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Abstract

Purpose—The aim of the 2016 quantitative susceptibility mapping (QSM) reconstruction 

challenge was to test the ability of various QSM algorithms to recover the underlying 

susceptibility from phase data faithfully.
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Methods—Gradient-echo images of a healthy volunteer acquired at 3 Tesla in a single orientation 

with 1.06 mm isotropic resolution. A reference susceptibility map was provided, which was 

computed using the susceptibility tensor imaging algorithm on data acquired at 12 head 

orientations.

Susceptibility maps calculated from the single orientation data were compared against the 

reference susceptibility map. Deviations were quantified using the following metrics: root mean 

squared error (RMSE), structure similarity index (SSIM), high-frequency error norm (HFEN), and 

the error in selected white and grey matter regions.

Results—Twenty-seven submissions were evaluated. Most of the best scoring approaches 

estimated the spatial frequency content in the ill-conditioned domain of the dipole kernel using 

compressed sensing strategies. The top ten maps in each category had similar error metrics but 

substantially different visual appearance.

Conclusion—Because QSM algorithms were optimized to minimize error metrics, the resulting 

susceptibility maps suffered from over-smoothing and conspicuity loss in fine features such as 

vessels. As such, the challenge highlighted the need for better numerical image quality criteria.

Keywords

Quantitative susceptibility mapping; reconstruction algorithms; dipole inversion; challenge; 
assessment

INTRODUCTION

Quantitative susceptibility mapping (QSM) aims to determine a basic physical property (i.e. 

tissue magnetic susceptibility) in vivo that is highly sensitive to tissue molecular 

composition and disease-induced tissue damage (1–5). QSM solves an inverse field-to-

source problem, calculating the underlying magnetic susceptibility distribution from 

gradient-echo (GRE) phase images. Early concepts for QSM have been introduced two 

decades ago (6–12) and more refined methods have been introduced recently to allow the 

calculation of susceptibility with reduced reconstruction artefacts from a single orientation 

in the clinical setting (13,14). The clinical value of QSM is currently being explored and 

holds great promise for vascular, inflammatory and neurodegenerative diseases of the brain 

(15–19). As such, the QSM field is rapidly developing, QSM is increasingly being used in 

clinical studies of neurological disorders, and applications outside the brain are being 

explored (20–24). The quantitative nature of the technique promises to provide biomarkers 

that allow the clinical monitoring of disease progression and treatment effects. However, 

especially considering the quantitative nature of QSM, clinical translation will require a 

thorough understanding of the reproducibility and accuracy of susceptibility measurements 

with QSM. Also, for a comparative assessment of QSM-based literature reports, it is 

important to understand how comparable susceptibility values are if they were reconstructed 

with different QSM algorithms.

A variety of algorithms has been developed for the numerical solution of the field-to-source 

inverse problem at the heart of QSM. However, although QSM is supposed to yield a 

physical tissue property, susceptibility maps calculated with different algorithms from the 
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same dataset can show substantial differences, as illustrated in a recent review by Wang and 

Liu (1). To systematically compare and quantitatively assess the many available algorithms, 

we implemented the first QSM reconstruction challenge in the context of the 4th 

International Workshop on MRI Phase Contrast and Quantitative Susceptibility Mapping, 

held from September 26th to 28th, 2016 at the Medical University of Graz, Austria 

(www.qsm2016.com). The primary goal of the challenge was to test the ability of various 

QSM algorithms to recover the underlying susceptibility distribution from a healthy 

volunteer’s phase data faithfully. The secondary goal was to provide a common reference 

dataset that would help benchmark not only existing QSM algorithms but also methods that 

would be developed in the future.

The challenge was announced at the Electro-Magnetic Tissue Properties (EMTP) (formerly 

SWI) study group meeting at the 2016 annual meeting of the International Society for 

Magnetic Resonance in Medicine (ISMRM) in Singapore on May 12th, 2016. Data and 

instructions could be downloaded from the workshop website (qsm.neuroimaging.at) 

starting from May 12th, 2016, and the deadline for a submission of reconstructed 

susceptibility maps was September 15th, 2016. The results of the evaluation of submitted 

maps were presented and discussed at the QSM workshop in Graz on September 27th, 2016. 

Additionally, the present report includes the input from the discussions in Graz and at the 

ISMRM EMTP study group meeting in Honolulu on April 26th, 2017.

METHODS

General considerations on input and reference data

In the literature, evaluation of susceptibility mapping algorithms is frequently performed 

using numerical phantoms (25,26) or acquired phantom data (27–29). Most physical 

phantoms used have consisted of compartments filled with solutions or gels of different 

magnetic susceptibilities, i.e. regions of piece-wise constant magnetic susceptibility. Such 

geometries allow a near-perfect recovery of the underlying susceptibility distribution using 

regularization of the inverse problem with total (generalized) variation (TV/TGV) or 

morphological priors because the piece-wise constant constraints and priors exactly match 

the actual susceptibility distribution. Using a physical phantom would, therefore, put these 

types of algorithms at a competitive advantage compared to other algorithm types. 

