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Hematopoiesis

Protein arginine methyltransferase 6 controls
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of human CD34"* progenitor cells
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ABSTRACT

ematopoietic differentiation is driven by transcription factors,

which orchestrate a finely tuned transcriptional network. At

bipotential branching points lineage decisions are made, where
key transcription factors initiate cell type-specific gene expression pro-
grams. These programs are stabilized by the epigenetic activity of recruit-
ed chromatin-modifying cofactors. An example is the association of the
transcription factor RUNX1 with protein arginine methyltransferase 6
(PRMTO6) at the megakaryocytic/erythroid bifurcation. However, little is
known about the specific influence of PRMT6 on this important branch-
ing point. Here, we show that PRIMTG6 inhibits erythroid gene expression
during megakaryopoiesis of primary human CD34" progenitor cells.
PRMT6 is recruited to erythroid genes, such as glycophorin A.
Consequently, a repressive histone modification pattern with high
H3R2me2a and low H3K4me3 is established. Importantly, inhibition of
PRMT6 by shRNA or small molecule inhibitors leads to upregulation of
erythroid genes and promotes erythropoiesis. Our data reveal that
PRMTG plays a role in the control of erythroid/megakaryocytic differen-
tiation and open up the possibility that manipulation of PRMT6 activity
could facilitate enhanced erythropoiesis for therapeutic use.

Introduction

Hematopoietic lineage decisions are driven by transcription factors, which define
cell type-specific gene expression and thus instruct lineage specification during termi-
nal differentiation. A subset of transcription factors is important for hematopoietic
stem cell emergence and also for later lineage-specific gene expression.”” For multilin-
eage differentiation processes, such as hematopoiesis, epigenetic stabilization of gene
expression programs is of central importance. In this process of epigenetic gene reg-
ulation, transcription factors recruit cofactors with enzymatic activity to target genes.
These cofactors are able to change chromatin organization by modification.”” The
most prominent epigenetic modifications are methylation of DNA on cytidines and
a large number of different posttranslational modifications of histones. These inter-
dependent modifications mostly take place at the histone tails and comprise a pattern
which can encode distinct functions.*®” The important function of transcriptional reg-
ulators in hematopoiesis is highlighted by the observation that alterations of tran-
scriptional regulators can convert one cell type into another."*

At the megakaryocytic/erythroid lineage bifurcation transcription factors such as
RUNX1, FLI1, KLF1, GATA1 and TAL1 play a decisive role in the establishment of
the megakaryocytic or erythroid gene expression program, respectively.*” The tran-
scription factor RUNX1 (also known as AML1: acute myeloid leukemia 1) plays a
major role in hematopoietic stem cell emergence.”” Furthermore, RUNX1 is impor-
tant for the establishment of the megakaryocytic gene expression program and the
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repression of erythroid genes.”” Depending on the associ-
ated cofactors RUNX1 can act as an activator or repressor of
gene expression. Importantly, RUNX1 cooperates with cen-
tral epigenetic complexes such as the trithorax-(MLL)-com-
plex and the polycomb-(PRC)-complex, which trigger the
activating trimethylation of lysine 4 on histone 3
(H3K4me3) and the repressive trimethylation of lysine 27
on histone 3 (H3K27me3), respectively.”” RUNX1 also
interacts with protein arginine methyltransferase 6
(PRMT6).%* PRMT6 is a member of the PRMT-family,
which consists of enzymes that methylate arginine residues
on proteins, including histones.” PRMT6-mediated asym-
metric dimethylation of histone 3 at the arginine at position
2 (H3R2me2a) counteracts the activating H3K4me3, thus
PRMT6 acts predominantly as a repressor of gene expres-
sion.** It has been demonstrated that PRMT6 has an influ-
ence on embryonic stem cell identity¥ In
megakaryocytic/erythroid progenitors, PRMT6 is recruited
by RUNXT1 to target genes and acts as a repressor by setting
the H3R2me2a mark. This way RUNX1/PRMT6 contribute
to the establishment of bivalent chromatin marking at
megakaryocytic differentiation genes, such as CD41, in pro-
genitors.”

