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Summary

Neural remodeling in the autonomic nervous system contributes significantly to sudden cardiac 

death. The fabric of cardiac excitability and propagation are controlled by autonomic innervation. 

Heart disease predisposes to malignant ventricular arrhythmias by causing neural remodeling at 

the level of the myocardium, the intrinsic cardiac ganglia, extra-cardiac intrathoracic sympathetic 

ganglia, extra-thoracic ganglia, spinal cord, and the brainstem, as well as the higher centers and 

the cortex. Therapeutic strategies at each of these levels aim to restore the balance between the 

sympathetic and parasympathetic branches. Understanding this complex neural network will 

provide further important therapeutic insights into the treatment of sudden cardiac death.
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Introduction

The autonomic nervous system controls every aspect of cardiac physiology. Autonomic 

imbalances, whether from central nervous system disorders such as in epilepsy1 or cardiac 

pathological remodeling of the peripheral nervous system, can cause significant atrial and 
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ventricular tachy- and brady-arrhythmias. In this chapter, the role of the autonomic nervous 

system in sudden cardiac death will be reviewed with a particular focus on the levels at 

which neuromodulatory therapies may have proven benefit.

Anatomy

The autonomic nervous system consists of sympathetic and parasympathetic branches. 

Neural processing occurs at several levels, figure 1. The intrinsic cardiac ganglia reside on 

the epicardium and receive post-ganglionic sympathetic and pre-ganglionic parasympathetic 

connections. In the thorax, the extra-cardiac but intrathoracic ganglia such as the stellate 

ganglia, the middle cervical ganglia, and the thoracic ganglia of T2–T4 also process neural 

information, controlling sympathetic outflow to the heart. Finally, sympathetic afferent 

information passes through the dorsal root ganglia and reaches the spinal cord where 

additional neural processing can take place. Some of this information is then sent to the 

brainstem and higher centers. At each level, afferent neurotransmission feeds back 

information to neurons that in turn affect efferent control of the heart, completing an 

independent neural circuit that modulates cardiac function. In addition, direct vagal afferent 

fibers originate from the myocardium and synapse via pseudo-unipolar neurons of the 

nodose ganglia in the nucleus tractus solitarius of the brainstem. Finally, although 

sympathetic efferent fibers originate in the thoracic ganglia and parasympathetic 

preganglionic fibers travel in the vagal trunk, it is important to note that there is significant 

intermixing of these fibers in the thorax so that most nerves reaching the heart in the 

mediastinum have mixed (sympathetic and parasympathetic) fibers.2,3

Sympathetic Efferent Neurotransmission

The journey of cardiac sympathetic preganglionic fibers originates in the central nervous 

system (CNS) primarily in the brainstem with modulation by higher centers such as the 

subthalamic and periaqueductal grey as well as rostral ventrolateral medulla.4 These 

preganglionic fibers leave the spinal cord at the level of T1 to T4 and synapse in the right 

and left stellate ganglia, T2–T4 thoracic, and middle cervical ganglia. Postganglionic fibers 

then originate from these ganglia and travel along epicardial vascular structures as dictated 

by embryological growth cues of endothelin-1 and nerve growth factor (NGF) released by 

vascular smooth muscle cells, particularly along coronary veins and then arteries.5,6 

Therefore, sympathetic innervation is particularly dense around the sinus node and coronary 

sinus, with decreasing in density from the base of the ventricle to the apex.7 In addition, 

these fibers provide input to the numerous ganglionated subplexuses interspersed throughout 

bilateral atria and ventricles.4,8 The majority of post-ganglionic sympathetic fibers, however, 

synapse directly onto the myocardium. The major neurotransmitter of the sympathetic 

nervous system, is norepinephrine, which stimulates myocardial beta receptors. Roles for 

additional neurotransmitters such as neuropeptide Y are currently under investigation.9

Parasympathetic Efferent Neurotransmission

Preganglionic cardiac parasympathetic efferent fibers begin in the nucleus ambiguus and 

dorsal motor nucleus of the brainstem and travel in the vago-sympathetic trunk bilaterally.10 