Moreover, a piece-wise constant susceptibility distribution is not a realistic model of 

magnetic susceptibility in the brain.

A limitation of numerical models is that contributions from sources other than isotropic bulk 

magnetic susceptibility such as chemical exchange effects (30), anisotropic susceptibility 

(31,32) and microstructure (33–36) are difficult to model because the magnitude of these 

effects in vivo is not yet completely understood. Furthermore, physiological noise, flow, and 

partial volume effects are difficult to model realistically.

To address the shortcomings of physical phantoms and numerical models, in this challenge 

we decided to use a human susceptibility map measured in vivo as a reference. Attempting 

to take magnetic susceptibility anisotropy into account, we employed the susceptibility 

tensor imaging (STI) approach (37) to determine the reference map. STI reconstructs the 
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susceptibility tensor distribution without any regularization or morphological priors. From 

the susceptibility tensor, it is possible to estimate the expected susceptibility distribution that 

would be measured with a single-angle susceptibility mapping technique. This effective 

susceptibility distribution was used as the reference susceptibility map in the challenge as 

described below.

We decided to provide the reference susceptibility map to the contestants to reduce the 

potentially negative impact of sub-optimal algorithm-specific parameter choices on the 

challenge outcome. The availability of the reference allowed the contestants to optimize 

algorithmic parameters properly and then submit the best scoring result they could achieve 

with their algorithm.

Selection of the reference

The candidates for gold standard susceptibility were either a COSMOS (27) susceptibility 

map, or χ33 from the STI solution (37). The benefits of these two maps as reference 

susceptibility distributions include i) they are calculated without numerical regularization 

and, therefore, no spatial smoothing or incorporated prior information, and ii) high signal-to-

noise ratio (SNR) since both maps are computed from joint processing of images acquired at 

12 orientations of the head with respect to B0.

COSMOS models susceptibility as a scalar, isotropic property, ignoring its orientation 

dependence. A COSMOS susceptibility map reflects the effective magnetic susceptibility 

averaged over all 12 orientations of the head. Therefore, we concluded that COSMOS 

susceptibility maps would not provide an accurate reference for single-angle susceptibility 

mapping with the head in the normal position, particularly in regions with anisotropic 

magnetic susceptibility, such as white matter. To mitigate this orientation bias, we chose χ33 

of the STI solution as the reference. Based on STI theory (37), the Fourier domain phase 

Θ(k), when the main field lies along H in the subject frame, is given by

[1]

where k is a vector of all Fourier domain coordinates and X is the susceptibility tensor in the 

subject frame and ()T denotes matrix transposition. When the acquisition is performed in the 

transverse plane relative to the subject coordinates, i.e. H = [0,0,1]T, the signal equation 

becomes

[2]

The relationship commonly used in single-orientation QSM assumes that the terms with the 

off-diagonal tensor elements, χ13 and χ23, are negligible:
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[3]

where D is the dipole kernel in the Fourier domain. Equation [3] motivates the use of χ33 as 

the reference susceptibility that gives rise to the observed phase signal.

Data and source code

MRI data were acquired in a healthy female volunteer (age 30) at a 3T system (Tim Trio, 

Siemens Healthcare GmbH, Erlangen, Germany) with Institutional Review Board approval 

from Massachusetts General Hospital.

The imaging data provided to the contestants as inputs for the susceptibility mapping 

included the following datasets:

• 3D gradient-echo magnitude and wrapped phase images acquired with axial slab 

orientation (and the head in the normal supine position).

• A magnetization-prepared rapid gradient-echo (MPRAGE) image (38) matching 

the GRE volume as it is routinely acquired in clinical brain imaging studies and 

certain QSM algorithms use this image as a prior information input.

• A background-field corrected tissue phase image. We used the Laplacian 

Boundary Value (LBV) method (39) after transmit phase removal by fitting and 

subtracting a 4th-order 3D–polynomial. LBV was used because it outperformed 

all other proposed background-field correction methods in a recent comparison 

study (40). This image was provided in an attempt to eliminate a potential 

variability in submitted susceptibility maps due to differences in background 

field removal techniques. However, as single-step QSM methods are designed to 

solve background-field removal and inversion problems simultaneously, those 

algorithms could use the unprocessed wrapped phase GRE images.

• A brain mask obtained from Brain Extraction Tool (41) was also provided to 

reduce confounding effects resulting from the use of different masks.

• The reference susceptibility map χ33 which was calculated using STI (37). The 

GRE phase images from each head orientation were affine-registered to the axial 

slab orientation (reference position), masked and the background fields removed 

as described for the single orientation case above. This local field information 

was then fed into an iterative LSQR solver (42) to estimate all components of the 

symmetric susceptibility tensor and provide the tensor element χ33 as reference 

susceptibility map.