Despite the evident role of PRMT6 at megakaryocyt-
ic/erythroid branching, its cell type-specific function has
not been studied in detail. In light of the notion that small
molecule inhibition of epigenetic enzymes could influ-
ence in vitro differentiation it is instructive to study the
biological processes mediated by PRMT6. We found that
decreased PRMT6 activity in primary human CD34* pro-
genitor cells leads to increased in vitro erythroid differen-
tiation, whereas overexpression of PRMT6 decreases ery-
throid differentiation. During megakaryocytic differentia-
tion of progenitor cells PRMT6 contributes to the sup-
pression of erythroid genes by establishment of a repres-
sive chromatin environment. Interestingly, PRMT6 inhi-
bition by a small molecule also enhances erythropoiesis.
This opens up the possibility of using PRMT6 inhibitors
for more effective in vitro differentiation of erythrocytes.

Methods

Cell culture

K562 (ATCC CCL-243) and HEK293T/17 (ATCC CRL-11268)
cells were cultured in RPMI-1640 and DMEM medium, respec-
tively. Growth media were supplemented with 10% fetal calf
serum, 2 mM glutamine and 1% penicillin/streptomycin. For
megakaryocytic differentiation K562 cells were treated with 30
nM 12-o-tetradecanylphorbol-13-acetate (TPA; Sigma, Darmstadt,
Germany). The cells were harvested after 3 days and analyzed
using flow cytometry.

Samples of granulocyte colony-stimulating factor mobilized
peripheral or bone marrow human primary CD34" cells from
healthy donors were used, with approval of the ethics committee
(permit #329-10). CD34" cells were immunomagnetically enriched
according to the manufacturer’s instructions (Miltenyi, Bergisch
Gladbach, Germany) and expanded under serum-free conditions
using Stem Span (SFEMI, Stemcell Technologies, Vancouver,
Canada) as described previously.””** The cells were then subject-
ed to erythroid or megakaryocytic differentiation.®* After 6 days
the differentiation status was determined by fluorescence activat-
ed cell sorting (FACS) and cells were used for mRNA analysis or
chromatin immunoprecipitation (ChIP). For overexpression and
knockdown experiments expanded cells were transduced with

lentiviral vectors. Transduced GFP* cells were sorted and subse-
quently subjected to colony-forming unit (CFU) assay in methyl-
cellulose, according to the manufacturer’s instructions (Miltenyi,
Bergisch Gladbach, Germany). Colonies were counted 12 days
after seeding. For erythroid-megakaryocytic differentiation in lig-
uid culture, isolated bone marrow CD34" cells were maintained in
serum-free expansion medium SFEMII (Stemcell Technologies,
Vancouver, Canada) supplemented with 100 ng/mL stem cell fac-
tor, 10 ng/mL interleukin-3, 10 ng/mL interleukin-6, 0.5 U/mL ery-
thropoietin and 50 ng/mL thrombopoietin. Differentiation was
verified by FACS and mRNA analysis. The PRMT6 inhibitor
MS023 was obtained from Biomol (Hamburg, Germany).

Chromatin immunoprecipitation

Cell lysates and the ChIP assay were performed according to
the X-ChIP protocol from Abcam, with modifications. For
immunoprecipitation 3-10 ug of specific antibody were used.
ChIP DNA was purified using DNA purification columns ChIP
DNA Clean and Concentrator (Zymo Research, Irvine, USA) and
analyzed by quantitative polymerase chain reaction (PCR). DNA
recovery was calculated as percentage of the input. Error bars rep-
resent the standard deviation from at least four determinations.
Histone modification ChIP values were corrected for nucleosome
density using ChIP values for histone 3 (H3). ChIP-ReChIP was
performed as described previously.” The sequences of primer
pairs used for the ChIP-PCR analysis are available upon request.
Antibodies used in this study are listed in the Online Supplementary
Material.

Gene expression analysis

Total RNA was isolated using the RNeasy Mini Kit (Qiagen,
Hilden, Germany). cDNA was synthesized using Omniscript
reverse transcriptase (Qiagen). Quantitative reverse transcriptase
PCR was performed using SYBR Green PCR Mastermix
(Eurogentec, Luettich, Belgium). Relative amounts of mRNA were
normalized against glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) expression values. Primer sequences are available upon
request.

