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Abstract

A significant challenge and potential high-value application of computer-aided drug design is the 

accurate prediction of protein–ligand binding affinities. Free energy perturbation (FEP) using 

molecular dynamics (MD) sampling is among the most suitable approaches to achieve accurate 

binding free energy predictions, due to the rigorous statistical framework of the methodology, 

correct representation of the energetics, and thorough treatment of the important degrees of 

freedom in the system (including explicit waters). Recent advances in sampling methods and force 

fields coupled with vast increases in computational resources have made FEP a viable technology 

to drive hit-to-lead and lead optimization, allowing for more efficient cycles of medicinal 

chemistry and the possibility to explore much larger chemical spaces. However, previous FEP 

applications have focused on systems with high-resolution crystal structures of the target as 

starting points—something that is not always available in drug discovery projects. As such, the 

ability to apply FEP on homology models would greatly expand the domain of applicability of 

FEP in drug discovery. In this work we apply a particular implementation of FEP, called FEP+, on 

congeneric ligand series binding to four diverse targets: a kinase (Tyk2), an epigenetic 

bromodomain (BRD4), a transmembrane GPCR (A2A), and a protein–protein interaction interface 
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(BCL-2 family protein MCL-1). We apply FEP+ using both crystal structures and homology 

models as starting points and find that the performance using homology models is generally on a 

par with the results when using crystal structures. The robustness of the calculations to structural 

variations in the input models can likely be attributed to the conformational sampling in the 

molecular dynamics simulations, which allows the modeled receptor to adapt to the “real” 

conformation for each ligand in the series. This work exemplifies the advantages of using all-atom 

simulation methods with full system flexibility and offers promise for the general application of 

FEP to homology models, although additional validation studies should be performed to further 

understand the limitations of the method and the scenarios where FEP will work best.

Graphical abstract

INTRODUCTION

Reliable prediction of protein–ligand binding energies is one of the grand challenges in the 

field of computer-aided drug design, and accurate predictions could help accelerate drug 

discovery efforts. Over the past few decades a multitude of methods have been developed1,2 

to predict the free energy of binding, or properties that correlate with it. These methods 

range from computational inexpensive approaches like QSAR modeling and docking to 

more computationally intensive ones like quantum mechanics (QM) and molecular 

dynamics (MD) calculations. Alchemical free energy calculations, for which many excellent 

overview articles have been published over the years,3–8 are among the computationally 

intensive methods with the promise of robust and accurate results. One of these approaches, 

free energy perturbation (FEP) is based on the theoretical framework first introduced by 

Zwanzig9 in 1954 and has played a prominent role in the field. FEP offers a rigorous 

framework for computing free energies (relative or absolute) and is only limited in accuracy 

by the completeness of conformational sampling and the accuracy of the underlying force 

field used to model the interactions between all of the atoms in the system, including 

solvent. FEP can be used to calculate relative differences in binding affinity for a congeneric 

series of ligands, which reduces the amount of sampling needed to get converged results as 

compared with computing absolute binding energies for each ligand separately. In drug 

discovery lead optimization, predicting relative energy differences between similar ligands 

in order to prioritize molecules for synthesis and explore new chemical spaces is often a 

primary objective.
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The FEP approach is based on sampling of the protein–ligand system (typically using either 

molecular dynamics or Monte Carlo) to obtain energies of the full conformational ensemble 

of the system while the ligand is “perturbed” over a number of steps from one molecule to 

another, typically through an alchemical transformation. The total free energy of the 

transformation is obtained by analysis of changes in potential energy in the alchemical 

pathway between the initial and final molecules. The method explicitly considers the 

conformational flexibility of the entire system (receptor, ligand, and solvent) at a specified 

temperature, thus accounting for the enthalpy and entropy of binding, and therefore is an 

attractive approach for computing free energies. However, due to limited computational 

resources, questionable force fields, unavailability of enhanced sampling algorithms (for 

instance, replica exchange or other implementations10–13), and technical challenges 

associated with setting up and running FEP jobs, only anecdotal reports6,14–20 of alchemical 

free energy calculations applications have been published for a limited number of target 

classes with very few ligands over the last decades. Fortunately, sampling has improved 

considerably in recent years with the availability of molecular dynamics codes that run on 

general-purpose graphics processing units (GPGPUs), which can offer more than 

hundredfold speedup over a CPU. In addition, scientific and technical advantages (described 

below) have enabled FEP to be applied in real-world drug discovery projects with a high 

enough throughput and accuracy to improve the efficiency of projects.