3D GRE with Wave-CAIPI acquisition (43) was used to acquire images of the head with 

1.06 mm isotropic resolution in 12 different orientations with respect to B0 (the head 

orientation table can be found in the downloadable dataset). Further sequence parameters 

were TE / TR = 25 / 35 ms, BW = 100 Hz/pixel and a 94-s acquisition time for each head 

orientation with 15-fold acceleration using a Siemens 32 channel head coil. Roemer/SENSE 
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coil combination was employed (44,45), which used sensitivities estimated from reference 

acquisitions made with both, head and body coil reception. Wave-CAIPI is an accelerated 

acquisition/reconstruction technique that substantially reduces the scan time, which is 

especially useful for multi-orientation scans. Despite 15-fold acceleration, the average g-

factor penalty due to parallel imaging reconstruction was only 9%. Thus, aliasing artifacts or 

noise amplification are not expected to impact the resulting susceptibilities (43).

MPRAGE acquisition employed the same resolution and matrix size as 3D-GRE, and 

sampled 4 echoes using TE1 = 2.05 ms, echo spacing = 1.84 ms, TR = 2510 ms, inversion 

time (TI) = 1200 ms, BW = 651 Hz/pixel and flip angle = 7°. The acquisition took 5 min 39 

s using 2-fold GRAPPA acceleration (46). The magnitude images at all 4 echo times were 

combined by computing the root-sum-of-squares (47), and the combined magnitude image 

was provided to the participants.

In addition to the imaging data, MATLAB (The MathWorks, Natick, MA) source code was 

provided for the numerical evaluation of the data set according to the error metrics described 

in detail below. This code allowed the contestants to focus on optimizing their algorithmic 

parameters without spending time writing scripts for the calculation of error metrics. The 

source code also included the widely utilized fast QSM reconstructions, thresholded k-space 

division (TKD) (28) and a closed-form L2-regularized algorithm (48) to provide contestants 

with a direct performance comparison to these algorithms.

The images and the Matlab code for the QSM reconstruction challenge will remain available 

at http://qsm.neuroimaging.at. In addition to the data provided at the time of the challenge 

and described above, the archive currently also contains the GRE data magnitude and phase 

data acquired in all 12 orientations. The images provided are shown in Figure 1.

Numerical measures of QSM reconstruction quality

We employed quantitative error metrics to evaluate the difference between the reference 

susceptibility map and the submitted susceptibility maps. As well as the root mean squared 

error (RMSE), which is commonly used in the literature, we employed three additional error 

measures, which are often utilized in the fields of computer vision and image reconstruction:

• The high-frequency error norm (HFEN) (49), which aims to measure the fidelity 

at high spatial frequencies. HFEN applies a Laplacian of a Gaussian (LoG) filter 

on the reference and input volumes and reports the L2 norm of their difference, 

normalized by the norm of the LoG-filtered reference.

• The structural similarity index (SSIM) (50), which is a combined measure 

obtained from three complementary components (luminance similarity, contrast 

similarity, and structural similarity). SSIM aims to provide a metric that better 

reflects the “visual” similarity to the reference.

• The absolute value of the mean error in selected anatomical structures (ROI 

error). To this end, we manually defined ROIs in white matter (genu and 

splenium of corpus callosum, frontal white matter, occipital white matter, 

capsula interna) and grey matter nuclei (globus pallidus, putamen, caudate 
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nucleus, red nucleus, substantia nigra, and dentate nucleus) on the reference 

susceptibility map, χ33.

These error metrics were calculated for each submitted map. For RMSE, HFEN and ROI 

error, smaller values denote better performance, whereas SSIM is normalized between 0 and 

1, with 1 being the best possible result. The implementation of these error metrics was 

provided to the contestants as Matlab source code together with the downloadable image 

data set.

Our current challenge format did not include a comparison of the reconstruction speed of the 

different algorithms as the QSM images were processed on the individual computers of the 

respective research groups, using different development environments (e.g. Matlab, Python, 

C++, CUDA).

All susceptibility values are reported as ppm in the following.

RESULTS

Brief description of the algorithms used by the contestants

Overall, 27 susceptibility maps from 13 groups were evaluated. The algorithms either used 

the provided pre-processed (background removed) phase or the raw, wrapped phase. Several 

algorithms used the GRE magnitude for stabilization of the dipole inversion, and one 

approach (PHILIPS DTV) also utilized the MPRAGE images.

The algorithms are briefly described in table 1 and images of a single central transverse slice 

of all algorithms are shown in figure 2.