Knockdown constructs and vector information are given in the
Online Supplementary Material. The gene expression array of
shPRMT6 K562 cells was analyzed via the limma package of
Bioconductor. Differentially expressed genes were filtered to a
minimum of two-fold change and Benjamini-Hochberg corrected
P-value <0.05 as previously described.” Data were deposited in
the GEO-Expression database, GSE92251. Further functional asso-
ciation of candidate genes was performed with the webtool
DAVID using standard settings.**

Western blot analysis was performed as described in the Online
Supplementary Material.

Statistics

Array data were processed as stated above. ChIP and quantita-
tive reverse transcriptase PCR data were analyzed using PRISM
software. The error bars represent the standard deviation from the
mean. P values were calculated using the Student t-test from at
least four determinations. P values <0.05 were considered statisti-
cally significant (*P<0.05; **P<0.01; ***P<0.001).

Results

PRMT6 inhibits erythropoiesis

PRMTG is associated with RUNX1 on megakaryocytic
target genes in progenitor cells and present on erythroid
genes upon megakaryocytic differentiation.”®* This shows
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that PRMT6 plays a role in gene expression control at
megakaryocytic/erythroid branching and might, there-
fore, influence differentiation. To explore this possibility,
we performed a CFU assay. Human primary CD34" cells
were transduced with shRNA knockdown vectors and
PRMT6 overexpression vectors, respectively (Online
Supplementary Figure S1). Transduced cells were sorted
and subjected to a CFU assay under conditions which
allow myeloid differentiation, including erythropoiesis
(Figure 1A). The knockdown of PRMT6 resulted in a
decrease of the relative number of monocytic colonies,
whereas the overexpression of PRMT6 increased the
number of monocytic colonies as well as granulocytic
colonies (Figure 1B,C). Interestingly, the knockdown of
PRMT6 doubled the number of erythroid colonies
(Figure 1D) and resulted in a modest reduction of total
colony number (Figure 1E). In contrast, PRMT6 overex-
pression reduced erythroid colony formation (Figure 1F)
and had no influence on colony number (Figure 1G).
Under the conditions employed for the CFU assay,
megakaryocytic differentiation could not be monitored.
However, in a previous study we found that PRMT6
inhibits megakaryocytic genes in progenitor cells but
leaves these promoters upon megakaryocytic differentia-
tion.® Thus, we wondered whether PRMT6 would alter
erythroid/megakaryocytic differentiation under condi-
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tions that allow for both erythroid and megakaryocytic
differentiation. To examine this, we transduced human
CD34" cells with a PRMT6 overexpression vector. Two
days after transduction the cells were transferred to
growth medium, which contained thrombopoietin and
erythropoietin (Figure 2A).® After 10 days of culture we
measured the erythroid differentiation markers GYPA
and CD71 by FACS. Furthermore, we determined the
megakaryocytic differentiation markers CD41 and
CD61. We found that the percentage of GYPA* cells was
about 40% in the control (Figure 2B, left) and 20% of all
cells had high GYPA expression in the control (Figure 2B,
right). Upon PRMT6 overexpression the number of
GYPA" cells was reduced. Moreover, the GYPA™ popula-
tion was virtually absent upon PRMT6 overexpression
(Figure 2B). Similarly, the number of CD71" cells (anoth-
er erythroid marker) was also reduced upon PRMT6
expression (Figure 2C). In contrast, the expression of the
megakaryocytic markers, CD41 and CD61, was
increased upon PRMTG6 expression (Figure 2D,E).
Corresponding flow cytometry data are shown in Ounline
Supplementary Figure S2. Taken together, our data indicate
that more mature erythroid cells with high GYPA and
high CD71 expression are almost absent and the number
of cells with megakaryocytic markers is increased upon
PRMT6 overexpression. These data indicate that the cells

