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Abstract

Factors that contribute to the onset of atherosclerosis may be elucidated by bioinformatic 

techniques applied to multiple sources of genomic and proteomic data. The results of genome 

wide association studies, such as the CardioGramPlusC4D study, expression data, such as that 

available from expression quantitative trait loci (eQTL) databases, along with protein interaction 

and pathway data available in Ingenuity Pathway Analysis (IPA), constitute a substantial set of 

data amenable to bioinformatics analysis. This study used bioinformatic analyses of recent 

genome wide association data to identify a seed set of genes likely associated with atherosclerosis. 

The set was expanded to include protein interaction candidates to create a network of proteins 

possibly influencing the onset and progression of atherosclerosis. Local average connectivity 

(LAC), eigenvector centrality, and betweenness metrics were calculated for the interaction network 

to identify top gene and protein candidates for a better understanding of the atherosclerotic disease 

process. The top ranking genes included some known to be involved with cardiovascular disease 
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(APOA1, APOA5, APOB, APOC1, APOC2, APOE, CDKN1A, CXCL12, SCARB1, SMARCA4 
and TERT), and others that are less obvious and require further investigation (TP53, MYC, 
PPARG, YWHAQ, RB1, AR, ESR1, EGFR, UBC and YWHAZ). Collectively these data help 

define a more focused set of genes that likely play a pivotal role in the pathogenesis of 

atherosclerosis and are therefore natural targets for novel therapeutic interventions.
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Introduction

Atherosclerosis is a multifactorial disease with a strong genetic component. Genome wide 

association studies for coronary artery disease (CAD) related phenotypes have identified at 

least 56 susceptibility loci at genome wide significance 1;2, and a study into the role of low-

frequency (frequency 1% – 5%) and rare (frequency < 1%) DNA sequence variants in early 

onset myocardial infarction (MI) identified additional candidate genes 3. Investigation of 

proteins encoded by genes in close proximity to the susceptibility loci or implicated in the 

analysis of rare variants may lead to an enhanced understanding of the molecular 

mechanisms of atherosclerosis, and thereby facilitate the identification of novel candidates 

for targeted therapeutic interventions.

As part of the Genomic and Proteomic Architecture of Atherosclerosis (GPAA) project, we 

plan to utilize sensitive and highly accurate targeted mass spectrometry to quantify and 

thereby validate proteins identified as putative pathogenic candidates driving coronary artery 

disease. Multiple reaction monitoring (MRM) experiments will be performed on arterial 

tissue samples from individuals with and without extensive premature atherosclerosis 

collected as part of the Pathobiological Determinants of Atherosclerosis in Youth (PDAY) 

study 4. The PDAY study measured the extent and prevalence of atherosclerosis in 2,876 

subjects between the ages of 15 and 34 who died of non-cardiac related causes. In order to 

utilize this precious resource to its full potential, we must first identify candidate proteins for 

assay development, and we seek to identify these candidates by combining discovery 

proteomics with bioinformatic data mining of network and pathway analysis of SNPS and 

genes associated with coronary disease from previous GWAS and rare variant association 

studies. Our goal is to expand the list of candidate proteins beyond the handful of well-

known atherosclerosis proteins to include additional and novel proteins that represent the 

full spectrum of pathogenic molecular events underlying atherosclerosis development. 

Within the context of the GPAA project, the purpose of the current analysis is to identify 

relevant proteins, encoded by genes near susceptibility loci, to define an expanded set of 

candidate proteins hypothesized to contribute to the onset or development of atherosclerosis.

Graph theory and pathway analysis of protein interactions has proven useful for identifying 

essential proteins in complex protein networks 5;6 and elucidating physiologic mechanisms 

for complex traits, such as familial combined hyperlipidemia 7. Likewise, epigenetic feature 

analysis, based on publically available Encyclopedia of DNA Elements (ENCODE) data 8, 
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has the potential to identify regulatory regions of the genome controlling expression of 

members of such networks, and the likelihood that SNPs in these regions are involved in this 

regulation. In this work, we used the results of genome wide association studies 2 and gene 

regulation data to identify a seed set of CAD associated genes. We then constructed the gene 

interaction network using Ingenuity Pathway Analysis (IPA; Ingenuity Systems, Redwood 