Numerical results – “Winners”

Table 2 shows the results of the top ranked algorithms in each evaluation category. When all 

submissions were evaluated, RMSE ranged from 69.0 to 140.9 (median = 83.9), HFEN from 

63.5 to 127.3 (median = 75.9), SSIM from 0.94 to 0.63 (median = 0.82) and ROI ERROR 

from 0.016 to 0.039 ppm (median = 0.020).The winning QSM reconstructions are also 

depicted in detail in figure 3.

Winning Approach- RMSE

The winner in the RMSE category was the approach developed by Alexander Rauscher’s 

team at the University of British Columbia, Canada. This algorithm used a weighted variant 

of a two-step dipole inversion algorithm (51). It adopts an incremental dipole inversion 

strategy (52–54), dividing the Fourier domain into well-conditioned and ill-conditioned 

regions. In the first step, the well-conditioned region is reconstructed by solving ϕ = F−1DF 
χwell using an LSMR solver (55), where ϕ is the local field is spatial space, F is the forward 

Fourier transform and F−1 is the inverse Fourier transform. In order to avoid streaking 

artifacts the implicit regularization properties of Krylov subspace methods (56) are used by 

terminating the iterative process after only 5 iterations.

Langkammer et al. Page 7

Magn Reson Med. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To reconstruct the ill-conditioned region, a weighted total variation minimization problem 

was solved:

[4]

where M = F−1 (|D| > δ)F is a sampling matrix taking the value 1 in the well-conditioned 

region and 0 in the ill-conditioned region according to a threshold δ applied to |D|, μ is the 

regularization parameter, ‖χ‖WTV = Σ W |∇χ| is the weighted anisotropic total variation, and 

W = 1/(|∇χwell| + 10−6) is a weighting matrix derived from the gradient (∇) of the well-

conditioned susceptibility map (χwell) reconstructed in step 1. The minimization was solved 

using the alternating direction method of multipliers (ADMM) (57). The parameters used 

were μ = 6 · 104 and δ = 0.197. The reconstruction time was 5.7 seconds.

Winning Approach- HFEN and SSIM

The SFCR2 algorithm developed by Xu Li’s team at Johns Hopkins University, Maryland, 

USA, was the winner in both HFEN and SSIM categories. The SFCR2 result was obtained 

by using a two-step structural feature based collaborative reconstruction (SFCR) algorithm 

(58). In the first step, an interim susceptibility map χ̂ was reconstructed by using a 

compressed sensing (CS) model in the Fourier domain with two regularization constraints:

[5]

where the structural prior Pmag was derived by thresholding the gradient amplitude of the 

magnitude image with 30% voxels considered as edges for L1 regularization (in Pmag edges 

were set to 0 and regions with no edges to 1). The fidelity mask R for the L2 regularization 

was generated by combining masks obtained via thresholding a preliminary QSM map χk(k) 

calculated with TKD and its gradient (similar to Fig. 4 in (58), with thresholds of 0.04 ppm 

for QSM and 0.1 for its gradient norm square). M is a binary mask indicating the well-

conditioned region in the Fourier domain, i.e. M = |D| > δ where δ is a threshold on the 

dipole kernel in the Fourier domain. Parameters chosen for this step were δ = 0.19, λ1 = 50 

and λ2 and processing was terminated after three iterations. The final susceptibility map was 

then fitted in the spatial domain using weighted minimization:

[6]

where the structural prior Pχ̂ was extracted from the interim susceptibility map χ̂ (the 

solution of Eq. 5) with similar 30% edge voxels, W = 1/|ϕ|1/3 is a weighting matrix 

calculated from the local field ϕ and the same fidelity mask R as in the first step was used. 

Regularization parameters chosen for this step were γ1 = 50 and γ2 = 1, and iterative 

processes were terminated after 2 iterations.
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Winning Approach- ROI accuracy

The winner in this category was the morphology-adaptive total variation (MATV) algorithm 

developed by Yanqiu Feng’s team from Southern Medical University, Guangzhou, China. 

This algorithm first classifies the imaging target into smooth and non-smooth regions by 

thresholding the magnitude gradient map (59). In the dipole inversion, the regularization 

weights are adapted according to local morphological information: voxels in smooth regions 

are assigned larger TV regularization weights than in non-smooth regions. The QSM 

reconstruction via the MATV algorithm can be formulated as follows:

[7]

where W is a data weighting matrix to compensate the measured field noise (60) and α and 

β are the regularization parameters. The regularization parameters used were α = 0.003, β = 
0.0009.

Given only a marginal difference to the above described approach, we would like to 

acknowledge also the Primal-Dual and Forward Gradient Implementation (PD) algorithm 

developed by Yi Wang’s team from Cornell University, New York, USA (61).

DISCUSSION

The QSM 2016 reconstruction challenge established a framework for the numerical 

comparison of QSM algorithms. We limited the challenge to a single data set that matched 

conventional clinical acquisitions closely with respect to the resolution, readout bandwidth, 

echo time and coverage. In the following, we summarize the results, discuss the limitations 

of the design of the challenge, and highlight the lessons learned.