These preganglionic fibers synapse within the intrinsic cardiac ganglia residing in fat pads 
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on the heart.11 Postganglionic neurons then provide direct innervation to the sinus node, 

atrioventricular node, and bilateral atria and ventricles.12–15 Acetylcholine is the major 

neurotransmitter of the heart, stimulating muscarinic (predominantly M2 and M3) receptors 

on the myocytes. However, important co-transmitters are released with vagal nerve 

stimulation including nitric oxide and vasoactive intestinal peptide. Of note, although the 

vagal trunk consists of primarily efferent parasympathetic nerve fibers, evidence for 

dopaminergic fibers within the trunk also exists.16,17 The role of these dopaminergic fibers 

remains to be elucidated. Importantly, the majority of the fibers of the vagal trunk are 

afferent (>80%).18 The vagal nerve has the added complexity of providing dual autonomic 

and bidirectional flow of information via multiple neurotransmitter messengers.

Neural Afferent Neurotransmission

Afferent nerve fibers provide critical feedback from the myocardium and can be 

mechanosensory, chemosensory, or both.4 Chemosensory neurons respond to a variety of 

stimuli including hydrogen ions, potassium, bradykinin, oxygen radicals, adenosine, 

adenosine triphosphate and arachidonic acid metabolites. These nerve fibers send 

information to the intrinsic cardiac ganglia, the intrathoracic ganglia, the dorsal root ganglia 

of the spinal cord, and via the nodose ganglia (the inferior ganglia of the vagosympathetic 

trunk) to the brainstem. Afferents arising from renal parenchyma and renal pelvis travel via 

the dorsal root ganglia of the spinal cord and can also modulate sympathetic outflow.19 Of 

note, aortic and carotid body mechanosensory and chemosensory afferents appear to travel 

via the vagal trunk to the brain.20,21

Neural Circuits

Local circuit neurons in the intrathoracic and intracardiac ganglia serve as processors of 

afferent information. They provide local reflex arcs back to the heart through efferent nerves, 

fine tuning cardiac function on a beat by beat basis.4,22,23 Orthotopic heart transplantation 

serves as a prime example of independent regulation with intact but isolated intracardiac 

ganglia.24 Transection of the spinal cord at T1–T4 in a porcine model demonstrates the 

ability of the remaining neuronal networks to regulate cardiac function, independently of the 

central nervous system.25 In addition to local information processing that occurs at the 

intrinsic cardiac ganglia, the local circuit neurons within these ganglia serve as important 

peripheral stations for processing neural information, receiving input both from the central 

nervous system (sympathetic and parasympathetic) and the myocardium.26

Autonomic Nervous System and Cardiac Pathophysiology

Response to Sympathetic Activation

Norepinephrine stimulation of beta adrenergic receptors causes downstream modulation of 

ion channels and calcium release, which culminates in increases in inotropy, chronotropy, 

lusitropy, and dromotropy in normal hearts. However, in the setting of structural heart 

disease, the electrophysiological effects of sympathetic activation predispose to sudden 

death.27 The calcium loading effects on the sarcoplasmic reticulum can create delayed after 

depolarizations that can initiate ventricular arrhythmias.28 Action potential duration (APD) 

is shortened in areas of dense sympathetic innervation, and due to the heterogeneity of 
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sympathetic innervation, APD dispersion increases. In ischemic cardiomyopathy, direct and 

indirect sympathetic activation with isoproterenol and nitroprusside in humans29 and 

electrical stimulation of the stellate ganglia in porcine hearts has been shown to significantly 

increase dispersion of repolarization.30 T-peak to T-end interval, a marker of sudden cardiac 

death, correlates with dispersion of repolarization and is significantly increased with stellate 

ganglion stimulation in these studies. Of note, T peak to T-end interval is not increased with 

uniform norepinephrine infusion in normal hearts, highlighting the nonuniform distribution 

of direct nerve activation.31 The dispersion of repolarization sets the stage for functional 

blocks and promotes a substrate for reentrant arrhythmias. In addition, sympathetic 

stimulation in animal models has been shown to increase electrical restitution and electrical 

alternans, and decrease ventricular effective refractory period (ERP) and ventricular 

fibrillation threshold (VFT).32 Furthermore, the co-transmitters released with sympathetic 

stimulation, namely neuropeptide Y, has been shown to reduce vagal release of acetylcholine 

and increase VF inducibility by acting directly on the myocardial Y1 receptor.9 Other 

indirect effects of sympathetic activation include a neurally induced pro-inflammatory state 

which confers negative remodeling of the myocardium.33 The sympathetic activation that 

occurs with cardiac disease along with structural changes such as connexin-43 down 

regulation and lateralization,34,35 act in concert to cause malignant ventricular arrhythmias 

that result in sudden death, figure 2.