Recently, researchers from Boehringer Ingelheim21 reported an application of 

thermodynamic integration (TI), which is conceptually similar to FEP, in drug design on 5 

targets with a total of 92 ligands. This study demonstrated the applicability of a rigorous free 

energy approach in an automated fashion for industrial applications. A slightly larger test set 

of 107 ligands was published by Mikulskis22 using free energy simulations. Furthermore, a 

very potent inhibitor for the macrophage migration inhibitory factor (MIF or MMIF) was 

developed with the help of FEP calculations.23

Wang et al.24 then described the FEP+ method, which we use in this work, that combines the 

classical FEP approach with an accurate modern force field (OPLS2.1 and OPLS325,26), an 

efficient GPU-enabled parallel molecular dynamics engine (Desmond), REST27,28 enhanced 

sampling, cycle-closure correction28,29 to incorporate information from multiple alchemical 

pathways, and the FEP Mapper to automate setup and analysis of the calculations. The FEP+ 

approach has recently been applied24 on a variety of protein targets and ligand structures. 

For example, Steinbrecher et al.30 applied FEP+ to fragment-based optimization and shown 

success, which is promising given the importance and challenges in the fragment-based drug 

design field. Recently, Lenselink et al.31 reported the application to GPCRs in a 

retrospective as well as prospective fashion, where a novel and highly potent A2A inhibitor 

was discovered. While the above studies reported relative binding free energy predictions, 

which is usually sufficient in a drug design context, recent progress in absolute binding free 

energy calculations32 as well as conformational transition pathways33 has also been 

reported.

Common to all of these previous FEP and TI studies using free energy simulations are the 

specific starting conditions for the systems. Namely, all simulations noted above were 

started from high quality X-ray structures of the protein receptor that were cocrystallized 
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with one of the ligands from the congeneric series or a similar analogon. While free energy 

approaches can still provide significant value to the drug discovery process when limited to 

systems where a high quality crystal structure exists, the value would increase considerably 

if the approach could be successfully applied to homology models. Indeed, in drug discovery 

a significant portion of projects do not have high-resolution crystal structures of the target, 

which is especially true for new drug targets where novel lead matter is sought. In such 

cases, structure-based drug design (SBDD) approaches must rely on homology models of 

the target. Given the sensitivity of most structure-based approaches (e.g., docking34) to the 

protein model, it is logical to question whether free energy calculations have the same 

degree of sensitivity to the input geometry of the protein, and more generally, if free energy 

calculations are applicable to homology models at all.

In theory, free energy calculations should be less sensitive to the exact coordinates of the 

input structures than traditional SBDD approaches (e.g., docking), since the molecular 

dynamics sampling allows for adjustments and relaxation of the system. However, only 

anecdotal evidence has been published to support or refute this claim. Boukharta et al. used 

a homology model in conjunction with free energy calculations for Ala scanning.35 

Genheden et al. reported a comparison study36 of free energy simulations on homology 

models in 2012, although only 2 targets and a handful of ligand pairs were explored in that 

study. In the work by Genheden, predictions were performed on factor Xa and dihydrofolate 

reductase for 14 ligands in total using TI and the MD engine in Amber11 and were 

compared between crystal structure and homology models. The author concluded that MD-

based free energy calculations could yield accurate results using homology models if a 

sufficiently good template exists. In addition, Park and Lee37 used free energy calculations 

on a homology model of histone deacetylase to rationalize activities of 12 small molecule 

inhibitors. The authors determined that ligand solvation is important and the balance 

between interactions/desolvation is critical in accurately predicting binding free energies and 

finding more potent molecules. However, both of these studies were limited in scope due to 

the low number of targets (1–2) studied and small number of ligands. Thus, here we design a 

more extensive experiment to study free energy methods applied to homology models using 

a larger number of targets (4) and ligands (more than 60 in total across the 4 targets) than 

has previously been explored in any single study.

We first validate the robustness of FEP+ to differences in input coordinates of the protein–

ligand system by studying an engineered binding pocket in the model system T4 lysozyme 

and compare FEP+ results for the same ligand series starting from different crystal structures 

to determine the sensitivity of FEP+ to crystal structure variations. Upon observing robust 

results with respect to variations in input structures for T4 lysozyme, we then turn to the 

homology modeling study by selecting four different protein systems originating from 

different target classes (a protein kinase, an epigenetic bromodomain target, a 

transmembrane GPCR, and BCL-2 family protein–protein interaction interface) from which 

we had previously verified that FEP+ can be successfully applied on the crystal structures 

using the data sets presented here.24,30,31 For each of these targets, we build homology 

models using templates with varying degrees of similarity (from 87% down to 22%) and 

predict binding free energies using FEP+ using several ligand series. We find that homology 

models can indeed be used in lieu of crystal structures for the cases studied here with little to 
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no degradation in results. While more work is needed to fully assess the applicability of free 

energy approaches to homology models, this work significantly expands upon the existing 

literature and supports the previous findings that binding free energy calculations have the 

promise of working robustly on homology models.