City, CA) to include other genes that interact with the seed set. We performed the network 

analysis to identify key gene nodes in the interaction network. To complement similar 

analyses that have been performed previously 2;9;10, we focused on two network properties 

in particular: centrality and betweenness 6. Betweenness is a measure of the number of 

shortest paths in a network that pass through the node; this is an indication of the importance 

that node has in connecting subnetworks within the network. Centrality can be measured in 

several ways; we used eigenvector centrality, which measures importance of a node as a 

function of that node’s links to other important nodes 11;12. We hypothesized that gene 

nodes with high betweenness scores may be links between functional modules, whereas 

gene nodes with high centrality scores may participate in multiple functional modules. 

Changes in the functioning of these high scoring gene nodes may disrupt functional modules 

and ultimately effect variability in phenotypes. In addition, we used the local average 

connectivity based method, LAC, for identifying essential proteins from the network level 

13. LAC determines a protein’s essentiality by evaluating the relationship between a protein 

and its neighbors. LAC has been applied to predict the essentiality of proteins in yeast 

protein interaction networks and has been shown to outperform Eigenvector Centrality, 

Betweenness Centrality, Closeness Centrality, Bottle Neck, Information Centrality, 

Neighborhood Component, and Subgraph Centrality for identifying yeast essential proteins 

based on the different validations of sensitivity, specificity, and accuracy 13. However, the 

LAC method has not yet been applied to cardiovascular disease gene network analysis. In 

this study, we applied LAC in combination with the two commonly used network analysis 

methods, eigenvalue centrality and betweenness, to identify top gene candidates that are 

potentially playing key roles in the atherosclerosis disease network.

Materials and Methods

Selection and Curation of CAD Associated Genes. We included the genes assigned to the 

SNPs in the original CARDIoGRAM publication (“positional candidates”), as well as any 

genes linked to these SNPs in previously published expression quantitative trait loci (eQTL) 

analyses. The initial set of target genes was based on 162 unique SNPs identified by the 

CARDIoGRAM GWAS meta-analysis 2. These included the “known CAD susceptibility 

loci” (Table 1 in Deloukas et al, 2013 2), “Additional loci showing genome-wide significant 

association with CAD” (Table 2 in Deloukas et al, 2013 2), and “SNPs at an FDR≤5% and 

LD threshold of r2 < 0.2 used in estimating heritability” (Supplementary Table 9 in Deloukas 

et al, 2013 2). To identify potential eQTLs, we first expanded the list of 162 candidate SNPs 

using linkage disequilibrium (LD) to identify proxy SNPs. LD was determined with the 

Broad Institute’s SNP Annotation and Proxy (SNAP) search tool (http://

archive.broadinstitute.org/mpg/snap) using an r2 > 0.8 in either the 1000 Genomes or 

HapMap data sets, based on the CEU population, within 500kb. All SNPs within the LD 

regions, including the original SNPs, were searched for eQTLs using the University of 
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Chicago eQTL browser (eqtl.uchicago.edu), which contains data from 17 published studies. 

For each candidate SNP, the eQTLs with the highest score (−log10 p-value) are shown along 

with the proxy SNP (Supplemental Table S1).

Construction of Gene Interaction Networks. The selected CAD associated genes from above 

were used as the initial set of genes to construct gene interaction networks using IPA. IPA 

constructs networks based on extensive molecular interaction records maintained in the 

Ingenuity Pathways Knowledge Base (IPKB)14;15. IPKB is the largest curated database of 

biological networks, created from millions of relationships between genes and gene 

products. Given a list of genes/proteins, IPA can identify a set of relevant networks that these 

genes/proteins are involved in. IPA can merge the smaller networks into larger ones by using 

linker genes/proteins (common genes/proteins shared by the smaller networks). In this study, 

the larger merged network was used for the centrality and betweenness analysis to identify 

the key players in the network.

