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Abstract

We report on the first experimental observation of classical diffusion distinguishing between 

structural universality classes of disordered systems in one dimension. Samples of hyperuniform 

and short-range disorder were designed, characterized by the statistics of the placement of μm-thin 

parallel permeable barriers, and the time-dependent diffusion coefficient was measured by NMR 

methods over three orders of magnitude in time. The relation between the structural exponent, 

characterizing disorder universality class, and the dynamical exponent of the diffusion coefficient 

is experimentally verified. The experimentally established relation between structure and transport 

exemplifies the hierarchical nature of structural complexity — dynamics are mainly determined by 

the universality class, whereas microscopic parameters effect the non-universal coefficients. These 

results open the way for non-invasive characterization of structural correlations in porous media, 

complex materials, and biological tissues via a bulk diffusion measurement.

How does a measurement of a macroscopic characteristic relate to microscopic structure? 

This ill-posed question has been repeatedly asked in many disciplines — famously, “Can 

one hear the shape of a drum?” [1] — and its answer depends on the kind of measurement. 

Naively, one could imagine that infinitely many parameters needed to specify sample’s 

structure would in one way or the other contribute to the outcome. Physical intuition, 

however, tells that only a few parameters profoundly affect the measurement; identifying 

these relevant parameters is generally nontrivial, especially for irregular, or disordered 
systems. For instance, even small irregularities in a periodic lattice can change perfectly 

conducting metallic bands into an insulator due to quantum localization [2].

Here we consider classical diffusion in structurally disordered systems, where the practical 

answer to the above question could help quantify the underlying microstructure of complex 

materials [3–8] and living tissues [9–13]. We experimentally demonstrate that the qualitative 

behavior of the time-dependent diffusion coefficient is tied to the long-range structural 

fluctuations. While systems may strongly differ in their microscopic parameters, there are 

only a few universality classes of such fluctuations—in essence, a system can be disordered 
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in one of a few distinct ways—and each universality class yields a particular power-law 

behavior of the observed macroscopic diffusion coefficient.

Technically, we experimentally verify the recently derived relation [10]

(1)

between the structural exponent p, and the dynamical exponent ϑ of the Brownian motion xt 

in structurally disordered stationary media in d spatial dimensions. The defining signature of 

structural complexity is reflected in the structural exponent p which takes discrete values 

according to the universality class, as illustrated in Fig. 1 for our d = 1-dimensional samples. 

Equation (1) relates p to the long-time tail in the bulk diffusion coefficient [10] (the mean-

squared displacement rate)

(2)

The macroscopic diffusion coefficient D∞ ≡ Dinst(t)|t=∞ and the power-law amplitude c are 

non-universal, i.e. depend on the microstructural parameters. On the other hand, as we 

experimentally demonstrate in Fig. 2, the relation (1) is universal [10], akin to the relations 

between critical exponents [14] in statistical physics, where the notion of universality 

originates.

Formally, the structural universality class is defined [10] by the k → 0 scaling of the power 

spectrum

(3)

of the restrictions which embody the sample’s microscopic structure. The exponent p, taking 

a handful of discrete values such as in Fig. 1d, describes how fast the spatial correlations 

Γ(r) in the density of the restrictions n(r) decay at large distances r, and thereby 

characterizes the system’s heterogeneity. The values p > 0 correspond to hyperuniform 
media [15, 16] (sample C), where the fluctuations are suppressed relative to the short-range 

(e.g. Poissonian) disorder (p = 0, samples A and B); p < 0 correspond to strong disorder, 
where the fluctuations are enhanced [9, 10]. Qualitatively, the variance in the number of 

restrictions within a volume V grows ∝ V for short-range disorder (according to the central 

limit theorem), slower than V for hyperuniform disorder (such as in maximally random 

jammed packings [17]), and faster than V for strong disorder. The relation (1) relies on self-

averaging [18], p +d > 0, ensuring the existence [10] of finite D∞.
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Two samples exhibiting short-range (SR) disorder were constructed by stacking flat, porous, 

permeable barriers in a layered geometry (as shown in Supplementary Fig. S1c [19]), and 

random positions, inside a glass tube filled with H2O. One SR sample was constructed using 

the barriers with 15 nm pore diameter (A in Fig. 1c) and one SR sample using the barriers 

with 45 nm pore diameter (B in Fig. 1c). Fig. 1b reveals a pore density of 8 pores/μm2 by 

AFM. These two different samples correspond to two different realizations of short-range 

disorder and the one-dimensional lines shown in Fig. 1c correspond to digitized cut-outs of 

the actual samples representing the barrier spacings of a part of the sample.