Summary of results

The SFCR2 algorithm won in two categories, SSIM and HFEN, and finished second in the 

RMSE ranking. The other winners, regarding RMSE and ROI accuracy, were the algorithms 

from UBC and SMU. The top three algorithms in the RMSE ranking relied on 

reconstruction approaches known from compressed sensing (CS) MRI. As opposed to 

regularized inversion, where the entire Fourier domain is affected by regularization, in CS-

approaches only the ill-conditioned Fourier sub-domain of the susceptibility map is 

estimated by minimizing a sparsity enforcing metric. This limitation to only a sub-space of 

the Fourier domain was probably the key for allowing these top-ranking approaches to 

produce the best reconstruction accuracies. However, also these winning maps were not 

ideal from a visual or radiological point of view, suffering from over-smoothing, and 

conspicuity loss in fine structures (Figures 2 and 3). CS techniques employed in accelerated 

MR data acquisition exploit incoherent aliasing artifacts arising from pseudo-random under-

sampling of the k-space (62). The dipole artifacts in QSM reconstruction, however, appear 

more structured due to under-sampling only near the magic angle in the Fourier domain. 

Although the incoherent aliasing prerequisite for CS was fully not met, we think that these 

strategies performed well due to two main reasons:
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i. Since the missing content in the ill-conditioned region is a relatively small 

portion (e.g. 20–30%) of the Fourier domain, its estimation is easier, and 

potential blurring artifacts mainly impact this conical region, while the majority 

of the Fourier spectrum of the susceptibility cannot be altered to minimize the 

employed sparsity or smoothness metric (54).

ii. CS methods involving wavelet penalties do enjoy partial incoherence since the 

undersampling artifacts are distributed across the wavelet scales. The 

incoherence in both Total Variation and wavelet domains can be further improved 

by randomly under-sampling the ill-conditioned region (54).

Despite these points, CS methods are not necessarily immune to over-smoothing if they 

allow a reduction of the data consistency with a large regularization parameter. In this case, 

the data consistency becomes less important than the prior information, i.e. well-conditioned 

frequency content is no longer kept intact in favor of matching the CS constraint.

TKD and CFL2 solutions were provided as benchmark algorithms. The performance metrics 

RMSE / HFEN / SSIM for these algorithms were: 86.5 / 82.0 / 0.77 for TKD and 81.2 / 

75.5 / 0.81 for CFL2. The winning algorithms had metrics: 69.0 / 63.5 / 0.94, corresponding 

to an improvement of 18% in RMSE, 19% in HFEN and 16% in SSIM over CFL2. The 

improvement in ROI accuracy was smaller, CFL2 ranked seventh in this category. We 

conclude that if the average susceptibilities inside specific grey and white matter ROIs are 

desired, a method as simple as CFL2 may provide sufficient accuracy. The submitted 

algorithms, however, provided a marked improvement in artifact mitigation and retention of 

high frequency features relative to the CFL2 benchmark.

In the last few years, several research groups have proposed single-step QSM algorithms, 

which estimate the underlying susceptibility directly from the raw phase without separate 

interim phase processing. Despite the fact that a very specific phase filtering pipeline (LBV 

+ polynomial fitting) was applied to create the reference susceptibility maps, the single-step 

algorithms were capable of providing competitive results despite the processing pipeline bias 

for multi-step approaches in this challenge.

Among the submissions, one approach employed parallel computing on GPU hardware for 

rapid dipole inversion (CHICAGO TGV). Despite solving the same underlying 

mathematical problem as other TGV based methods, this has yielded different performance 

metrics due to (i) using different regularization parameters and a different number of 

iterations, (ii) different implementations of the mathematical libraries and (iii) double 

precision (CPU) versus single precision (GPU) computation also has a substantial impact on 

iterative methods as any numerical differences accumulate.

However, the main discussion points of this reconstruction challenge were the identification 

of performance metrics that would be representative of susceptibility image quality and the 

selection of reference susceptibility maps.
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How representative are RMSE, HFEN, and SSIM of susceptibility map quality?

All three measures are global error metrics aiming to summarize the mismatch against a 

reference image in a single number. We intentionally allowed the contestants to optimize for 

low RMSE by extensive parameter search. Although the algorithm applied for the post-

challenge experiments shown in Figure 4 yielded highly over-regularized smooth QSM 

images, the resulting RMSE was only approximately 10% higher than that of the winning 

algorithm. RMSE is a simple global error metric and is usually not a reliable indicator of 

visual quality or over-smoothing by itself. Recognizing this, we added HFEN and SSIM to 

create a multi-dimensional performance vector that would allow us to probe differences 

between image features. However, the limited visual quality of the submitted susceptibility 

maps leads us to the conclusion that it will be important to find better metrics for the 

evaluation of susceptibility map quality.