The experimentally observed relationships, such as protein-protein interactions, protein-

DNA interactions, protein-RNA interactions, co-expression, translocation, activation, 

inhibition, molecular cleavage, membership, and phosphorylation were used to bring in 

other interacting molecules from the Ingenuity Knowledge Base to the network, and the 

additional molecules were used to specifically connect two or more smaller networks by 

merging them into a larger one. The resulting multiple networks were then merged into one 

network. The following parameters were used in the network construction: 1) All genes and 

chemicals in the Ingenuity Knowledge Base were used as the reference set and the species 

was set to human; 2) Only the direct relationships were considered; 3) The confidence level 

was set to be “Experimentally Observed” to retrieve the relationships that have been 

experimentally observed; 4) The number of molecules per network and the number of 

networks were set to the maximum allowed, 140 and 25, respectively.

Gene Interaction Network Analysis. Network analysis was performed using Cytoscape 

(www.cytoscape.org, version 3.1.1) and the CytoNCA plugin 16. Local average connectivity 

(LAC), eigenvector centrality and betweenness scores were calculated for each gene in the 

gene interaction network using CytoNCA. The direction of the edges is not considered in the 

network analysis. Parallel edges between two gene nodes represent different types of 

relationships that were observed between those two nodes. To reduce redundancy, these 

parallel edges and self-loops were removed in the network analysis.

Pathway Analysis Methods. Candidate genes selected from the network analysis were again 

analyzed with IPA for biological functions, cellular locations, signaling and metabolic 

canonical pathways, and associated diseases. The p-values for the identified canonical 

pathways, disease associations and functions were calculated using Fisher’s exact test. The 

Benjamini-Hochberg method was used to estimate the false discovery rate (FDR), and an 

FDR-corrected p-value of 0.05 was used to select significantly enriched pathways.

Availability of data and materials

Additional data used in this study is available in Supplemental Tables 1 through 5.
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Ethics and Consent to participate

The original data used in this manuscript was obtained from published material, and no 

additional human subjects were included.

Results

CAD Associated Gene Prioritization. The 162 CARDIoGRAMplusC4D SNPs were 

associated with 160 unique genes, based on proximity alone. eQTLs were prioritized by 

selecting cis SNPs with a minimum eQTL score of 6 (p=10−6 in their respective, original 

study). eQTL analysis with the 162 SNPs and their LD proxies identified an additional 34 

unique genes that were not included in the previous publication. Seventeen of the original 

positional candidates were also eQTLs (Supplemental Table S1). Twelve SNPs were 

associated with expression of at least two nearby genes, with a maximum of four genes for 

rs602633 (CELSR2, SORT1, PSRC1, and PSMA5). The strongest overall eQTL was with 

rs1412444, a proxy for the original SNP rs2246833 (r2=1.0) and LIPA expression in 

monocytes (eQTL score = 163.21). The original 160 positional genes and the 34 unique 

eQTL genes were combined for all downstream analyses, for a total of 194 unique genes.

Construction of the Gene Interaction Network. Of the 194 unique, CAD-associated genes 

curated from the CardioGramPlusC4D study and the eQTL analysis combined, 185 of these 

were found and mapped in the IPA database. These genes were used as seeds for the network 

construction. IPA network construction identified four major networks (Supplemental Table 

S2). These four networks were then merged into one large network, which included 422 

connected nodes (molecules) with 1890 edges (relationships) (Supplemental Table S3).

Gene Interaction Network Analysis. Supplemental Table S4 shows the LAC, eigenvector 

centrality, and betweenness results from the CytoNCA network analysis. The top thirty 

network nodes ranked by each of the analysis methods, LAC, eigenvector centrality, and 

betweenness, are listed in Table 1. These nodes include genes, gene groups and chemicals. 

Among the top genes ranked by LAC, 10 were from the original seed set (highlighted in red; 

CDKN1A, APOE, SMARCA4, APOA1, APOC2, TERT, APOB, APOC1, APOA5 and 

SCARB1). Among the top genes ranked by eigenvector centrality, five were from the 

original seed set (highlighted in red; CDKN1A, SMARCA4, APOA1, APOE and TERT). 