Parasympathetic Activation

The primary method of increasing parasympathetic tone has been via stimulation of the 

vagal trunk. Vagal nerve stimulation has been shown to reduce slope of APD restitution, 

lengthen ventricular ERP, and raise VFT in various animal models including rats, rabbits, 

pigs, cats and dogs.36–38 Furthermore, direct right and left vagal nerve stimulation or 

indirect stimulation via phenylephrine infusion increases epicardial and endocardial 

ventricular APD, and ERP.39 Unlike right and left thoracic ganglia stimulation, lateral 

differences are not evident when stimulating the vagal nerves.37 The neurotransmitter 

conferring these beneficial effects include acetylcholine, which interacts with beneficial 

receptor subtypes which include muscarinic receptor subtype 3 and nicotinic receptor 

α7nAChR.40 Nitric oxide release due to vagal nerve stimulation also protects against 

ventricular arrhythmias.41 Connexin-43, a gap junction protein that is decreased in 

myocardial infarction (MI), is preserved in the setting of vagal nerve stimulation.42 Other 

beneficial effects of parasympathetic activation include improvement of heart failure in 

animal models,43 coronary vasodilation,44–46 decrease in reactive oxygen radicals,47 and 

reduction of inflammation.48 Therefore, through a number of mechanisms, increasing 

parasympathetic tone protects against ventricular arrhythmias.

Neural Remodeling in the Setting of Myocardial Infarction

Denervation

Myocardial infarction can cause local denervation of sympathetic fibers and create electrical 

heterogeneity of the myocardium.49 Local denervation of infarcted regions exhibit a blunted 

ability to shorten ARI with stellate stimulation, contributing to ARI dispersion.30 
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Denervation of myocardium increases beta adrenergic sensitivity, calcium mishandling, and 

APD dispersion.50,51

Sympathetic denervation can be imaged with radioactive analogues of norepinephrine, 

namely 131I-meta-iodo-benzyguanidine using single photon emission computerized 

tomography or 11C-hydroxyephedrine using positron emission tomography (PET). Greater 

degree of denervation on these imaging modalities predicts sudden cardiac death risk better 

than infarct size or ejection fraction (EF).52,53 Furthermore, the denervation patterns seen on 

PET imaging correspond well with late gadolinium enhancement scar regions seen on 

magnetic resonance imaging54 and the heterogeneity of innervation at the border zones 

correlate with increased ventricular arrhythmia inducibility.55

The re-innervation process is shaped by chemoattractants and chemorepellents with NGF 

playing a key role as a chemoattractant. In a heart failure rat model, myocardial NGF levels 

decrease in response to norepinephrine stimulation.56 The reduced NGF levels decrease 

sympathetic innervation density in the myocardium, thus attenuating the synaptic input and 

equilibrating the myocardial exposure to higher sympathetic tone. Afferent innervation is 

also controlled by NGF. In a streptozosin induced diabetic mice model, diabetes decreased 