MATERIALS AND METHODS

All calculations were conducted using the Schrödinger molecular modeling suite (version 

2015-2). All protein structures were obtained from the Protein Data Bank (PDB)38 and 

prepared using the Protein Preparation Wizard.39 In this step, force field atom types and 

bond orders are assigned, missing atoms are added, tautomer/ionization states are assigned, 

water orientations are sampled, Asn, Gln, and His residues are flipped to optimize the 

hydrogen bond network, and a constrained energy minimization is performed. All resolved 

crystal water molecules were retained. For the A2A structure (PDB code 4eiy) the b(562)RIL 

part (a thermo-stabilized apocytochrome used to stabilize the GPCR for crystallization) was 

removed and the missing third intracellular loop added using Prime.

Ligand structures as well as affinity measurement data were obtained from literature. For 

BRD4, data from Vidler et al.40 and Filippakopoulos et al.41 were combined with affinity 

data for a series of unpublished compounds. Ligand and binding data for MCL-1 were 

obtained from Friberg et al.42 Tyk2 data were derived from Liang et al.43,44 GPCR data were 

collected from literature from Minetti et al.45 Finally, data for the T4 lysozyme model 

binding site were described by Mobley et al.46

The structures were prepared with LigPrep47 including a minimization with the OPLS3 

force field.25,26 All chiral centers were retained as specified in the literature. One low energy 

ring conformation per compound was generated. Ionization states and tautomer forms were 

enumerated at pH 7.0 ± 2.0 with Epik.48–50 The Force Field Builder (FFBuilder) tool, which 

is part of the FEP+ package, was used to automatically generate accurate force field 

torsional parameters derived from quantum mechanics for all ligands containing 

substructures not fully covered by the standard OPLS3 parameters. FEP+ is available for 

commercial, governmental, nonprofit, and academic institutions from Schrödinger.

Homology models were prepared based on the sequence of the reference crystal structure for 

each target. PDB template structures for the models were identified using BLAST with 

different level of sequence similarity. Only template structures from the same protein family 

were used. For instance, we did not attempt to build a kinase model using a protease 

structure simply to explore the effects of moving toward very low sequence identity. In a 

real-world situation where no crystal structure for a target protein is available, such a 

strategy (i.e., using an unrelated protein for a template) would likely not be pursued. Models 

were built using the program Prime51–53 and using the alignment from GPCRdb for A2A.
54,55 The hydrogen bond network of the obtained structures was afterward optimized using 

the Protein Preparation Wizard.

For the reference crystal structures, ligands were docked into the binding site of each target 

using Glide SP56–58 with core constraints to achieve a good alignment. For the homology 
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models, we aimed to use a reasonable protocol to generate good initial poses. We first 

performed a Glide SP docking without constraints but found that good poses could not be 

generated in all cases, as might be expected for docking to homology models.59 As the 

intention of this study was to determine the sensitivity of FEP+ calculations to homology 

models, we concluded that it was not sensible to perform calculations on obviously incorrect 

ligand binding modes, so we conducted additional docking calculations using H-bond 

constraints and/or receptor flexibility to generate good initial poses. In the cases of BRD4 

and Tyk2, H-bond constraints were added to ensure that the core made similar interactions 

for all ligands in the series (without constraints some ligands did not dock properly). For 

MCL-1 (hm-2nl9) and A2A (hm-4amj), Induced Fit Docking (IFD),60 which involves 

conformational sampling of binding site side chains and backbone flexibility through 

minimization, was required to obtain good input poses. IFD was also used in the case of the 

Tyk2 X-ray structure 3nyx. For each target, the docked pose of the reference ligand closest 

to the cocrystallized structure (lowest heavy-atom RMSD) was used, followed by Glide SP 

docking of the other ligands with core constraints to the aforementioned docked reference 

pose. This protocol was followed to ensure a reasonable input pose for FEP+ while still 

using a realistic docking protocol that could be implemented in a prospective drug discovery 

project. Employing a fully automated and consistent protocol for all ligands and targets is 

outside the scope of the current study, although recent advances in docking pose prediction 

using molecular dynamics refinement offer promise that an automated protocol could be 

possible to implement in the future.61 Nonetheless, in many pharmaceutical lead 

optimization projects some knowledge of the ligand binding mode is generally available 

(e.g., from protein mutation studies and/or ligand SAR), so the use of constraints and 

nondefault docking settings would be routine.

Using the aforementioned ligand binding modes, binding affinities were predicted using the 

FEP+ methodology, which has been described elsewhere.24 In short, FEP+ combines free 

energy perturbation (FEP) as initially described by Zwanzig9 with an accurate modern force 

field (OPLS3), efficient GPU-enabled parallel molecular dynamics with Desmond, REST62 

enhanced sampling, cycle-closure correction28,29 to incorporate redundant information into 

free energy estimates, and the FEP Mapper to automate setup and analysis of the 

calculations. For a mutation from ligand A to ligand B, the functional groups involved 

directly in the perturbation are included in the REST region. The REST region encompasses 

the perturbed ligand atoms plus the adjacent rotatable bond. Analogous to the work of 