Among the top genes ranked by betweenness, four were from the original seed gene set 

(highlighted in red; APOA1, CDKN1A, SMARCA4 and CXCL12). Three seed genes 

CDKN1A, SMARCA4 and APOA1 (red text and underlined) were the common, top-ranked 

genes identified by all three methods (LAC, eigenvector centrality, and betweenness), 

indicating the importance of these genes in the network. In addition to these three common 

seed genes, ten genes not in the original seed set were also identified by all three methods. 

These 10 new genes are TP53, MYC, PPARG, YWHAQ, RB1, AR, ESR1, EGFR, UBC and 

YWHAZ.

Combining the LAC, eigenvector centrality, and betweenness lists in Table 1, a total of 10 

genes (CDKN1A, APOE, SMARCA4, APOA1, APOC2, TERT, APOB, APOC1, APOA5 
and SCARB1) are from the original seed set, which suggests that these CAD associated 

genes are important in the gene interaction network. Figure 1 shows the interactions between 
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these 10 genes (in red) and their interacting genes (in blue) and chemicals (in green) in the 

gene interaction network. Most of these top genes are highly connected in the sub-network.

Pathway Analysis. The top-ranked proteins from Table 1 were selected to perform metabolic 

and signaling canonical pathways analysis using IPA. The result is shown in Supplemental 

Table S5. The top ten pathway hits were FXR/RXR Activation, Clathrin-mediated 

Endocytosis Signaling, Telomerase Signaling, IL-12 Signaling and Production in 

Macrophages, Prostate Cancer Signaling, ERK/MAPK Signaling, Myc Mediated Apoptosis 

Signaling, LXR/RXR Activation, Atherosclerosis Signaling and Estrogen-mediated S-phase 

Entry (Table 2).

Discussion

In this study, protein-protein interaction networks were analyzed to identify proteins with 

potentially essential roles (high centrality) and those with minimal functional redundancy 

(high betweenness). Starting with known susceptibility loci, we identified proteins encoded 

by genes near susceptibility loci and identified those proteins most likely to act as hubs and 

bottlenecks. Ranking proteins by local average connectivity, betweenness, and centrality 

scores provides a method for prioritizing targets for future MRM mass spectrometry 

experiments, designed to identify proteins contributing to the onset or development of 

atherosclerosis. Proteins with high ranks in LAC, eigenvector centrality, and betweenness 

scores are considered top candidates for further investigation with experimental proteomics 

techniques.

Our network analysis using LAC, eigenvector centrality, and betweenness methods identified 

a set of 49 high ranking molecules based on their importance and connectivity within the 

interaction network we constructed. Among these 49 molecules, several already have a very 

well established and known association with cardiovascular disease risk, including APOA1, 
APOA5, APOB, APOC1, APOC2, APOE, CDKN1A, CXCL12, SCARB1, SMARCA4 and 

TERT (e.g., 17–21). While these well-established proteins serve as an important validation 

for our approach, of potentially more biological interest are the additional and more novel 

candidates identified with our expanded network approach. These included TP53, MYC, 
PPARG, YWHAQ, RB1, AR, ESR1, EGFR, UBC and YWHAZ, which were identified by 

all three analysis methods, but do not have the same level of prior literature evidence 

supporting a known association with cardiovascular disease. These proteins also rank highly 

by betweenness scores, indicating they may be involved in multiple pathways, and fewer 

proteins may perform their function within pathways. In our study, each of these novel 

proteins interacted with at least three of our seed proteins (Figure 1), supporting the 

plausible importance of their role in the biology of coronary artery disease and 

atherosclerosis progression.

Four of these 10 highly-connected novel genes (TP53, MYC, YWHAQ, and YWHAZ) were 

also identified recently in an independent publication as “Predicted CVD genes” using a 

different pathway-based approach 22. Both TP53 and MYC are well-known for their role in 

cancer and may also be involved in the regulation of smooth muscle cell proliferation during 

neointima formation in coronary artery disease 23;24. Much less is known about YWHAQ 
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and YWHAZ, which are highly conserved scaffolding proteins of the 14-3-3 family, 

involved in multiple signal transduction pathways including those linked to p53 apoptosis 

signaling 25 and Epidermal Growth Factor Receptor (EGFR) signaling 26. The EGFR 

protein was another of the 10 novel top proteins identified in this analysis, and is a well-

known activator of ERK/MAPK signaling which was among the top canonical pathways 

from the IPA analysis of these data. While EGFR is known to be expressed in atherosclerotic 

plaques 27;28, its mechanistic role in coronary artery disease pathogenesis is as yet unclear. 