Figure 1. PRMT6 inhibits erythroid dif-
ferentiation. (A) Schematic workflow of
the colony-forming unit (CFU) assay.
Human CD34" cells were transduced

count ;
with PRMT6 knockdown (shPRMT®6),
PRMT6 expression, or control vector.
(eXo) Transduced GFP' cells were sorted by
lo) o FACS and subjected to the CFU assay.
00 Colonies were counted on day 10-14
after seeding. (B, C) CFU assay of CD34*

day 10-14

colony

cells upon PRMT6 knockdown and over-
expression. Human CD34" cells were
transduced with PRMT6 knockdown
vector (shPRMT6), PRMT6 expression
vector, or control vector. Transduced
GFP* cells were sorted by FACS and sub-
jected to a CFU assay. Colonies were
counted 10-14 days after seeding. (B)
CFU assay upon knockdown of PRMT6
using two different shRNA. Unspecific
shRNA was used as a control. (C) CFU
assay upon PRMT6 overexpression.
Empty vector serves as the control. CFU-
G colony-forming unit-granulocyte, CFU-
M colony-forming unit-monocyte, CFU-
GM colony-forming unit-granulocyte,
monocyte, BFU-E burst forming unit-ery-
throid, CFU-E colony forming unit-ery-
throid. (D) Knockdown of PRMT6 using
G two different shRNA (shP6) enhances
erythroid differentiation of CD34" cells
in the CFU assay. (E) The total number of
colonies in the CFU assay after PRMT6
knockdown is shown. (F) The relative
frequency of erythroid colonies (in per-
cent) was decreased upon PRMT6 over-
expression compared to the control. (G)
The total number of colonies in the CFU
assay after PRMT6 overexpression is
shown. Error bars show the standard
] deviation calculated from at least four
determinations. The P-values were cal-
culated using the Student t-test.
*P<0.05; **P< 0.01; ***P<0.001.
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have shifted from an erythroid to a megakaryocytic phe-
notype upon PRMT6 overexpression.

PRMT6 represses erythroid genes

To investigate how PRMT6 influences erythroid differen-
tiation, we analyzed gene expression downstream of
PRMT6 upon knockdown of PRMT6. For this we used
K562 erythroleukemia cells, which express GYPA and low
levels of the erythroid master regulator KLF1. Gene expres-
sion analysis was studied by array analysis 5 days after
transduction of shPRMT6 expression vectors (Figure 3A,B,
Online Supplementary Figure S3). PRMT6 knockdown result-
ed in changed expression of more than 1,000 genes (Online
Supplementary Figure S3). About half of the genes were
upregulated and the other half downregulated upon
PRMT6 knockdown (Online Supplementary Figure S3). Gene
ontology analysis (GO-terms) using DAVID** revealed
that PRMT6 influences genes with distinct functions. The
most significant GO-categories were “response to wound-
ing” and “negative regulation of cell growth” (Online
Supplementary Figure S3). The GO-category hematopoiesis

was also enriched (Figure 3C). Ten of the 20 genes involved
in hematopoiesis have a known function in erythropoiesis.
Erythroid-specific genes were mostly upregulated. This
includes ALAS2 (delta-aminolevulinate synthase 2), which
plays a role in heme biosynthesis, AHSP (alpha hemoglobin
stabilizing protein) and the erythroid differentiation marker
GYPA (glycophorin A) (Figure 3C). CEBPa. and ¢-Kit were
downregulated upon PRMT6 knockdown (Figure 3C).