The reason why we provided the reference susceptibility map was to ensure that each 

algorithm produced the best scoring susceptibility map for the given metrics. However, a 

major outcome of this challenge turned out to be that the chosen numerical metrics, which 

are intensively applied in computer vision research, were problematic because they favored 

over-smoothing of the reconstructed susceptibility maps. Over-regularization was 

consistently observed as a strategy to improve all error metrics, leading to an unexpected 

visual appearance of the susceptibility maps that differs from the typical appearance of the 

maps known from the literature.

Further insights on this issue could be gained by comparing the three fidelity metrics 

(RMSE, HFEN, and SSIM) and quantitative accuracy inside regions of interest (ROI error). 

The simple CFL2 method ranked 3rd in ROI accuracy, while not making it into the top 10 in 

any of the fidelity metrics. Despite performing well when average values were considered 

inside ROIs, its image quality suffered from streaking and blurring artifacts, which were 

better captured by RMSE, HFEN, and SSIM metrics. However, it is more difficult to gain 

insights from a comparison between the three fidelity metrics. RMSE, HFEN, and SSIM 

aimed to capture overall error, high-frequency deviation, and “visual” fidelity, respectively.

In future evaluations, some limitations of the metrics could be mitigated by incorporating 

experts’ visual rating of the submitted susceptibility maps. A potential way to amend the 

RMSE metric could be to compare the gradients of the susceptibility map against those in 

the reference map via . The metric ∇RMSE 
may provide a more direct measure of the fidelity of high frequency components, and could 

complement the existing metrics and the visual rating.

However, while optimization in respect to certain quality measures will require further 

systematic investigations, the degree of regularization should be also chosen according to the 

subsequent usage of the QSM images depending whether this is anatomical ROI evaluation, 

voxel-based analysis or visual inspection by radiologists.
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Selection of the reference susceptibility map

We selected χ33 instead of the COSMOS solution as standard reference to eliminate the 

potential orientation bias in the latter susceptibility map. However, this required the 

assumption that phase contributions from the off-diagonal tensor terms χ13 and χ23 in the 

transverse plane are negligible. As demonstrated in Figure 1, these contributions are non-

negligible because the tensor elements can have about 70% amplitude relative to χ33.

One potential way to combine the strengths of both reference map candidates in future 

challenges would be to mask out the anisotropic regions in the COSMOS map. Such an 

anisotropy mask could be obtained by thresholding the STI anisotropy defined as χmsa = λ1 

− (λ2 + λ3)/2 where λi are the susceptibility tensor eigenvalues. This mask could be refined 

using a white matter segmentation.

Also related to limitations of the employed reference, there is clear evidence that the 

microstructural compartmentalization of magnetic susceptibility in white matter and its 

water distribution has a significant impact on the observed phase images (33–36). These 

effects are not accounted for by either COSMOS, STI or any of the single orientation 

reconstruction methods, yielding an error in susceptibility values in fiber bundles (33) that is 

difficult to estimate. As white matter represents a relatively large brain volume fraction, both 

WM measurements and whole brain metrics will be affected by these microstructural effects, 

and a particular regularization might inadvertently improve the metrics without resulting in a 

more accurate or precise reconstruction.

In summary, the existence of phase contrast related to off-diagonal tensor elements poses the 

question of what is the perfect susceptibility map reconstructed from a single-angle phase 

image? The presence of non-susceptibility contrast mechanisms including chemical 

exchange-induced frequency shifts (30), which are currently not accounted for by multi-

orientation QSM algorithms poses the question of how we can measure the gold standard in-
vivo susceptibility map. Both seem to be open questions in our field.

Lessons learned from the first QSM reconstruction challenge

We are fully determined to push forward, improve and extend this research endeavor based 

on lessons learned from this initial challenge. In particular, the feedback from members of 

the QSM community who attended the Graz Workshop and the EMTP study group meeting 

at the ISMRM 2017 was encouraging to proceed with an evaluation of the various 

algorithmic approaches to better understand the potential and limitations of QSM. The main 

suggestions and recommendations addressed the limitations of the performance metrics for 

evaluation of the submitted susceptibility maps and the choice of the reference map. We list 

the conclusions from the various discussions in the following:

I. Instead of relying entirely on error metrics, it would be informative for 

experienced radiologists and QSM experts to perform a visual assessment of 

submitted susceptibility maps.

II. The challenge could be divided into two parts, where the first part would assess 

the quantitative accuracy with respect to a known ground truth. To this end, the 

challenge could comprise phase data obtained using the forward model (11) on a 
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realistic numerical brain phantom derived from STI or COSMOS susceptibility 

maps. The data could be made more realistic by adding noise, partial volume 

artifacts and contributions from anisotropic susceptibility sources. The second 

part would involve in-vivo patient data and aim to assess the robustness of the 

methods in a clinical scenario, in the potential presence of motion, blooming and 

signal dropout artifacts. For parameter tuning, a COSMOS reference from a 

healthy control could be provided.

