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Abstract

Purpose of Review—As a subset of the organism-wide reaction to severe infection, the host 

vascular response has received increasing attention in recent years. The transformation that small 

blood vessels undergo to facilitate the clearance of pathogens may become harmful to the host if it 

occurs too broadly or if it is sustained too long. Adverse clinical manifestations of leaky and 

inflamed blood vessels include edema impairing the function of critical organs and circulatory 

shock.

Recent findings—suggest that this host vascular response may be both measurable and 

potentially targetable. Tie2 is a receptor tyrosine kinase heavily enriched in the vascular 

endothelium whose tonic signaling actively maintains vascular quiescence. When Tie2 becomes 

inactivated, important molecular brakes are released in the endothelium that in turn, potentiate 

inflammation and vascular leakage. The ligands of Tie2, Angiopoietin-1 and -2, regulate its 

activation status. Genetic and molecular studies spanning thousands of human subjects link Tie2 

and imbalance of the Angiopoietins to major adverse clinical events arising from bacterial sepsis, 

other severe infections, and even acute sterile inflammation.

Summary—The Tie2 signaling axis may constitute a molecular switch in systemic inflammation 

that can be measured and manipulated to target the host vascular response therapeutically.
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INTRODUCTION

The inflammatory response to infections and sterile stressors has been intensely investigated 

at least since the 1940s, with reports of host-derived “pyrogens” later becoming leukocyte-

secreted factors in tissue culture that were subsequently cloned in the 1980s as interleukin-2 

(IL-2), interleukin-1 (IL1), and tumor necrosis factor alpha (TNFα) (1-10). Neutralizing 

proteins against each of these host factors have been part of the clinical armamentarium 

since the late 1990s. For individuals with rheumatoid arthritis and other autoimmune 

conditions, these drugs have been transformative. Yet the full promise of untangling the host 
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inflammatory response has not been realized. Infections such as bacterial sepsis, influenza, 

and falciparum malaria continue to claim millions of lives around the world yearly despite 

common access to highly effective antimicrobials in most situations. Among other factors, 

the rapidity, severity, and redundancy of the “pyrogenic” attack have thwarted therapeutic 

efforts to tamp host-driven inflammation.

This review focuses on a comparatively late-developing feature of severe inflammation that 

is both more proximate to adverse clinical manifestations and more directly contributory—

the host vascular response. Often taught as “rubor, calor, dolor, tumor,” the hyperermia, 

warmth, and swelling that develop at sites of tissue injury relate directly to microvascular 

changes. When this response occurs locally, humoral and cellular mediators of immunity are 

efficiently delivered to the injured site to clear pathogens. If the same response is not 

constrained however, the host can develop shock and edema of critical organs culminating in 

death. A signaling axis in the endothelium of blood vessels, anchored by the receptor 

tyrosine kinase Tie2, has an important role in regulating the molecular, cellular, and physical 

responses of blood vessels to the inflammatory milieu, that in turn, may impact the host 

vascular response.

Members of the Tie2 Axis

The cloning of Tie2 was reported in 1992 from a cDNA library of blood vessel tunica 

interna (11). Tie2 is a transmembrane tyrosine kinase whose expression is highly enriched in 

the endothelium. Germline deletion is lethal in utero around E10.5 with knockout (KO) 

embryos exhibiting edema, hemorrhages, and an underdeveloped cardiovascular system 

(12). The hearts show fewer myocardial trabeculations and retraction of the endocardium 

from the myocardium. Vascular patterning is less complex, suggesting a defect in 

developmental vessel remodeling. Results from conditional mice in which TIE2 is deleted at 

mid-gestation or beyond exhibit gross subcutaneous edema, supporting the notion of Tie2-

dependent vascular stabilization mechanisms independent of developmental cardiovascular 

patterning defects (13, 14). Activating mutations in human TIE2 are strongly associated with 

venous malformations (15, 16), affirming an important role for this pathway in mammalian 

vascular development.

The ligands of Tie2, Angiopoietin-1 (Angpt-1) and Angiopoietin-2 (Angpt-2), are highly 

homologous to each other, but exert different effects on Tie2 (Fig 1) (17, 18) Angpt-1 is a 

canonical agonist of Tie2. Angpt-1 KO mice largely phenocopy Tie2 KO. Angpt-1 is made 

and secreted from peri-endothelial cells and platelet α-granules (19). Angpt-1 uses a 

carboxy-terminal fibrinogen-like domain to bind the 2nd of 3 extracellular immunoglobulin 

domains on Tie2 (20). The oligomerization state of Angpt-1 may be important for its ability 

to “cluster” Tie2 monomers to promote cross-phosphorylation in the intracellular domain of 

Tie2. A central coiled-coil domain enables Angpt-1 to dimerize, and an amino-terminal 

superclustering domain promotes higher-order multimers (21).

Angpt-2 competitively inhibits Angpt-1-Tie2 binding and Tie2 activation in endothelial cells 

(18). This antagonist role may relate to the observation that Angpt-2 primarily forms a dimer 

in solution rather than higher-order multimers despite possessing its own coiled-coil and 

superclustering domain; specific amino acid differences between Angpt-1 and Angpt-2’s 
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fibrinogen-like domain have also been cited for this differential response (21, 22). Angpt-2 
transgenic mice share a vascular disruption phenotype with Angpt-1 and Tie2 KO mice 

whereas Angpt-2 deleted mice survive gestation exhibiting lymphatic defects beyond the 

current scope of discussion (18, 23). Angpt-2 is primarily made and secreted by the 

endothelium from pre-formed stores in Weibel-Palade bodies (24). Angpt-2 may therefore 

act in a paracrine, autocrine, or even “intracrine” fashion on Tie2 (25). Although Angpt-2 

can, in certain contexts, activate rather than inhibit Tie2 signaling (26), results spanning a 

decade of studies from numerous laboratories consistently implicate Angpt-2 as a Tie2 

antagonist during inflammation (27-36). Two other ligands of Tie2—Angpt-3 in mice and 

Angpt-4 in humans—are less-well studied.