To further examine the influence of PRMT6 on ery-
throid gene expression we measured the expression of
erythroid genes by quantitative reverse transcriptase PCR
7 days after transduction of K562 cells (Ounline
Supplementary Figure S3). PRMT6 knockdown resulted in a
marked increase of the erythroid markers GYPA, ALAS2
and AHSP (Figure 3D-F). Similar to the array data ¢-Kit
expression was decreased upon PRMT6 knockdown
(Figure 3G). The erythroid genes KLF1 and B-globin were
significantly increased at this time point after knockdown
(Figure 3H,]). Like KLF1, the erythroid transcription fac-
tors TAL1 and GATA1 were also influenced by the level of
PRMT6 in K562 cells (Online Supplementary Figure S4). The
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* effect of PRMT6 knockdown on GYPA expression was GYPA is a direct target of PRMT6
also detectable at the level of the cell surface (Figure 3], For further analysis of PRMT6 function we focused on
Online Supplementary Figure S5). Furthermore, expression this protein’s influence on the glycophorin A gene (GYPA).
of the early erythroid surface marker CD71 was increased =~ GYPA is a membrane protein and the main marker of ery-
(Figure 3K, Online Supplementary Figure S5). The K562 cells  throid differentiation. Expression of GYPA is directly con-
displayed a reddish color upon PRMT6 knockdown, indi-  trolled by the transcription factors TAL1 and GATA1.*
cating increased heme production (Online Supplementary ~ Our data show that PRMT6 inhibits erythroid differentia-
Figure S5). Moreover, the knockdown of PRMT6 in human  tion and the expression of the erythroid differentiation
CD34" cells influenced the expression of GYPA, ALAS2, gene GYPA. Examination of published ChIP-Seq data
AHSP, c-Kit, KLF1 and B-globin in the same direction as in  revealed that the promoter of GYPA also harbors function-
K562 cells (Figure 3L). These data indicate that PRMT6 has  al RUNX1 binding sites in addition to TAL1 and GATA1
a repressive influence on the expression of some erythroid —sites (Online Supplementary Figure S6). These transcription
genes, which is released upon PRMT6 knockdown. factors are known to be associated with PRMT6.* By
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Figure 4. GYPA is a direct target of hematopoietic transcription factors and PRMT6. (A) Scheme of the GYPA promoter showing the position of the ChIP-primers. (B)
ChIP with K562 cells indicates binding of PRMT6 to the promoter region of GYPA (P2) but not to an upstream region (P1) or an unrelated control region (chr.18). (C)
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ReChIP of RUNX1 and PRMT6 with the given antibody combinations shows co-occupancy of RUNX1 with PRMT6 at the GYPA promoter (left) but not at a control region
(chr.18) in K562 cells. (E, F) ChIP assay after RUNX1 knockdown shows reduced RUNX1 and PRMT6 binding to the GYPA promoter. (G) H3R2me2a modification at
the GYPA promoter is decreased upon RUNX1 knockdown. (H, I) RUNX1 overexpression decreased GYPA mRNA expression in K562 and CD34" cells measured by
quantitative reverse transcriptase PCR. (J) Knockdown of PRMT6 in CD34"* cells cultured in ery/mega medium results in increased GYPA mRNA expression with time.
The GYPA expression level of the corresponding time point was set as one. (K-N) Changes at the GYPA promoter upon erythroid differentiation of CD34* cells. (K)
RUNX1 binding to the GYPA promoter remains unchanged upon erythroid differentiation. (L) TAL1 binding to the GYPA promoter is increased upon erythroid differen-
tiation. (M) PRMT6 binding is reduced upon erythroid differentiation. (N) Upon erythroid differentiation the repressive H3R2me2a modification at the GYPA promoter
is decreased. Note that in K-N the values for IgG are small, so that the bar for the IgG control is not visible. Quantitative ChIP-PCR values are shown as percentage
input. Values gathered for histone modification H3R2me2a were normalized with a ChIP against unmodified histone H3. Error bars show the standard deviation from
at least four independent evaluations. The P-values were calculated using the Student t-test. *P<0.05; **P<0.01; ***P<0.001.
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ChIP we detected PRMT6 and RUNX1 at the proximal
promoter region of GYPA in K562 cells (Figure 4A-C,
Ounline Supplementary Figure S6). As RUNX1 is able to
recruit PRMT6 to target genes,” we examined whether
RUNX1 and PRMT6 co-occupy the GYPA promoter.
Using ChIP-ReChIP we did in fact detect RUNX1 and
PRMT6 together at this promoter, as indicated by the
enrichment of GYPA promoter DNA in the
RUNX1/PRMT6 ChIP-ReChlIP, but not at a control locus
(Figure 4D). The notion that RUNX1 is important for
PRMT6 recruitment was further supported by a ChIP-
assay after RUNX1 knockdown. RUNX1 knockdown led
to decreased RUNX1 binding at the GYPA promoter
(Figure 4E). PRMT6 occupancy of the GYPA promoter was
decreased (Figure 4F) and H3R2me2a was diminished, an
effect mediated by PRMT6 (Figure 4G). When we overex-
pressed RUNX1, the GYPA levels were reduced in K562
and CD34" cells (Figure 4H,I). Furthermore, RUNX1
repressed the GYPA promoter in a reporter gene assay
(Online Supplementary Figure S6). Interestingly, the knock-
down of PRMT6 in CD34" cells under differentiation con-
ditions, which on its own induced some GYPA expression,
led to increased GYPA expression (Figure 4]). When we
induced CD34" cells towards the eythroid lineage, we
found that RUNX1 binding remained unchanged on the
promoter (Figure 4K), TAL1 binding increased (Figure 4L)
and PRMT6 binding decreased (Figure 4M).
Concomitantly, the PRMT6-mediated H3R2me2a histone
mark was decreased (Figure 4N). Taken together, our data
show that RUNX1 contributes to the binding of PRMT6
to the GYPA promoter and support the notion that
PRMTG6 is a repressor of GYPA expression.