Interestingly, another cell-signaling scaffold protein, Growth Factor Receptor Binding 

Protein 2 (GRB2), was also detected among our top 49 candidate proteins, and together with 

YWHAZ, has been shown to be involved in the clathrin-endocytosis mediated 

internalization of EGFR 29. Furthermore, GRB2 has been identified as a critical protein for 

neointima and atherosclerotic lesion formation in ApoE −/− mouse models of coronary 

artery disease 30;31. These connections become rather interesting in light of our observation 

of “clathrin-mediated endocytosis” as a top pathway in the IPA analysis (Table 2) connecting 

several of our candidate proteins. Taken together, these data indicate that the multifunctional 

signaling scaffold proteins YWHAZ, YWHAQ, and GRB2, may represent critical hubs for 

the EGFR, and other growth factor, signaling networks and may represent important nodes 

in the molecular cascades that become dysregulated in coronary artery disease.

Interesting potential links to atherosclerosis can also be found among the remaining 10 novel 

proteins identified in the LAC, Eigenvector, and betweenness rankings. The Retinoblastoma-

associated protein (RB1) is a component of a transcriptional-repressor complex that interacts 

with the well-known cardiovascular disease protein SMARCA4, which was also top ranked 

in our analysis. Another transcriptional regulator, peroxisome proliferator-activated receptor 

gamma (PPARG), which regulates genes involved in fatty acid metabolism and 

inflammation, is expressed in atherosclerotic lesions and is thought to negatively regulate 

pro-atherosclerotic processes, suggesting the potential use of PPAR-activators for 

atherosclerosis treatment 32. The combined observation of androgen receptor (AR) and 

estrogen receptor (ESR1) suggest that the reproductive steroid hormones testosterone and 

estradiol may play intriguing roles in coronary artery disease progression and thus may also 

represent important sex-dependent mechanisms in atherosclerosis pathogenesis 33. Finally, 

in addition to poly-ubiquitin (UBC) identified in our top 10 novel proteins, two other 

components of ubiquitin-proteasomal degradation, valosin-containing protein (VCP) and 

von-hippel lindau tumor suppressor (VHL) were also found among the top 49 molecules in 

our expanded network. Together these three proteins are consistent with an emerging 

hypothesis regarding the importance of the ubiquitin-proteasomal degradation pathway in 

the pathogenesis of atherosclerosis 34;35.

To summarize, there are numerous biological connections between the top ranked proteins 

identified in this expanded network analysis of coronary artery disease genes, and these 

connections support the inclusion of these molecules as candidates for follow-up analysis in 

the GPAA project. Furthermore, these discoveries support the utility of this expanded 

approach to the analysis of genomic scale datasets for the identification of candidate disease 

proteins. The validity of our approach can be illustrated by the APOA1 node in our predicted 

network. Mutations that alter the functioning of APOA1 could adversely impact the 

functioning of several interacting proteins, as indicated by the high hub score of the APOA1 
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node. In addition, APOA1 interacts strongly with other apolipoproteins (e.g., APOB, APOE) 

that also have high node scores. LDLR interacts with all three of these proteins (Figure 1), 

and exome sequencing recently identified a marked increased risk of myocardial infarctions 

in individuals with rare mutations in LDLR 3, further highlighting the utility of evaluating 

proteins targeted within the biological hub.

As further validation of biological relevance, our pathway analysis of the top ranked proteins 

in the network analysis identified a list of pathways that are known to influence 

atherosclerosis (Table 2). In addition to the four pathways, Atherosclerosis signaling, 

LXR/RXR activation, FXR/RXR activation and Acute phase response signaling, which were 

previous identified by Deloukas et al 2, we identified additional disease related pathways 

such as Clathrin-mediated Endocytosis Signaling, Telomerase Signaling, IL-12 Signaling 

and Production in Macrophages, Prostate Cancer Signaling, ERK/MAPK Signaling, Myc 

Mediated Apoptosis Signaling, and Estrogen-mediated S-phase Entry.

