 0.88 ±0.23
Our method 0.90 ±0.13 0.95 ±0.11 0.90 ±0.11 0.96 ± 0.07 0.91 ± 0.10 0.93 ± 0.12 0.93 ± 0.08 0.91 ± 0.13