NGF production and afferent signaling in the dorsal root ganglia. This cardiac sensory 

neuropathy predisposes to sudden death by means of clinically silent ischemia.57 Other 

neurotrophic factors such as Sema3a acts as a chemorepellent and thereby prevents 

innervation. Clinically, polymorphisms in the SEMA3A gene have been linked to 

unexplained cardiac arrest.58 Sema3a overexpression in left stellate ganglion of ischemic 

rats has shown to reduce nerve sprouting, attenuate the dephosphorylation of connexin 43, 

and reduce ventricular arrhythmia inducibility.59 Similarly, Sema3a overexpression in the 

infarct border zones of rats reduces sympathetic innervation and VT inducibility.60 The 

mechanism behind the persistent post-infarction sympathetic denervation has been attributed 

to the chemorepellent effect of chondroitin sulfate proteoglycans (present in scar) binding 

with neuronal protein tyrosine phosphatase receptor σ, which is a key regulator of axonal 

growth depending on its ligand.61 When this paired binding is prevented with intracellular 

sigma peptide, sympathetic innervation is restored and arrhythmia susceptibility is reduced.
51 In summary, pathologic patterns of denervation predispose to sudden death by creating 

proarrhythmic substrate. Understanding this pathophysiology has led to a few promising 

therapeutic molecular targets that focus on modulating re-innervation at the level of 

myocardium.

Hyperinnervation

Axonal damage and denervation is followed by attempts at reinnervation by the cardiac 

peripheral nerves. However, this process appears to be very heterogeneous. Reinnervation is 

observed in localized regions along border zones of infarcts and appears to proceed in a 

heterogeneous fashion likely determined by the underlying molecular milieu driving the 

innervation process. This heterogeneous hyperinnervation increases the dispersion of 

repolarization and provides the substrate for ventricular arrhythmias.62 In explanted human 

hearts with history of ventricular tachycardia, evidence of myocardial hyperinnervation at 

border zones of scar regions has been observed.63 In addition, following myocardial 
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infarction, infusing NGF into the stellate ganglia to promote sympathetic nerve sprouting 

increases the incidence of ventricular arrhythmias and sudden cardiac death in canine hearts.
64 Restoring appropriate re-innervation of the scar has been shown to decrease arrhythmias 

in a mouse model of myocardial infarction.51 Therefore, agents that promote homogeneous 

reinnervation may serve as an important cornerstone in autonomic clinical therapeutics.

Neural Remodeling of the Cardiac and Extra-cardiac Ganglia

In addition to neural remodeling at the level of the myocardium, ischemic and non-ischemic 

cardiomyopathy are associated with remodeling of the extra-cardiac (stellate) ganglia. 

Human stellate ganglia from patients with structural heart disease have been shown to 

contain enlarged neurons,65 and in a porcine infarct model, stellate ganglia contain less non-

sympathetic neural populations, and more pro-arrhythmic neuropeptide Y activity.66 In a 

canine infarct model, an increase in synaptic density of stellate ganglion neurons has been 

observed by measuring growth-associated protein 43 and synaptophysin.67 Similar increases 

in sympathetic remodeling of stellate ganglia has been seen in patients with heart failure.65 

In a porcine infarct model, the degree of neural remodeling including increased neuronal 

size and neuronal nitric oxide synthase (nNOS) activity has been shown in the dorsal root, 

stellate, right atrial, and ventral interventricular ganglionated plexi.68 Furthermore, the 

ability of neurons within the intrinsic cardiac ganglia to respond to various stimuli, such as 

preload reduction, is altered in the setting of myocardial infarction.26 Extracardiac ganglia 

remodeling plays an important role in modulating ventricular arrhythmias. Refer to figure 3 

for flow chart representing the different effects of infarcted myocardium on remodeling the 

afferent and efferent limbs of the sympathetic nervous system.

Neuraxial Modulation to Reduce Risk of SCD

Modulation of the Sympathetic Nervous System

Except for a few disorders such as LQT3 or Brugada, reducing the sympathetic activity is 

expected to reduce ventricular arrhythmias and sudden cardiac death in setting of structural 

heart disease.

Chemical Blockade—The pharmacologic cornerstones of cardioprotective heart failure 

therapy in the past two decades block sympathetic activation with the use of beta blockers,69 

angiotensin converting enzyme inhibitors (ACEI),70 angiotensin receptor blockers (ARB),71 

and aldosterone antagonists.72 Beta adrenergic receptor blockade has long term 

improvement in heart failure and mortality.73 ACEI and ARB effectively block the effect of 

angiotensin II, which is known to increase central nervous system sympathetic outflow and 

impair the baroreceptor pathways that restrain sympathetic outflow at the nucleus tractus 