Lenselink et al.31 for the A2A system, we pre-equilibrated the lipid bilayer water box using a 

2.4 ns simulation protocol before starting the FEP+ simulations. As such, the automatic 

solvent box setup step of the FEP Mapper tool was omitted. Positioning of the receptor 

structures in the lipid membrane was done with help of the respective template available in 

the OPM database.63

All calculations were run on Nvidia Geforce GTX-780 and GTX Titan Black GPUs. The 

mutation graph, which was generated for the crystal structure reference system, was used for 

all other structural models of that target to ensure consistency in results. Calculations took 

approximately 1 day per ligand perturbation per GPU for the soluble proteins (BRD4, Mcl1, 

and Tyk2), although exact simulation times varied based on system size and GPU type. The 
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A2A GPCR simulations took approximately two times longer due to a much larger number 

of atoms resulting from the inclusion of the explicit lipid bilayer.

The MM-GBSA calculations were performed as implemented in Prime with the VSGB264 

solvation model and the OPLS3 force field. The protein binding site was kept rigid in one 

run and conformations of the binding site were sampled according to the hierarchical 

procedure described by Borrelli et al.65 in a second run.

RESULTS AND DISCUSSION

Sensitivity to Crystal Structure Variations with T4 Lysozyme

Before performing the homology modeling studies, we conducted an initial study to 

investigate the sensitivity of FEP+ binding free energy predictions to the coordinates of the 

starting receptor structure. For this part of the study, we chose the L99A mutant of T4 

lysozyme, which contains an engineered, buried, nonpolar cavity and has been subject of 

several computational studies.46,66–69 For our FEP+ simulations we used three different 

structures obtained from the PDB (codes: 181l, 2oty, and 184l) which all have high-

resolution crystals (1.8 Å). The overall structural differences, and particularly the differences 

in the binding site, are minimal but still significant enough to explore the sensitivity of FEP+ 

to small structural variations in the input structure (see Table 1 for details). This is a 

necessary test before proceeding to the more challenging case of running FEP on homology 

models. In short, if the FEP results differ significantly for such similar receptor structures, 

then there would be little need to investigate the more challenging homology model cases 

until the crystal structure sampling problems have been addressed.

For the three T4 lysozyme receptor structures, we used a data set of 13 ligands with known 

experimental binding free energies obtained from the literature.46 The ligands were prepared 

and placed into the binding cavity as outlined in the Materials and Methods section. An FEP

+ mutation graph was generated to connect all of the ligands through perturbation pathways 

and subsequently the calculations were run. The results for all three systems were highly 

predictive (high correlation between experimental and computed binding free energies, slope 

close to unity, and low error) for this data series (see Table 2). The higher root-mean-squared 

error (RMSE) for the 184l receptor arises from three poor predictions (all involving n-

methylaniline); all other perturbations are of same accuracy as for the other receptor 

structures. The Predictive Index (PI) as initially described by Pearlman and Charifson70 was 

also calculated for all predictions presented in this work. The PI function includes a 

weighting term that depends on the difference between the experimental values of two 

molecules (A and B), which reflects the fact that a good function should be able to 

differentiate between changes that result in large differences in binding. Such a metric is 

better suited to measure the ability of a method to accurately predict better and worse 

binders, which highly relevant in a drug design scenario. For the T4 lysosyme cases, the PI 

is essentially equal for all three receptor models studied here. These results for T4 lysozyme 

demonstrate that similar results can be obtained when running FEP+ on different input 

structures. Based on these encouraging results, we set forth on the primary aim of this study

—to investigate the performance of FEP+ on homology models.
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In order to directly study the influence of only the receptor structure on the FEP+ results we 

began with systems where FEP+ performed well using the X-ray crystal structures as input. 

To mimic a real-world scenario, we generated multiple docking poses using various 

approaches and chose a pose most similar to the known X-ray pose as a reference, which 

was used to perform core-constrained Glide docking of all other ligands in the series. While 

the protocol does introduce an element of human bias, we concluded that it is the only way 

to isolate the influences of the FEP+ results on the receptor structure only (i.e., decouple the 

sensitivity to the receptor structure from the pose prediction). In addition, this approach 

serves to emulate a common workflow that takes place in drug discovery projects, where a 

significant effort is given to generate a reasonable pose for at least one ligand in a series (for 

example, analyzing SAR, comparing to other crystal structures with similar ligands, using 

experimental constraints like NMR, and performing additional pose refinement with more 

computational expensive methods like molecular dynamics). A more extensive study on 

pose prediction in homology models is not the aim of this work and has been for instance for 

the case of GPCRs discussed elsewhere.59

The pharmaceutically relevant protein systems we choose were the bromodomain containing 

protein 4 (BRD4), the induced myeloid leukemia cell differentiation protein (MCL-1), the 

tyrosine kinase 2 (Tyk2), and the GPCR–adenosine A2A receptor. Information on the data 