III. Reference and submitted susceptibility maps could be compared on a per-voxel 

basis by assessing one-dimensional profiles or correlation coefficients.

IV. A better in-vivo reference map could be created by incorporating the contribution 

of χ13 and χ23 into the field map provided to the contestants (transverse 

orientation). A potential way of implementing this could be by rearranging the 

STI relation in the transverse plane as follows:

[8]

now defining ,

[9]

[10]

Equation 10 suggests that a new ground truth susceptibility could be created by 

χnew ≜ χ33 + χ̃ and that the input local field data could be amended by 

. A numerical challenge in computing χ̃ would be the division by 

kz for the plane of frequencies where kz = 0. To address this, we can interpret 

division by kz as integration along z in image-space, and multiplication by kx (or 

ky) as differentiation along x (or y) axes (1). In a discrete implementation, 

integration would correspond to summation over z indices and differentiation 

would be the difference between neighboring voxels along x (or y) axes.

V. Include the computational efficiency as additional information or a separate 

category, which would require access to a single evaluation computer for all 

contestants on which the processing time of all algorithms could be accurately 

determined and compared.
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VI. The data consistency could be used as an additional metric. To this end, one 

could use the submitted susceptibility maps in a forward field simulation (11) 

and compare the resulting phase against the measured phase.

VII. Susceptibility maps should be compensated for the known systematic 

underestimation before quality metrics are calculated. This approach would 

avoid underestimation resulting in poor metrics despite the reconstruction being 

of otherwise high quality.

VIII. The susceptibility could be evaluated exclusively in deep grey matter structures 

where QSM is more likely to be correct given the absence of highly anisotropic 

fiber bundles.

IX. The mutual information, cross correlation and ∇RMSE between the reference 

and submitted maps could be included as additional quality metrics.

X. Multi-echo phase data could be provided to allow field maps to be derived by 

fitting the phase over echo times (63–65).

Most of these suggestions are feasible but may require additional data processing and 

acquisition. We have already updated the downloadable data set to include the magnitude 

and phase data from all 12 directions. This dataset could facilitate extensions such as an STI 

challenge, or future research towards computation of a better reference map. Since this 

dataset includes χ33 and χCOSMOS as well as all components of the susceptibility tensor, 

future publications on new algorithms may report performance metrics relative to any of 

these.

Another interesting avenue to explore could be issuing sub-challenges with clinical data 

from populations with different diseases. Such a challenge would be an excellent 

opportunity to test the robustness of the algorithms in the clinical setting, and performance 

evaluation would benefit from the experience of neuro-radiologists. However, the lack of a 

true gold standard reference renders the quantitative assessment of susceptibility maps 

beyond the description of apparent artifacts difficult.

In conclusion, the substantive differences between the various submitted susceptibility maps 

highlight a critical limitation of current regularized QSM techniques: the appearance of the 

resulting susceptibility maps depends strongly on the algorithm used and the associated 

parameter choices. Hence, a direct comparison of results from studies employing different 

QSM algorithms and parameters is challenging. Consequently, in the EMTP study group 

meeting at the ISMRM 2017 it was decided consensually, that another challenge will be 

designed based on the lessons learned from the present challenge.
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Figure 1. 
Image data provided to the contestants. The susceptibility maps are scaled from −0.1 to 0.25 

ppm, the raw phase is scaled between ±π radians and the LBV-phase image is scaled from 

−0.05 to 0.05 radians. With the exception of χ33, the reconstructed susceptibility tensor 

component images were not provided for the reconstruction challenge, but are now included 

in the downloadable data set (marked here with asterisks).
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Figure 2. 
A single transverse slice from all QSM reconstructions submitted for the challenge. QSM 

images are scaled from −0.1 to 0.25 ppm.
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Figure 3. 
Sagittal, coronal and axial slices of QSM reconstructions of the winners in each category: 

RMSE (UBC), HFEN and SSIM respectively (SFCR2), and ROI error (MATV). QSM 

images are scaled from −0.1 to 0.25 ppm.
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Figure 4. 
QSM algorithms were optimized to minimize error metrics in this challenge. This figure 

shows results of the GRAZ TGV algorithm with varying regularization parameter α0. While 

the QSM image with α0 = 0.004 (right) suffered from over-smoothing and conspicuity loss 

in fine features such as vessels and the cortex, the RMSE was better than for the normally 

utilized α0 = 0.0005 (left). QSM images are scaled from −0.1 to 0.25 ppm.
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Table 1

Brief description of all QSM algorithms participating in the reconstruction challenge

Name Description Input Phase RAW/LBV*

TKD (provided) Truncated K-space Division (28) with zeroes at the ill-conditioned regions (cone) in k-
space, threshold = 0.19.