A representative optical microscopy image of SR sample A is shown in Fig. 1a and yields an 

average spacing ā ≈ 12.5 μm between the centers of the barriers. The short-range character 

of the arrangement is proven by the finite value of the plateau Γ(k)|k→0 of the power 

spectrum, Fig. 1d, and is also consistent with the probability density function (PDF) of the 

successive barrier spacings (Supplementary Fig. S7 [19]) lacking a “fat tail”. The non-

Possonian nature of barrier arrangement in both SR samples is shown by the value Γ(k)|k→0 

· ā which is different from unity (in contrast to the Poissonian, i.e. fully uncorrelated 

placement), and is consistent with non-exponential PDF of the barrier spacings.

On the other hand, the hyperuniform (HU) disordered sample C, shown in Fig. 1c (and 

Supplementary Fig. S1-a-b-d [19]), was achieved by placing identical rectangular copper 

plates, ~ (45 ± 4) μm thick, between the permeable barriers with pore diameter of 45 nm and 

is characterized by reduced long-range structural fluctuations. Ideally, the barriers would 

create a periodic lattice (with ā ≈ 51.0 μm) which would result in Bragg peaks in Γ(k) and 

Γ(k < π/ā) ≡ 0. However, experimental inaccuracies in the placement of the barriers and 

copper plates act as random displacements from ideal lattice positions, resulting in apparent 

hyperuniformity [15] of a “shuffled lattice” [20], for which the power spectrum Γ(k) ~ k2 for 

kā ≪ 1. The spectrum in Fig. 1d is indeed consistent with the exponent value p = 2.

We underscore that it is practically impossible to discern the qualitative differences between 

the samples A, B and C — or to reveal the disorder universality class by the naked eye. 

Based on local sample cut-outs, shown in Fig. 1c, the three samples look very similar, when 

the dimensions are rescaled such that mean spacing between the barrier centers is the same 

for all of them. However the power spectrum Γ(k), shown in Fig. 1d, readily shows 

similarity between samples A and B, and their qualitative difference from sample C, as its 

low k scaling captures the universal features in the large-scale behavior of the density 

fluctuations. For the computation of Γ(k), the reader is referred to Supplementary section II 

as well as Fig. S8. [19] In what follows, we show how a bulk diffusion measurement 

distinguishes between the SR and HU classes, thereby yielding the form of Γ(k) for kā ≪ 1 

(i.e. for distances exceeding ā), and experimentally validating the relation (1) in dimension d 
= 1.

The conventional cumulative D(t) ≡ 〈(xt − x0)2〉/2t of H2O was measured using pulse-

gradient diffusion NMR [3] over a broad range of diffusion times t, from 1.0 ms to 4.5 s, 

spanning over 3 orders of magnitude, and translating to mean square displacements 〈(xt − 

x0)2〉1/2 ranging from 2 μm to 144 μm. Measuring such short mean square displacements 

requires fast switching and strong in magnitude gradient pulses. Therefore, a homemade 
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gradient coil was constructed [21, 22] capable of delivering gradient pulses of approximately 

90 G/cmA. However, such strong gradient pulses may introduce errors in the experimental 

data, such as those due to eddy currents. To mitigate such effects, two pulse sequences were 

used for the diffusion measurements (cf. Supplementary Materials [19]) which made use of 

bipolar gradient pulses for short times, and asymmetric pules for long times.

Figure 2a shows the time dependence of the cumulative diffusion coefficient D(t), of H2O 

diffusing through the three samples, as well as for unrestricted H2O (cyan). Note that the 

diffusion coefficient for unrestricted H2O (cyan) was rescaled using D∞ from sample A. 

While there is no time dependence in D(t) for unrestricted H2O, a power-law exponent ϑ̃ = 

0.59±0.09 in D(t) − D∞ ~ t−ϑ̃
 was observed for H2O diffusing through sample A and ϑ̃ = 

0.56 ± 0.11 for sample B. Note that the exponent ϑ̃ is the same with ϑ of eq. (2) if ϑ < 1. 