sets for each target can be found in Table 3. Binding free energies for each ligand were 

obtained from the affinity data reported in literature. In general measurements indicated with 

a “>” where not converted to a ΔGbind due to the inaccuracy. For the MCL-1 and A2A data 

set the Ki was converted to ΔGbind using the appropriate equation. The same was done for 

the experimental data for the Tyk2 data set although only IC50 values are reported in the 

literature. Here approximate identity between Ki ≈ IC50 was assumed. The same 

approximation was used for the BRD4 data set, however for three compounds the 

concentration of the reported percent inhibition (which is not too far from 50%) was 

assumed to be the IC50 value. For three others no conversion to ΔGbind was calculated (for 

details see the Supporting Information). While we are aware that the above-mentioned 

approximations do introduce some errors in the experimental binding free energies, the error 

introduced with this is negligible. In this context it is important to highlight that the 

evaluation of FEP+ itself is not the scope of this work; rather, we are focused on the 

comparison between the different receptor models to determine how much, if at all, the FEP

+ results degrade when moving from a crystal structure to a homology model.

Each initial PDB crystal structure was prepared using the Protein Preparation Wizard in 

Maestro. We built several homology models using Prime with different templates of 

decreasing similarity to our target sequence. For the kinase Tyk2 we also included a second 

crystal structure in our experiment that shows an alternative DLG loop conformation 

compared to our reference receptor. Details on the target and template structures (whole 

protein and binding site sequence similarity) are summarized in Table 1. Ligands were 

placed ensuring a consistent binding mode using the procedure described above. FEP+ 

calculations were set up and executed based on these prepared structures, as described in the 

Materials and Methods section. Statistics of the results from the FEP+ predictions are 

reported in Table 4. Individual binding free energy (ΔG) predictions for each ligand as well 

as the mutation graphs are shown in the Supporting Information. Plots showing the 
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correlation between experimental and predicted binding affinity are shown in Figure 1. 

Below, we describe the results for each target in more detail.

BRD4

For BRD4, in total three different receptor models were examined using FEP+. These 

protein models are relative similar to each other (see overlay in Figure 1) due to the high 

similarity of the homology model templates (BRD2 and BRD3). Although those have 

different level of overall sequence identity, the sequence identity of the binding site as well 

as the atom RMSD is relatively high. No other template structure with different 

characteristics was available in this series (considering only bromodomains) to construct an 

entirely different model. The correlation coefficient and slope vary minimally among the 

different models, with little to no degradation moving from the crystal structure to homology 

models. The error metrics (MUE and RMSE) fluctuate slightly higher but still show good 

numerical accuracy overall.

MCL-1

The data set used for MCL-1 shows a relatively small dynamic range in terms of the 

experimentally measured binding affinity. Therefore, the correlation coefficient is expected 

to be smaller than for the BRD4 data set given the same RMSE (see Table 3). Also, the 

templates used for homology modeling have lower sequence similarity to the target structure 

than in the case of BRD4. Here, we used a rat structure of MCL-1 and human Bcl-xL as the 

templates for homology modeling, the latter having only 35% binding site identity to human 

MCL-1 (see Figure 1 for a comparison of the models). Despite these differences, the 

correlation coefficients, Predictive Indices, and RMSEs for the three starting structures 

(MCL-1 crystal structure and the two homology models) are all similar, and quite good, 

demonstrating the ability of the molecular dynamics in FEP+ to resolve fairly significant 

initial structural variations. Interestingly, the errors (RMSE) are lower for the homology 

models than for the crystal structure, although the differences are within the statistical 

uncertainty in the calculations (see errors in Table 4). Three inactive compounds (ligands 1, 

6, and 12) do not have a dedicated ΔGexp and therefore are not included in statistical 

measurements, but they are all predicted to be inactive by FEP+ in all studied receptor 

models.

To understand the origins of the respectable performance of this challenging case, we 

calculated the RMSF for each amino acid during the course of the MD simulation for the 

two perturbation end points (λ = 0 and λ = 1) and compared with the RMSD for each amino 

acid between the crystal structure and the respective homology model. If an amino acid has a 

rather different conformation in the homology model (high RMSD), then we would expect 

also a higher mobility (high RMSF) during the MD simulation as the receptor adjusts toward 

the “right” structure. As some regions of the protein have an intrinsically higher mobility we 

also plotted the RMSF values for the crystal structure simulation for reasons of comparison. 

The plots for MCL-1 resulting from this analysis are shown in Figure 2 (similar plots for all 

other targets studied here are provided in the Supporting Information).
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To exclude the possibility that the observed fluctuation is just a variation around the high 

RMSD conformation, we performed an additional analysis for all amino acids where the 

RMSD to the crystal structure reference is higher than the average plus half of the standard 

deviation of the values for all residues. For these amino acid residues we calculated the time 

evolution of the RMSD values with respect to the crystal structure reference for all λ = 0 

and 1 trajectories of all permutations in the data set. We then monitored the minimum 

RMSD value and compared with the initial RMSD to see if the residue was in fact getting 

closer to the crystal structure conformation.