Differentiation-associated epigenetic changes

The erythroid gene GYPA is upregulated upon erythroid
differentiation and downregulated during megakaryocytic
differentiation of human CD34" cells (Ounline
Supplementary Figure S7). Furthermore, PRMT6 expression
is increased during erythroid and megakaryocytic differ-
entiation, whereas RUNX1 is only increased during
megakaryocytic differentiation (Online Supplementary
Figure S7). Our data show that PRMTG6 is associated with
repression of GYPA. Thus, we wondered whether PRMT6
is connected to the downregulation of GYPA expression
during megakaryocytic differentiation of human primary
progenitor cells (Online Supplementary Figures S7 and S8).
We found that RUNX1 binding to the GYPA promoter
increased during megakaryocytic differentiation of CD34*
cells (Figure 5A), whereas TAL1 binding remained
unchanged and GATA1 binding decreased (Figure 5B,C).
In line with a repressor function of PRMT6 we found that
PRMT6 binding to the GYPA promoter increases upon
megakaryocytic differentiation of hCD34" cells (Figure
5D). It was suggested that PRMT6-mediated H3R2me2a
negatively influences WDR5 binding and that the protein
arginine deaminase PADI4 can counteract PRMT6
activity.** Accordingly, WDR5 and PADI4 binding
decreases at the GYPA promoter (Figure 5EF). As a conse-
quence, the activating H3K4me3 modification decreases
and the repressive H3R2me2a and H3K27me3 methyla-
tion marks increase (Figure 5G-I). Concomitant to the
increase of the repressive histone modification
H3K27me3, the binding of EZH2, which mediates this
modification, increases (Figure 5]). In line with the notion
that a repressive chromatin environment is established,

binding of the repressive histone deacetylase 1 (HDAC1)
is increased upon megakaryocytic differentiation (Figure
5K) and occupancy of RNA-polymerase II is decreased
(Figure 5L).

Similar changes can also be observed during megakaryo-
cytic differentiation of K562 cells (Online Supplementary
Figure S9). In summary, our data demonstrate that PRMT6
and associated repressors contribute to the repression of
GYPA expression during megakaryocytic differentiation.

Pharmacological inhibition of PRMT6 increases
erythroid gene expression

We have shown that binding of the RUNX1-associated
repressor PRMT6 is upregulated during megakaryopoiesis
and decreased during erythropoiesis at the GYPA locus.
Furthermore, knockdown of PRMT6 increases erythro-
poiesis. Thus, inhibition of PRMT6 enzymatic function
might lead to a shift in differentiation. Recently, small
molecule inhibitors of PRMT6, which decrease the repres-
sive H3R2me2a methylation in cells, were introduced.**
Accordingly, treatment of K562 cells with the PRMT6
inhibitor MS023 for 3 days increased GYPA expression at
the mRNA level already at a concentration of 0.05 uM and
reached its plateau at 1 uM (Figure 6A). Induction of the
erythroid surface marker GYPA was also detected by flow
cytometry (Figure 6B,C). Furthermore, other erythroid
genes such as AHSP, ALAS2 and B-globin were upregulated
3 days after treatment with inhibitor (Figure 6D-F), resem-
bling the effect of knockdown of PRMT6. Furthermore,
KLF1 mRNA and protein levels were increased upon
inhibitor treatment (6G, H). Inhibitor treatment had no
influence on the amount of PRMT6 protein (Figure 61), but
reduced H3R2 asymmetric methylation as expected
(Figure 6]). H4R3me2a, which is mediated by PRMT other
than PRMT6, remained unchanged by inhibitor treatment
(Figure 6K).