solitarius.74 Aldosterone antagonists have been shown to decrease myocardial 

norepinephrine content and increase VFT.75 Statins, in addition to its cornerstone role in 

ischemic heart disease,76 have been also implicated in reducing sympathetic outflow.77 In 

the critical care setting of electrical storm, sedation and general anesthesia can reduce 

sympathetic activity and control ventricular arrhythmias.78
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Cardiac Resynchronization Therapy—Cardiac resynchronization therapy (CRT) with 

biventricular pacing has been another cornerstone of heart failure therapy that modulates the 

autonomic nervous system. Using PET imaging, homogeneous sympathetic innervation has 

been shown to be increased in the myocardium of CRT responders.79 In addition, while 

heart failure increases muscarinic receptor subtype 2 and its Gαi counterpart, CRT 

upregulates known protective muscarinic receptor subtype 3.80

Thoracic Epidural Anesthesia—Reduction of sympathetic outflow from the spinal cord 

can be accomplished by injecting anesthetic agents into the thoracic epidural space. 

Reducing ventricular fibrillation with thoracic epidural anesthesia (TEA) has been 

demonstrated in an ischemic rat model.81 The initial human case report showed a dramatic 

reduction of a patient’s electrical storm corresponding with the initiation of bupivacaine in 

the T1–T2 epidural space.82 A subsequent case series of 8 patients who underwent TEA 

showed no adverse procedural outcomes and 6 patients showed a significant decrease (> 

80%) in VT burden.83 For patients in whom the procedure is not contraindicated due to 

anticoagulation, TEA offers the advantages of emergency bedside initiation with minimal 

effects on hemodynamic parameters,84 while bridging towards a more definitive therapy. In 

addition, there has been reported success with intrathecal clonidine in reducing ischemia 

induced ventricular arrhythmias in a postinfarct canine model.85

Spinal Cord Stimulation—Spinal cord stimulation (SCS) has been approved in the 

United States for chronic pain and intractable angina.86 Similar to TEA, SCS acts in the 

epidural space of T1–T4, but the nerves are modulated by electrical impulses rather than 

chemical deactivation. SCS modulates the autonomic innervation of the heart by reducing 

stellate ganglia activity,87 increasing vagal tone,88 altering intrinsic cardiac neuron activity,
89 and modifying sympathetic nerve sprouting in the myocardium.90 In a post-infarct canine 

heart model with superimposed pacing induced heart failure, SCS reduced ischemia driven 

VF from 59 to 23%.91 Furthermore, intermittent chronic SCS in a similar model lowered VF 

due to ischemia and improved the EF compared to carvedilol, demonstrating benefit beyond 

conventional heart failure medical therapy.92 Similar reductions in ventricular ectopy were 

observed in an ischemic porcine model where SCS decreased dispersion of repolarization.93 

An initial case series of SCS in patients with heart failure showed benefit. SCS reduced 

VT/VF burden by at least 75% over 4 months with a 2 month midpoint cross over design.94 

However, SCS has shown mixed results in human clinical trials of heart failure. Thoracic 

Spinal Cord Stimulation for Heart Failure as a Restorative Treatment (SCS-HEART) study 

showed safety and efficacy in New York Heart Association (NYHA) class III patients with 

EF 25–30%.95 Determining the Feasibility of Spinal Cord Neuromodulation for the 

Treatment of Chronic Systolic Heart Failure (DEFEAT-HF) study evaluated NYHA class III 

patients with EF ≤35% and showed no improvement in EF.96 It is possible that the 

discrepant SCS clinical results of VT/VF versus HF can be explained by differences of how 

SCS was applied including duration and frequency of stimulation.