The exponents are in remarkable agreement with equation (1) for p = 0 and d = 1, and with 

earlier prediction [23] for the tail in D(t). On the other hand D(t) − D∞ for H2O diffusing 

through the HU sample exhibits the 1/t tail with ϑ̃ = 0.99 ± 0.14. The range in which the 

least squares fit was performed was chosen such that the χ2/dof was minimized. The 

structural and dynamical exponents, as well as main characteristic of the samples such as 

residence and diffusion times τr and τD, are given in Table I.

The 1/t tail in D(t) in the HU sample indicates that ϑ > 1. Indeed, the cumulative 

 may be used to determine ϑ only in the case when the power-law tail 

in Dinst(t) is sufficiently slow [10], ϑ < 1. In this case, the instantaneous mean squared 

displacement rate (2) has similar behavior to the average rate 〈(xt − x0)2〉/2t over the whole 

interval t; formally, the above integral converges at the upper limit. However, when the 

underlying ϑ > 1, the tail  is 

determined by the short τ, such that the 1/t factor overshadows the effect of ϑ. In other 

words, D(t) − D∞ ~ t−ϑ̃
, where ϑ̃ = min{ϑ, 1}. Hence, if the tail in D(t) has ϑ̃ = 1, which is 

the case for the HU sample, one has to obtain Dinst(t) via numerical differentiation to 

uncover the true ϑ > 1, with the expense of amplifying the experimental noise.

Figure 2b shows the computed instantaneous Dinst(t) = ∂t[tD(t)], using numerical 

differentiation with Savitzky-Golay (SG) regularization [24] (cf. Supplementary Materials 

[19]), along with the weighted least squares fit (solid line). The time window in which the fit 

was performed was chosen such that the χ2/dof was minimum. As expected, for both SR 

samples, Dinst(t) reaches its universal limit D∞ according to equation (2) with ϑ = 0.52 

± 0.19 for sample A and ϑ = 0.45±0.15 for sample B (cf. Table I), consistent with the above 

results for ϑ̃ and equation (1) with p = 0 and d = 1. For the HU sample, the dynamical 

exponent ϑ = 1.51 ± 0.12, is notably different from that for SR samples, and in agreement 

with equation (1) for p = 2 and d = 1. The least squares fit was stable with respect to the SG 

filtering window and polynomial order producing reasonable values of χ2/dof (cf. 

Supplementary Materials for details, Fig. S4–S5 [19]). Note that the fit is mainly weighted 

by the first points which have good signal-to-noise ratio. An important observation of Figure 

2b is that the molecules in the HU sample gets homogenized by the diffusion process 

qualitatively faster than in the SR samples A–B, so that the power law tail becomes 

pronounced already when t ~ τr. This is a general consequence of a more efficient coarse-
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graining in a qualitatively more ordered (hyperuniform) sample. As noted in ref. [10], in the 

“extreme” case of a fully periodic sample, diffusion exhibits coherence due to infinitely long 

spatial correlations, which makes the sample effectively homogenized already when t ~ τD.

Previous applications of bulk diffusion for characterizing microstructure below imaging 

resolution focussed on the short-time [25] initial decrease  of 

the cumulative diffusion coefficient, as a result of the increasing fraction  of 

random walkers restricted by walls. In this limit, it is the net amount of the restrictions that 

is relevant, irrespective of their positions in space—akin to the net drum surface area derived 

from the density of high frequency eigenmodes [1]. This technique has been used for 

quantifying the surface-to-volume ratio (S/V) of porous media [4] and biological samples 

such as red blood cell suspensions [26] and brain tumor cells in mice [27].

Experimentally, the short-time limit is highly demanding on the pulsed field gradients. 

However, for our samples, displacements as short as L(t) ≈ 2 μm are accessible with our 

homemade gradient coil. Fig. 3 highlights the initial t1/2 decrease of D(t) for t/τD ≪ 1, when 

the short time limit is valid (cf. Table I for the values of τD). For sample A, the average 

spacing of the barriers was determined from S/V ≡ 2/ā, and found to be ā = 11.4 μm, 

deviating by ~ 9% from the value expected from the images acquired via optical microscopy. 