The increased expression of GYPA, AHSP and ALAS2
upon inhibitor treatment was inhibited by PRMT6 over-
expression, but not in the case of 3-globin and KLF1 (Online
Supplementary Figure S10). The induction towards ery-
throid differentiation by PRMT6 inhibition was also seen
in an increase of the reddish color of the cell pellet upon
inhibitor treatment of K562 cells, indicating increased
heme production (Online Supplementary Figure S5).

Inhibition of PRMT6 increases erythroid differentiation
of CD34" cells

Our data indicate that PRMT6 inhibition might enhance
erythroid differentiation. To investigate this notion direct-
ly, we treated primary human CD34" cells with PRMT6
inhibitor in liquid culture under conditions which allow
erythroid or megakaryocytic differentiation. This treat-
ment shifted differentiation towards erythropoiesis, as
indicated by the higher levels of GYPA and CD71 surface
markers (Figure 7A,B and Online Supplementary Figure S11).
Expression of other PRMTG6-associated erythroid genes
was also increased upon PRMT6 inhibition at the mRNA
level (Figure 7C). Treatment of CD34" cells with PRMT6
inhibitor led to decreased H3R2me2a and increased
H3K4me3. H4R3me2a remained unchanged at the GYPA
promoter (Figure 7D-F). Similarly, at the established
PRMT6 target KLF1,” H3R2me2a was reduced upon
inhibitor treatment (Online Supplementary Figure S$12).
Subsequently, we analyzed human CD34* cell differentia-
tion upon PRMT6 inhibition in a CFU assay to examine
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differentiation independently of cell surface markers. We —maintenance of a cell type-specific gene expression pro-
detected an increase of erythroid colonies upon PRMT6  gram. In this process, the chromatin environment at cell
inhibition (Figure 7G) and a decrease of granulocytic type-specific genes is adjusted according to cell fate deci-
colonies (Figure 7H). These alterations were accompanied — sions taken at key lineage fate bifurcations. Consequently,
by an almost 50% decrease of total colonies at high alterations in DNA and histone modification patterns acti-
inhibitor concentration (Figure 71). Taken together, these ~vate one gene expression program at the expense of the
data indicate that inhibition of PRMTG6 increases erythro-  other.
poiesis during differentiation of progenitor cells. In this study, we made some significant novel observa-
tions regarding gene expression control during megakary-
opoietic/erythroid lineage differentiation. Our data
Discussion demonstrate that PRMT6 inhibits erythroid gene expres-
sion during lineage differentiation. Under conditions that
The interplay between transcription factors and their allow erythroid or megakaryocytic differentiation, the
epigenetic cofactors is decisive for the establishment and ~ knockdown of PRMT6 enhances erythropoiesis, whereas
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PRMT6 overexpression inhibits erythropoiesis in CFU
assays. Furthermore, we showed that PRMT6 mediates
the repressive H3R2me2a modification at erythroid genes
such as GYPA and KLF1. We detected low levels of
PRMTG6 present on the GYPA promoter in progenitor cells,
which increase upon megakaryopoiesis. Concomitantly,
H3R2me2a is increased and this goes hand in hand with
the establishment of a repressive histone modification
pattern with reduced H3K4me3 at the promoter upon
megakaryopoiesis. An analysis of PRMT6 function at the
megakaryocytic/erythroid branching with a hematopoi-