Cardiac Sympathetic Denervation/Decentralization—Cardiac sympathetic 

denervation (CSD) can be achieved with surgical removal of stellate and T1 to T4 ganglia 

via video assisted thoracoscopic surgery.78 Although this surgery does not interrupt all the 
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thoracic sympathetic pathways to the heart, as the upper half of the stellate and the middle 

cervical ganglia remain intact, it has shown benefit in a variety of clinical settings. In a case 

series of 22 patients with long QT, catecholaminergic polymorphic VT, and idiopathic VT, 

73% had a marked reduction in VT burden with 55% having complete cessation at median 

follow up of 28 months with left CSD.97 In the setting for VT storm and structural heart 

disease in 9 patients, 3 had complete cessation of VT and 2 had partial response.83 The 

beneficial effects of bilateral CSD was reported in case series of 41 patients, 17 of whom 

underwent unilateral and 27 of whom underwent bilateral.98 Although both left and bilateral 

CSD significantly reduced burden of ICD shocks in the year after the procedure compared to 

the 6 months prior, patients with bilateral CSD had a significantly greater ICD shock free 

survival at one year. Therefore, for control of ventricular arrhythmias refractory to standard 

medial therapy, bilateral CSD serves as a promising therapeutic strategy. Risks of the 

procedure are less than 5% and include mild ptosis, pneumothorax or hemothorax, and 

occasionally, vasopressor support after the procedure. Long term side-effects include a 

change in sweating pattern and sensation in approximately 10–15% of patients as well as 

neuropathic pain, which generally resolves within 6 months after the procedure.98

Emerging frontiers in animal models include molecular modification of the stellate ganglia. 

Delivering nNOS to hypertensive rats to can improve impaired vagal tone99 and attenuate 

hyperactive sympathetic tone.100 Another therapeutic avenue includes reducing stellate 

activity with low level vagal nerve stimulation. By upregulating a hyperpolarizing small 

conductance calcium activated potassium channel SK2 in dogs, neuronal firing of the 

sympathetic branch is effectively reduced with vagal nerve stimulation.101 The ability to 

translate nonsurgical methods to modify stellate activity can potentially provide the benefits 

without the complications of surgical CSD.

Renal Sympathetic Denervation—Renal afferent nerve fibers that modulate the 

sympathetic outflow can be reduced by catheter ablation of these fibers in the renal arteries, 

a procedure known as renal artery denervation (RDN). The first successful report of RDN 

for arrhythmias showed dramatic reductions of VT/VF burden for 2 patients with VT storm.
102 Similar benefit was seen in a refractory VT patient during the post revascularization 

recovery after a ST elevation MI103 and another who failed endocardial and epicardial 

ablation.104 A case series of 4 patients with cardiomyopathy undergoing RDN showed safety 

and efficacy with reduction of VT burden from 11 VT episodes in the month preceding 

procedure to 0.3 per month following the procedure.105 A subsequent case series of 10 

patients with cardiomyopathies showed a dramatic reduction with 28.5 device shocks in the 

preceding 6 months and 0 shocks after renal denervation.106 However, although RDN has 

shown anti-arrhythmic benefit in case series of patients with refractory ventricular 

arrhythmias and structural heart disease, the inability to reach a prespecified clinical 

outcome in the SIMPLICITY-HTN3 trial107 has highlighted the challenges of identifying 

precise targets and end-points of ablation within the renal arteries.78,108 There is much 

anticipation of the results from the current ongoing trials evaluating the efficacy of RDN to 

reduce ventricular arrhythmias, including RESCUE109 and RESET-VT.110
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Modulation of the Parasympathetic Nervous System

Vagal Nerve Stimulation—Augmenting the protective effects of parasympathetic 

nervous system for controlling ventricular arrhythmias has been accomplished with vagal 

nerve stimulation (VNS) in animal models. Vagal nerve stimulators are implanted surgically 

akin to an implantable pacemaker with stimulation leads attached to the cervical the vagal 

trunk, adapted from FDA approved treatment for epilepsy and depression.111,112 Side effects 

from the procedure include infection, dysphagia, hoarseness, cough, and pain.86 A reduction 

in sudden cardiac death from ventricular arrhythmias has been demonstrated with vagal 

stimulation in a healed infarct canine model subjected to repeat ischemia.113 First human 

cardiac application was described in 8 patients for the indication of heart failure using 