Indeed, we see that the more mobile regions for the homology models correspond to the 

regions with higher initial RMSD to the X-ray crystal structure. Also, the structure with 

greater deviation from the X-ray crystal structure shows higher RMSF values across the 

whole structure. For the residues mentioned above, 96% from hm-2nl9 and 100% from 

hm-4lvt, results showed that the average of the minima of the different trajectories is lower 

than the initial RMSD value. The observations on RMSF show that the MD simulations 

moved the nonoptimal geometry of the lower sequence identity homology models more than 

the one with higher sequence identity and more than the X-ray crystal structure. In addition, 

the RMSD time series analysis indicates that this movement is at times bringing the 

conformations of the homology models closer to the X-ray structure model. This type of MD 

analysis is intrinsically complicated, as one has to draw conclusions for multiple 

transformations and many degrees of freedom in the system, with each transformation 

consisting of multiple trajectories, which consist of states exchanging from different 

replicas. While it is hard to judge what are the “right” states of the ensemble for each ligand, 

our analysis suggests that the simulations are in fact sampling important conformational 

states of the homology model needed to reproduce the correct structure. The binding site 

amino acids, highlighted in the plots using vertical lines, mostly have lower RMSD values 

compared to other parts of the protein structure, suggesting that the Induced Fit Docking 

procedure, which accounts for flexibility of the protein binding site, did a good job at 

accurately modeling the binding site. Both aspects are likely, to some degree, the reason for 

the high quality performance of the homology models, which are on par with the X-ray 

crystal structure.

Tyk2

Given the many available homologues of Tyk2, we were able to span a broad range of 

sequence identities for this target, ranging from 58% down to 31% for the entire protein and 

from 79% down to 21% for the binding site. As in the other cases, we obtain consistent FEP

+ predictions across the range of homology models (see Figure 1). In certain cases, the 

statistics for the homology models are better than for the X-ray crystal structure but reported 

error intervals as well as Student’s t-test shows that this is not statistically significant (test 

data not shown). Indeed, for both the crystal structure and homology models, the errors are 

close to the expected accuracy limit of the FEP+ method. Looking at the RMSD and RMSF 

plots in the Supporting Information, we see the same general trends as for BRD4 and 

MCL-1, supporting our hypothesis to explain the similar performance between the crystal 

structure and homology models. In short, models that have greater initial differences show 

higher fluctuations during the MD and move toward the correct conformation in some of the 
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MD snapshots. Binding site residues are to a large degree already structurally similar in the 

homology models to the crystal structures.

A2A

For the adenosine A2A receptor, a homology model was created from the β1 adrenergic 

receptor structure (another class A GPCR; PDB ID 4amj), with 28% sequence identity 

across the entire protein and in the binding site. The FEP+ results using the homology model 

as receptor structure degrade slightly as compared with the X-ray structure, although the 

results are still respectable. The correlation (R2) between both runs is within the expected 

range of values given the composition of the data set. Both values differ only slightly from 

each other, which is within the normal range of fluctuation for different simulation runs. 

However, the error (represented by MUE or RMSE) clearly shows that the simulation using 

the homology model is less accurate.

As in the case of the other protein systems studied here, the RMSF analysis for this GPCR 

target reveals an analogous trend. Regions with larger deviations in the starting structure 

result in higher fluctuations during the MD simulations. However, several amino acids with 

larger RMSD than the average, including several residues of the binding site, do not show 

increased mobility in the simulation. This suggests that the necessary adaption of the 

binding site to the ligand does not fully takes place, which is in line with the higher observed 

error for the FEP+ predictions on the homology model of this target. Potentially the 

membrane surrounding is the reason for the slower equilibration. Here, an additionally 

optimized homology model with refined loops between the transmembrane helices as basis 

for the FEP+ simulations could be beneficial. Additional refinement steps are typically in 

practical application of homology models in drug design projects but this was outside the 

scope of the experiment we design for this work here. Our model is in line with several 

others submitted during the GPCR Dock 2008 competition.73 One key binding motif (the 

interaction with Asn253) is present in the homology model and partly retained in the MD 

simulations. The second key motif (the interaction with Phe168) is missing but could 

potentially be established after a loop refinement near the binding site.

MM-GB/SA

As FEP+ calculations are a rather computationally expensive approach to computing binding 

free energies, it is of interest to explore faster methods, such as MM-GB/SA, which has been 

shown previously to have good predictive capabilities for several systems.2,74,75 The MM-

GB/SA approach applied here uses a molecular mechanics force field (similar to FEP+), but 

the solvent is treated implicitly with a continuum model (as opposed to explicit solvent in 

FEP+) and the protein is sampled only through minimization or conformational sampling of 

the binding site residues (not full molecular dynamics as in FEP+). In addition, MM-GB/SA 

as applied in this work is an end point method, analyzing only the initial and final states of 

the perturbation (i.e., the ligands of interest) and not integrating over the perturbation 

pathway to obtain a true free energy estimate.