LBV

CFL2 (provided) Closed-form L2-regularized inversion (48). LBV

MARTINOS WTV Compressed Sensing compensated QSM (54), accelerated reconstruction using ADMM 
optimization.

LBV

GRAZ TGV Total generalized variation (TGV) based method incorporating phase unwrapping, 
background field removal and dipole inversion in a single iteration (66).

RAW

GRAZ TGV L1 Total generalized variation (TGV) based method (66) with additional L1 magnitude 
stabilization.

RAW

JENA HEIDI Hybrid algorithm that solves three sub-domains of k-space using different approaches, 
depending on the conditioning. The well-conditioned k-space was solved using 
unregularized LSQR, the critical part of the k-space was recovered by solving a 
weighted Total Variation Problem with priors derived from phase images, the transition 
area was derived from the LSQR solution using denoising (53). Parameters defining the 
three sub-domains were chosen to obtain optimal error measures relative to the gold 
standard.

LBV

JENA SDI TKD algorithm with extreme thresholding of the dipole kernel and underestimation 
compensation based on the deconvolution point-spread function (67).

LBV

UCL TKD 1

TKD as in (14,67) i.e. without zeroes inside the k-space cone. A threshold of 
was used with no correction for χ underestimation.

LBV

UCL TIK Closed-form Tikhonov inversion as alluded to in (68) and mentioned in (1) as a 
Tikhonov-regularized minimal norm solution. 1 had α = 0.0588 and no correction for χ 
underestimation. 2 had α = 0.0588 and correction for χ underestimation with a factor 
of 1.65. 4 had α =0.025 and correction for χ underestimation with a factor of 1.30.

LBV

JHU-XMU SFCRKDN Based on the SFCR QSM paper in (58), simplified the L2 regularization terms in M-
step and S-step, added de-noising operation, k-space based L1 solver and HEIDI like k-
space combination.

LBV

JHU-XMU SFCR2 Based on the SFCR QSM paper in (58), L1 and L2 regularized two-step reconstruction 
with regularization a priori extracted from magnitude and interim susceptibility maps – 
see winning approach in categories HFEN and SSIM.

LBV

CHILE TGV L2 Magnitude weighted TGV. Uses an L2 data fidelity term, spatially weighted by the 
square of the magnitude. First order approximation of the non-linear term (69).

LBV

CHILE TGV NL Non-linear TGV result. It uses a non-linear data fidelity term, similar to Liu's nonlinear 
MEDI but with a fast solver with alternating direction method of multipliers (ADMM) 
and a mixture of a global and local solvers to deal with the nonlinear equation.

LBV

CHILE NLD Discretization of the dipole kernel based on (70). It uses finite differences and the DFT 
to achieve an analytical solution in the Fourier domain.

LBV

CHILE NLG Dipole kernel defined in space by the Green’s function, integrating it for each voxel 
(71).

LBV

CHICAGO TGV Algorithm based on the TGV QSM method (66), implemented on GPU-hardware 
(CUDA 7.5, NVIDIA GeForce GTX 980TI).

RAW

BERKELEY STAR Streaking artifacts Reduction (STAR) via isolating and calculating strong susceptibility 
sources automatically, then large and small susceptibility values were reconstructed 
using a two-level TV regularization approach (72).

LBV

VANC UBC LSMR solver (55) followed by weighted compressed sensing minimization – see 
winning approach in category RMSE.

LBV

IBR ITSWIM Variable regularization threshold for inverse process / k-space improvement with a 
binary mask including the deep grey matter nuclei and veins used in the iterative 
algorithm (73).

LBV
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Name Description Input Phase RAW/LBV*

SMU MATV Morphology-Adaptive Total Variation (MATV) separates target susceptibility into 
smooth and non-smooth regions, where the latter are assigned smaller TV weights than 
smooth regions during dipole inversion (59) – see winning approach in the ROI 
accuracy category.

LBV

SMU MTKD Truncated k-space division (TKD) with morphological priors (MTKD). The target 
susceptibility map is separated into smooth and non-smooth regions by exploiting 
morphological information. The gradient of the target susceptibility map is forced to be 
zero in the smooth regions, and to be the gradient of TKD-reconstructed susceptibility 
map in the non-smooth regions (74).

LBV

NY MEDI Morphology Enabled Dipole Inversion (MEDI) method using a Bayesian regularization 
approach that adds spatial priors from the magnitude image (13,25).

LBV

NY PD Solving the objective of MEDI using the Primal-Dual (PD) formulation of the total 
variation and a forward difference method for discretization (61).

LBV

NY TFI The Total Field Inversion (TFI) method simultaneously estimates the background and 
local fields, preventing error propagation from background field removal to QSM (75).

RAW

PHILIPS DTV Single-step QSM starting from wrapped raw phase using Directional Total-Variation 
with MPRAGE as a prior for estimating edges (76).

RAW

*
RAW = raw phase (for single step algorithms), LBV = LBV preprocessed phase.
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