CardioFit stimulators.114 Subsequent human trials for heart failure have shown mixed 

results. ANTHEM-HF, a nonblinded trial for NYHA II–III patients with EF <40%, showed 

improvements in NYHA class and EF.115 NECTAR-HF was a randomized blinded study, 

which showed no improvements with VNS with respect to objective parameters, such as EF, 

but improved clinical parameters such as NYHA class.116 INOVATE-HF was a randomized 

study that further showed no benefit of mortality or worsening HF in NYHA III patients 

with EF ≤40%.117 In many ways, vagal nerve stimulation trials for heart failure share 

parallel lessons to the negative trials of spinal cord stimulation. As mentioned above, the 

vagosympathetic trunk contains both parasympathetic and sympathetic as well as afferent 

and efferent nerves. Different stimulation parameters can differentially engage these 

fibers118 and the effects of VNS is significantly increased when the vagosympathetic trunk is 

transected in animal studies,119,120 demonstrating the powerful effects of afferent fiber 

activation on efferent effects. In addition, a case of a patient experiencing an increase in 

ventricular arrhythmias after VNS has been reported.38 Therefore, the stimulation 

parameters used can significantly affect the outcomes of VNS and may account for the 

mixed human clinical trial results. With better characterization of the optimal dose of 

stimulation, VNS remains a promising option to apply to reduce VT/VF.

Tragus Nerve Stimulation—A less invasive method of stimulating the parasympathetic 

nervous system has been performed using tragus nerve stimulation.86 A flat electrical clip is 

applied to the tragus, the anterior protuberance of the outer ear, and electrical stimulation is 

applied to the auricular branch of the vagal nerve. Much of the data on tragus nerve 

stimulation has focused on its beneficial effects for atrial fibrillation and atrial arrhythmias.
121 In addition, chronic tragus nerve stimulation in a canine model of healed myocardial 

infarction demonstrated improved left ventricular remodeling.122 A randomized trial of 40 

patients demonstrated that tragus nerve stimulation suppressed pacing-induced atrial 

fibrillation, increased cycle length of atrial fibrillation, and decreased inflammatory 

cytokines.123 TREAT-AF trial will study the effects in a larger population.124 It is possible 

that the anti-inflammatory and cardiac remodeling effect of tragus nerve stimulation could 

prove useful in treatment of heart failure and ventricular arrhythmias.

Baroreceptor Activation Therapy—Baroreflex sensitivity is significantly reduced in 

setting of the heart failure and patients with decreased baroreflex sensitivity have an 

increased risk of SCD.125,126 Baroreceptor activation therapy (BAT) via electrical 

stimulation of the carotid bodies augments vagal tone127 and decreases sympathetic outflow.
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128 At the intrathoracic level, BAT attenuated left stellate ganglia electrical activity 

(amplitude and frequency) in setting of canine ischemia.129 At the level of the intrinsic 

cardiac ganglia, BAT reduced anterior right ganglionated plexus electrical amplitude and 

frequency, decreased ability of the superior left ganglionated plexus to reduce sinus slowing, 

and reduced AF in dogs.130 In canine models of ischemic cardiomyopathy, BAT has 

decreased ventricular arrhythmias, decreased slope of APD restitution, and lengthened 

ventricular ERP.129,131,132 BAT has also been shown to decrease ischemia driven 

inflammation, oxidative stress, and apoptosis and improve connexin-43 levels. Current 

human data has focused on the use of BAT for treatment of hypertension and heart failure.
133 A phase III trial of the Rheos BAT system which stimulates bilateral carotid bodies for 

resistant hypertension has shown mixed results, failing to achieve prespecified endpoints but 

able to improve proportion of patients with SBP < 140 mmHg. The primary risk with this 

procedure was cranial nerve injury resulting in dysphonia, dysphagia, and localized 

numbness in 4.8% of patients.134 Phase II trial results for resistant hypertension using 

Barostim, a smaller device with unilateral stimulation of the right carotid body, has shown 

similar reductions in blood pressure without significant cranial nerve injury.135 Barostim in 

heart failure patients with NYHA III and EF ≤35%, showed improvements in NYHA class, 6 

minute walk, and quality of life scores.136 Although BAT has not been used for treatment of 

ventricular arrhythmias, its potential promise for treatment of heart failure could lead to a 

reduction in ventricular arrhythmias. Refer to figure 4 for summary of neuraxial modulation 

targets and their relationship to the levels of cardiac innervation. The level of evidence of 

translating these various modalities from benchside to bedside are summarized in figure 5.