Simirarly, for sample B, ā = 12.0 μm deviating by ~ 15% from the value expected from the 

images acquired via optical microscopy and reported in Table I. For HU sample, ā = 61.5 μm 

deviated by approximately ~ 4%from the predicted value (Table I). In the least squares fits 

shown in Fig. 3, the free diffusion coefficient D0 was fixed to the exact value at the 

corresponding temperature. Note that the maximum (t/τD)1/2 used for the least squares fit 

(solid lines of Fig. 3) was 0.31 for sample A, 0.27 for sample B and 0.24 for sample C (see 

Supplementary Materials Fig. S6 for statistical analysis of the fit [19]). As mentioned earlier, 

the initial t1/2 decrease, sensitive only to the net amount of restrictions, cannot reveal 

structural correlations. Therefore, the qualitative differences between the two disorder 

classes are not apparent in Fig. 3 — only the quantitative differences in S/V = 2/ā are seen in 

the slopes of the curves at small t.

To summarize, our experiments for the first time reveal the qualitative difference in the 

diffusive dynamics between samples with qualitatively different spatial statistics of structural 

fluctuations, justifying the application of the concept of universality to classical transport in 

disordered media, and validating the fundamental relation (1) between structural and 

dynamical exponents. The coefficients c and D∞ of equation (2) for the two SR samples are 

non-universal, and reflect the density of the barriers and their permeability (cf. 

Supplementary Materials [19]). However, the dynamical exponent ϑ remains the same, 

because the statistics of large-scale fluctuations for both samples A and B are governed by 

the central limit theorem (finite correlation length, a plateau in Γ(k)|k→0). On the other hand, 

based on the dynamical exponent ϑ, qualitative differences were revealed between the 

samples exhibiting short-range (A, B), and hyperuniform disorder (C) (where fluctuations 

are reduced [15, 16] relative to those governed by central limit theorem since Γ(k)|k→0 → 
0), verifying that diffusion can identify the structural universality class of the medium.
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After the seminal 1991 observation of diffusion diffraction [28] yielding the structure factor 

of water-filled identical confining pores, the late Paul T. Callaghan insightfully referred to 

diffusion as microscopy [3]. This q-space technique has enabled determination of the shape 

of regular confining structures with impermeable walls, such as pores of any shape [29]. The 

present investigation suggests that the time-dependent diffusion coefficient (2) reveals the 

parameter that microscopy does not provide — the elusive to the naked eye statistics of 

structural correlations, which are able to distinguish and characterize randomly looking, or 

disordered, and permeable samples such as those in Fig. 1c, using a low-resolution bulk 

transport measurement. As most building blocks of living tissues, such as cells and 

organelles, are not fully confining (cells have permeable walls; water can move along the 

dendrites and axons), we believe this fundamental result can serve as a basis for quantitative 

investigations of μm-level structural correlations in complex materials [6] and in live 

biological tissues [9–12] with diffusion NMR and MRI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. Structure and universality classes of the samples
a Representative optical microscopy image of the SR sample. b, AFM image of a single 

barrier. c, Digitized 1d cut-outs of the two SR samples (A–B) and HU sample C. d, Power 

spectrum (3) of the barrier density n(x) reveals qualitative differences between the disorder 

classes as k → 0: A plateau (p = 0) in Γ(k) for the SR samples (A–B), and kp scaling with p 
= 2 for HU sample (C).
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FIG. 2. Dynamical exponent (1) identifies the disorder classes
a, The tail in the cumulative diffusion coefficient D(t) (see text) distinguishes between SR 

and HU disorder, via exponent ϑ̃ = min {ϑ, 1} (Table I). Note that ϑ̃ ≡ ϑ ≈ 1/2 for both SR 

samples (made of barriers with different permeability), while ϑ̃ ≈ 1 for the HU sample, 

indicating that the “true” ϑ > 1. D(t) = const for unrestricted water is shown for comparison. 

b, To access ϑ for HU disorder, we obtain the tail in Dinst(t), equation (2). While results are 

noisier due to numerical differentiation, the exponent values ϑ ≈ 1/2 for SR and ϑ ≈ 3/2 for 

HU, cf. Table I, are consistent with equation (1).
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FIG. 3. Short timet1/2 decrease [25] of D(t)
Quantifying the net amount of restrictions, S/V = 2/ā; the difference in the large scale 

fluctuations is not revealed. The cumulative diffusion coefficient D(t) exhibits the t1/2 

decrease for t/τD ≪ 1.
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