Our analysis had some similarities with previous analyses 2;9;10;22;36, in that we focused 

on the top SNP associations, and then expanded that list with eQTL findings. While some of 

these studies also used pathway and gene ontology analyses, our analyses went considerably 

beyond previous work by focusing on the interactions of the seed proteins with others, based 

primarily on the centrality and betweenness of the molecules. This was done independent of 

the role of the additional proteins, allowing us to identify several proteins that have not 

received serious attention as candidates to monitor in studying the pathophysiology of CVD-

related processes.

Our study, like other protein-protein interaction analyses, was limited by the current state of 

knowledge of protein interactions. The lack of evidence for interactions between proteins 

should not be interpreted as evidence for lack of such an interaction. Proteins with high 

betweenness scores may be actual bottlenecks in metabolic or regulatory pathways, or they 

may be understudied macromolecules that warrant further investigation. A risk of using 

literature-based interaction analysis is that well-published proteins or genes may appear 

more commonly. This may account for the identification of a portion of our newly identified 

proteins (e.g., TP53, MYC), but not for others, where little published work is available (e.g., 

YWHAQ, YWHAZ). The set of protein interactions analyzed in this study were not filtered 

based on location of expression, and some interactions may only occur in tissues unrelated 

to atherosclerosis. Including such interactions may lead to overestimates in the centrality 

scores. However, filtering based on known expression locations may also eliminate relevant 

interactions if the proteins are not included in tissue expression databases; this could lead to 

over estimates in the betweenness scores. Finally, our approach used the genes nearest to the 

associated SNPs when eQTLs were not identified. More distal genes may be regulated by 

these SNPs, but without additional functional data these loci were difficult to identify and 

we used the most likely genes to be involved in each region.

Conclusion

Using a protein-protein interaction network approach, we have identified the most likely 

genes involved in CAD-related phenotypes using the CARDIoGRAM GWAS meta-analysis 
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as a starting point 2. In addition to the well-known candidates, we identified a subset of 

genes that interact with these likely contributors, but have not otherwise been associated 

with CAD. These new candidates represent novel targets for assay development and MRM-

based monitoring to determine their expression profile and its correlation to atherosclerotic 

disease in the PDAY sample set. Ultimately, the goal of this project is to prioritize these 

proteins in terms of their likely effectiveness as targets for therapeutic intervention, and 

perhaps offer the opportunity to develop novel as well as repurpose existing drugs for 

cardiovascular and atherosclerosis related conditions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The interactions between 10 top ranking genes (red nodes) and their interacting genes (blue 

nodes) and chemicals (green nodes) in the sub-network. The graph was generated with 

Cytoscape 35.
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Table 2

Top pathway hits of the selected network genes

Ingenuity Canonical Pathways B-H p-value Genes

FXR/RXR Activation 4.68E-10 PPARG,PPARA,APOE,APOB,APOA1,SCARB1,APOC1,APOC2,HNF4A

Clathrin-mediated Endocytosis Signaling 7.76E-09 HSPA8,APOE,APOB,APOA1,F2R,GRB2,APOC1,APOC2,UBC

Telomerase Signaling 5.01E-08 TP53,MYC,RB1,GRB2,TERT,CDKN1A,EGFR

IL-12 Signaling and Production in Macrophages 3.39E-07 PPARG,APOE,APOB,APOA1,APOC1,APOC2,REL

Prostate Cancer Signaling 4.68E-07 TP53,RB1,AR,GRB2,CREB1,CDKN1A

ERK/MAPK Signaling 2.51E-06 PPARG,YWHAQ,MYC,GRB2,CREB1,YWHAZ,ESR1

Myc Mediated Apoptosis Signaling 2.88E-06 YWHAQ,TP53,MYC,GRB2,YWHAZ

LXR/RXR Activation 2.88E-06 APOE,APOB,APOA1,APOC1,APOA5,APOC2

Atherosclerosis Signaling 2.88E-06 APOE,APOB,APOA1,CXCL12,APOC1,APOC2

Estrogen-mediated S-phase Entry 2.88E-06 MYC,RB1,CDKN1A,ESR1
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