Conclusion

Autonomic cardiac innervation plays a significant role in sudden cardiac death, modulating 

the fabric of cardiac excitability and propagation. Significant neural remodeling in the 

setting of heart disease predisposes to malignant ventricular arrhythmias by causing 

alterations at the level of the myocardium, the intrinsic cardiac ganglia, extra-cardiac 

intrathoracic sympathetic ganglia, extra-thoracic ganglia, spinal cord, and the brainstem, as 

well as the higher centers and the cortex. Therapeutic strategies at each of these levels have 

been used to restore the balance between the sympathetic and parasympathetic branches of 

the autonomic nervous system. Detailed characterization of this complex neural network will 

provide further important therapeutic insights into the treatment of sudden cardiac death.
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Key Points

1. Cardiac neural control occurs at multiple levels, and each level has the 

capability to receive afferent neurotransmission and control efferent outflow 

to the heart.

2. Sympathetic nervous system activation in myocardial infarction increases 

VT/VF by providing both of the ingredients required for arrhythmogenesis: 

increased myocardial excitability and heterogeneous repolarization 

predisposing to reentry.

3. Myocardial infarction remodels the sympathetic nervous system such that 

sympathetic activity is amplified, promoting VT/VF.

4. Strategies for neuraxial modulation have aimed at decreasing sympathetic 

activity and augmenting parasympathetic tone, at various levels of cardiac 

neural control.

5. Autonomic modulation has progressed from basic science to animal studies 

and human studies, though in clinical trials, some therapies have had mixed 

results.
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Figure 1. 
Cardiac neural control occurs at multiple levels, and each level has the capability to receive 

afferent neurotransmission and control efferent outflow to the heart (directly or indirectly). 

Level I represents the intrinsic cardiac ganglia, located in the fat pads of the epicardium. 

Level II includes the stellate, middle cervical, and thoracic ganglia. Level III includes the 

spinal cord, vagal nerve and brainstem nuclei. Level IV represents cortex and higher centers. 

Each level also demonstrates parallel processing of neural information.
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Figure 2. 
Sympathetic nervous system activation in the setting of myocardial infarction increases the 

risk of VT/VF by modulating the two primary criteria needed for initiation of arrhythmias, 

including conduction velocity and repolarization. Therefore, sympathetic activation creates 

both more excitable myocardium by initiating EADs and DADs and creates a substrate that 

is more likely to promote reentry. SNS: Sympathetic Nervous System, APD: action potential 

duration, ARI: activation recovery interval, VERP: ventricular effective refractory period, 

EAD: early after depolarization, DAD: delayed after depolarization
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Figure 3. 
Effects of myocardial infarction on the cardiac sympathetic system. Infarcted myocardium 

stimulates release of signaling molecules including NGF that promote remodeling of the 

afferent and efferent nervous system such that sympathetic nervous activity is amplified. 

Remodeling of the nervous system occurs at all levels, including the intrinsic cardiac 

ganglia, the thoracic ganglia, and the higher centers. This along with denervation and nerve 

sprouting at the myocardial level further amplify the substrate heterogeneity and ultimately 

increases risk of VT and VF. Adapted from Dilsizian V. Atlas of cardiac innervation. New 

York, NY: Springer Science+Business Media; 2016 (with permission).
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Figure 4. 
Neuraxial modulation can be targeted at multiple levels of the cardiac autonomic nervous 

system, from the central nervous system to neuro-myocardial junction. Therapeutic goals 

generally include decreasing sympathetic activity and augmenting parasympathetic activity. 

BB: Beta blocker, ACEI: angiotensin converting enzyme inhibitor, ARB: angiotensin 

receptor blocker, AA: aldosterone antagonist, CRT: cardiac resynchronization therapy
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Figure 5. 
Autonomic modulation therapies have translated from basic research to animal studies and 

human studies, though in clinical trials, some therapies have had mixed results. VF: 

ventricular fibrillation, EF: ejection fraction, HF: heart failure, HTN: hypertension, AF: 

atrial fibrillation
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