The statistical characterization for the MM-GB/SA results is summarized in Table 5 and 

details for each compound are given in the Supporting Information. While MM-GB/SA does 
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have some predictive power when using a crystal structure, correlations with experiment are 

not as strong as FEP+ also values for the Predictive Index is significantly lower. In addition, 

the slope is generally far from 1, thus not allowing comparison of energies between different 

systems. In the case of BRD4, statistical parameters suggest that the performance using the 

homology model is good and does not degrade relative to the X-ray crystal structure, 

However, looking at the individual predictions (see the Supporting Information) the weakest 

binding compounds or rather inactive ligands are not predicted to be inactive using MM-

GB/SA in several cases quite contrary to FEP+. For MCL-1, the MM-GB/SA performance 

degrades considerably (if no receptor sampling is applied) when the hm-2nl9 homology 

model is used and still degrades notably with receptor sampling, indicating that 

conformational search used in MM-GB/SA is not appropriately adjusting the structures like 

the MD simulations in FEP+. In the case of Tyk2, we also observe degradation in the results 

for the homology models. However, at least for the homology model based on PDB structure 

3eyg (JAK1; the template with the highest homology to Tyk2) the conformational search in 

MM-GB/SA does minimally improve the results and maintains a reasonable Predictive 

Index. Finally, in the case of the A2A receptor, MM-GB/SA also gives good correlation 

between predictions and experimental data. Results for the crystal structure are better than 

data reported previously.76 However, as in almost all calculations it massively overestimates 

the binding free energy. Also R2 is a bit misleading again as the individual predictions show 

that for instance the least active compounds are not predicted to have the worst affinity. In 

addition, the increased conformational sampling result in no improvement for the homology 

model as the result was already reasonable. In general it is clear that MM-GB/SA could be 

useful in some cases to predict binding free energies, but the results are poorer on average 

and less consistent than FEP+. As one cannot know in a prospective drug design project 

when MM-GB/SA might perform well, the additional computational effort for FEP+ is 

likely justified by the superior accuracy and robustness of the predictions.

CONCLUSIONS

In this work we have demonstrated the successful application of relative binding free energy 

calculations, as implemented in the FEP+ package, to homology models using a single 

simulation protocol on several small molecule series and diverse protein targets. Using the 

FEP+ method, we find a high level of predictability—in fact, in most cases studied here we 

do not observe significant degradation in the results when moving from a crystal structure to 

a homology model. The homology of the templates to the targets ranged from high (80% 

whole protein, 91% in the binding site) to low (22% whole protein, 21% in the binding site), 

suggesting a broad target space that could potentially be addressed with approaches like FEP

+, as opposed to only using relying on crystal structures. Indeed, if targets without crystal 

structures and a reasonably close homologue could still be viable for FEP+ calculations it 

would expand the accessible targets space significantly. This is in line with the findings of 

Genheden36 on two different targets using a different free energy simulation protocol, which 

supports the hypothesis that free energy methods can be highly predictive on homology 

models. Given the broad range of target classes covered here and in previous works, one 

gains confidence that this conclusion will hold true for protein systems not yet studied with 

FEP+. However, not all systems will work and special care must be taken to build accurate 
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homology models. For example, Genheden found that an incorrect loop conformation for 

one of the models resulted in significant degradation of the results. Analogously, we observe 

much larger errors in the predictions for the GPCR system studied here, where not all loops 

close to the binding site sampled the correct conformation.

While the results presented here are encouraging, there are a few important points to 

consider that likely resulted in the surprisingly robust binding free energy predictions that 

we observed. First, a good binding mode was used as a starting point for all FEP+ 

calculations. In some cases, the poses were obtained directly from docking as the top rank, 

meaning they could have been selected in a real project without any user bias. However, in 

the cases where the top ranked pose was not correct we did not pursue running FEP+ on 

incorrect poses because the simulation time for our calculations is likely insufficient to 

sample significantly different binding modes with high energetic transition barriers between 

the states. As such, we used multiple docking protocols, some of which included constraints 

and protein flexibility, and chose the top-scoring pose that was within 2.0 Å of the crystal 

structure as a starting point for the FEP+ calculations. We feel that this is a reasonable 

decision, and in fact most drug discovery projects in the hit-to-lead or lead optimization 

stages contain SAR and/or mutagenesis data that allows for a more informed selection of the 

best pose from an ensemble of docking poses. Indeed, in all cases here the pose selected was 

within the top five scoring poses. Clark et al.61 recently reported an improved pose 

prediction method that combines traditional docking (Glide) and Induced Fit Docking (IFD) 

with metadynamics to select the top pose. Approaches like this, which include molecular 

dynamics sampling of the system in explicit water, should reduce the need for biasing the 

pose selection and will be explored in conjunction with FEP+ applied to homology models 

in future works.