etic knockout mouse model would be very attractive.
Our data also indicate that the transcription factor
RUNXT1 contributes to PRMT6 recruitment to GYPA pro-
moter as knockdown of RUNX1 reduces PRMT6 occu-
pancy. Interestingly, PRMT6 is present on the promoter
of megakaryocytic differentiation genes such as CD47 in
progenitor cells. In this case, loss of PRMT6 leads to
upregulation of CD41 in stem cell expansion medium.*
Moreover, upon megakaryopoiesis RUNX1 activates
these megakaryocytic genes® and in the same cells
RUNX1 is present together with PRMT6 in a repressive
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Figure 6. Inhibition of PRMT6 increases erythroid gene expression. (A) GYPA expression increases at the mRNA level after treatment of K562 cells with the indicated
concentrations of the PRMT6 inhibitor MS023 for 3 days. The control was treated with solvent only (DMSO). Expression was measured by quantitative reverse tran-
scriptase PCR. (B,C) GYPA expression at the cell surface upon treatment of K562 cells with PRMT6 inhibitor for 3 days was determined by flow cytometry using an
anti-CD235a-APC antibody. GYPA positivity is given in percent according to the indicated gating. (D-F) Expression of the erythroid genes AHSP, ALAS2 and -globin
increased upon treatment of K562 cells with the indicated concentrations of PRMT®6 inhibitor for 3 days. (G,H) Expression of KLF1 increased upon inhibitor treat-
ment on the mRNA and protein level. Expression was measured by quantitative reverse transcriptase PCR and western blot analysis. (I) Western blot analysis of
PRMT®6 protein expression upon inhibitor treatment of K562 cells for 3 days. (J) Western blot analysis of histone 3 methylation (H3R2me2a) upon inhibitor treatment
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standard deviation from four independent determinations. The P values were calculated using the Student t-test. *P<0 .05; **P<0.01; ***P<0.001.

haematologica | 2018; 103(1)




complex on erythroid genes.” In combination, our data
indicate that there are two distinct facets of the
RUNX1/PRMT6 complex, one associated with
megakaryocytic genes in progenitors® and the other with
erythroid genes upon megakaryopoiesis.”* Furthermore,
we detected genes, that are upregulated or downregulat-
ed upon PRMT6 knockdown. This hints towards repres-
sive and activating roles of PRMT6 depending on the
gene, as recently proposed.” How the formation of dis-
tinct RUNX1 complexes is regulated is not known; how-
ever, different promoter contexts and the modification
status of RUNX1 could have a regulatory influence.”*™
Furthermore, different isoforms of RUNX1 could convey
altered protein:protein interactions of RUNX1 on distinct

Epigenetic influence of PRMT6 on hematopoiesis -

promoters. It is also conceivable that RUNX1 itself is
methylated by PRMTG6 as it was described that PRMT1 is
able to perform histone and non-histone methylation in
conjunction with RUNX1.* Recently, it has been shown
that the expression of RUNX1 isoform differs between
megakaryocytic cells and erythoid cells.” Our observa-
tions hint towards an essential function of PRMT6 in the
shutdown of the erythroid gene expression program dur-
ing megakaryocytic differentiation. The notion that a
RUNX1/PRMT6 complex mediates this repression is also
supported by our observation that RUNX1 knockdown
or PRMT6 knockdown similarly lead to increased GYPA
and KLF1 expression (this study and *). Given that
PRMT6 cannot bind DNA directly, its recruitment is
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Figure 7. Inhibition of PRMT6 increases erythroid differentiation of CD34" cells. (A,B) GYPA expression increases upon treatment of primary human CD34* cells
with PRMT6 inhibitor as measured by flow cytometry using an anti-CD235a-APC antibody. (C) Expression of the erythroid genes AHSP, ALAS2, $-globin and KLF1
increases upon treatment of hCD34" cells with the indicated concentration of PRMT6 inhibitor for 3 days. Expression was measured by quantitative reverse tran-
scriptase PCR. (D-F) ChIP assay upon PRMT6 inhibitor treatment of CD34* cells for 3 days. H3R2me2a was decreased upon inhibitor treatment and H3K4me3 was
increased upon inhibitor treatment. H4R3me2a remained unchanged upon inhibitor treatment. (G) Treatment of human CD34" cells with PRMT6 inhibitor MS023
enhances erythroid differentiation at the given inhibitor concentrations in a CFU assay. Error bars give the standard deviation from four independent inhibitor treat-
ments. (H) Treatment of human CD34" cells with PRMT6 inhibitor MS023 reduced granulocytic differentiation at the given inhibitor concentrations in a CFU assay.
Error bars give the standard deviation from four independent inhibitor treatments. (I) The total number of colonies in the CFU assay with human CD34" cells upon
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Student t-test. *P<0.05; **P<0.01; ***P<0.001.
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