In addition to the pose selection matter discussed above, we also chose systems where FEP+ 

worked well on the crystal structure and where good homology modeling templates existed. 

Even in the case of low homology, the templates all had good resolution and electron density 

for all residues around the binding site. In some projects it may be necessary to perform 

additional refinement of the homology model before docking and FEP+ calculations. Such 

refinement may involve adding residues with missing density, modeling insertions/deletions, 

predicting conformations of flexible loops, identifying the location of ions/cofactors, and 

placing buried waters. The high quality of the homology models likely contributes to the 

successful predictions from some of the MM-GB/SA calculations performed in this work.

Finally, even with good crystal structures, FEP+ can still fail to yield accurate results in 

some cases. For the cases chosen in this work we had validated FEP+ on the crystal structure 

before moving to the homology models. It can be safely assumed that if FEP+ performs 

poorly on a good crystal structure then a homology model would not do better (unless by 

chance or if there are problems with the crystal structure that are overcome in the homology 

model). Poor results with FEP+ on crystal structures can typically be attributed three 

sources: (1) force field, (2) sampling, and (3) system setup. For 1, we used a robust force 

field (OPLS3) with an automated mechanism to generate any missing parameters before 

running FEP+.77 Nonetheless, it is still possible that force field issues can lead to poor 

results, for example, if polarization or other effects not captured by the fixed point charge 
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model cannot adequately describe the underlying physics of the molecules of interest. 

Regarding 2 (sampling), we have performed all calculations with 5 ns simulation time per 

lambda using enhanced REST sampling on the ligand atoms being changed. This protocol 

allows for sufficient local sampling within an energy basin and rearrangement of the ligand 

atoms being modified, but not larger scale movements of the system. To achieve such 

movements would require longer simulation times and/or adding more atoms into the REST 

region. As for 3 (setup), there are many issues that must be considered and were not detailed 

in this work. For example, it is essential to start with the correct tautomer/ionization state for 

the ligand and protein residues. This can be challenging, especially if there is a chance for 

changes upon binding, but can be addressed in most cases with careful consideration. Other 

important system setup issues include water placement (especially for buried waters), 

inclusion of ions and cofactors to emulate the relevant assay conditions, proper atom typing/

mapping, and anything else that cannot be sampled during the MD simulations.

In summary, we have demonstrated that FEP+ has the potential to be successfully applied to 

homology models without significant degradation in the performance relative to calculations 

performed on crystal structures. This might be considered a surprising finding, as we often 

expect at least some degree of degradation when working with homology models, but the 

molecular dynamics sampling in FEP+ appears to adequately sample the relevant states of 

the protein around the ligands, which is not possible with scoring approaches that do not 

allow for protein flexibility. What we have presented here is encouraging for the field of 

relative binding free energy calculations applied to pharmaceutically relevant targets, but 

significantly more validation work is needed, which we are pursuing through additional 

retrospective validation and, importantly, through prospective applications in real-world drug 

discovery projects.
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ABBREVIATIONS

A2A adenosine A2A receptor

ACK1 activated CDC42 kinase 1

Bcl-xL B-cell lymphoma-extra large

β1-AR β1 adrenergic receptor

BRD2/3/4 bromodomain-containing protein 2, 3, or 4

CSK tyrosine-protein kinase CSK

FEP free energy perturbation

JAK1 Janus kinase 1
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MCL-1 induced myeloid leukemia cell differentiation protein

MUE mean unsigned error

OPLS optimized potential for liquid simulations

PI predictive index

REST replica exchange with solute tempering

RMSD root mean square deviation

RMSE root mean square error

RMSF root mean square fluctuation

SBDD structure-based drug design

TI thermodynamic integration

Tyk2 tyrosine kinase 2
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Figure 1. 
Correlation plots between experimentally observed and predicted binding free energy using 

different receptor structures (crystal and homology models). Predicted uncertainties are also 

shown. The ±1 and ±2 kcal/mol ranges around the diagonal are highlighted in light and dark 

gray to easier spot outliers. Overlay of respective receptor model structures are shown to the 

right of the correlation plots. Carbon atoms are colored as in the correlation plot. Hydrogen 

atoms and water molecules are hidden for clarity. The original crystal structure ligand is 

shown in gray.
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Figure 2. 
Overlay of RMS fluctuations obtained from MCL-1 MD trajectories with λ = 0 and 1. The 

values are overlaid for each receptor structure and shown as line. For comparison the RMS 

deviation calculated for all atoms of each amino acid between the starting receptor structure 

for each FEP+ run with respect to the X-ray reference receptor structure are plotted as bars. 

Amino acids within 5 Å of the reference X-ray receptor structure cocrystallized ligand are 

highlighted by a vertical line.
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