VE-PTP (vascular endothelial protein tyrosine phosphatase) is a transmembrane tyrosine 

phosphatase that physically associates with and inhibits Tie2 signaling (37). VE-PTP also 

de-phosphorylates the junctional effector molecule VE-cadherin and the angiogenic receptor 

of VEGF (VEGFR2, Kdr). The interaction of VE-PTP with VE-cadherin maintains the 

endothelial barrier, but this association rapidly disassembles after the endothelium is 

exposed to VEGF (38). During angiogenesis when VEGF expression is high, the interaction 

of VE-PTP with VEGFR2 helps to organize the vectorial growth of new blood vessel sprouts 

(39). The net effect of VE-PTP activity on endothelial barrier function is in part determined 

by the degree of Tie2 expression. When Tie2 expression is artificially suppressed by RNAi, 

VE-PTP inhibition induces vascular hyperpermeability, presumably by leaving VEGFR2 

and/or VE-cadherin in junction-destabilizing phosphorylated states (40). However, when 

Tie2 expression is intact, VE-PTP inhibition fortifies barrier function in a Tie2-requiring 

fashion.

Angiopoietins may also physically interact with integrins expressed in both endothelial cells 

and non-endothelial cells, specifically α5β1, α2β1, and αvβ5 (41-45). The Angpt-integrin 

interaction is of low affinity compared to nanomolar binding of Tie2, but in contexts of 

reduced Tie2 expression, this alternative signaling pathway may become functionally more 

important (43, 44). The role of these and perhaps additional integrins in Angpt-associated 

vascular inflammation requires further study.

Finally, a paralog of Tie2, Tie1 was cloned before Tie2 and yet remains an orphan receptor 

(46). Understanding Tie1’s role in biology, physiology and disease has also been more 

challenging than unraveling Tie2’s actions. For example, the global KO for Tie1 does not 

phenocopy Tie2 KO; instead, these mice die at E13.5 without the cardiac defects of Tie2 KO 

(47). More detailed studies using hypomorphic Tie1 alleles reveal a lymphatic defect in mice 

with low Tie1 protein (48). Tie1 associates with Tie2, but crystallographic data suggest that 

the Angpts are unlikely to bind Tie1 directly (20, 49). This receptor interaction has been 

described as inhibitory to Tie2 signaling: through heterodimerization or by inhibiting surface 

presentation of Tie2 (49, 50). But in vivo results suggest the opposite—when Tie1 is 

conditionally deleted from the endothelium of mice, Tie2 is less potently activated by 

Angpt-1 (36). As discussed below, acute inflammation leads to rapid Tie1 cleavage, which 

may contribute to Tie2 phosphorylation (35, 36).
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Tie2 Signaling during Quiescence and Inflammation

Several features distinguish Tie2 signaling from other vascular receptor tyrosine kinases—

the existence of multiple endogenous ligands with differential effects at the receptor; the 

membrane-bound paralog Tie1 that modulates signaling, the relocalization of activated Tie2 

to junctions where it participates in dynamic signaling complexes, and the inhibitory effect 

of another membrane protein that is often in physical association with Tie2, VE-PTP. 

Together, these facets of Tie2 signaling are consistent with the notion that the degree of Tie2 

activation can be finely tuned by distinct combinations of protein-protein interactions.

The high degree of Tie2 activation in quiescent, non-angiogenic blood vessels is also unique 

among this larger family of RTKs (51), suggesting one or more roles in vascular 

maintenance. Experimental gain-of-function with genetic or transient Angpt-1 

overexpression demonstrates a remarkable vascular barrier defense phenotype (52, 53). With 

Angpt-1 stimulation, endothelial cells form a tightened barrier that is able to resist leakage 

as signaled by diverse ligands ranging from host proteins thrombin (54) and VEGF (52, 53) 

to bacterial lipopolysaccharides and anthrax lethal toxin (55-57). In animal models, this anti-

leak effect of Tie2 stimulation protects organ function—prominently reducing edema in the 

lung but other organs, too—and enhances survival of animals subjected to endotoxemic 

shock, bacterial sepsis, anthrax, and malaria (56-61).

That Tie2 stimulation can promote broad-ranging anti-leakiness implicates the activation of 

central and conserved cellular effectors of barrier function that are downstream of many 

permeability mediators (reviewed in (62)). Indeed, barrier defense induced by Angpt-1 

activating Tie2 is achieved by signaling the reorganization of the actin cytoskeleton and the 

accumulation of VE-cadherin at inter-endothelial junctions. Angpt-1 signals via PI3K and 

through NADPH oxidases to activate the Rho family GTPase Rac1 (55, 63). Rac1 is 

stabilized in its GTP-bound active form by the scaffolding protein IQGAP1 to signal the 

inhibition of another GTPase, RhoA, via the GTPase signaling transducer p190RhoGAP 

(Fig 2) (54, 55). These events unfold rapidly (~30 min) after Angpt-1 application to activate 

myosin-actin interactions that distribute actin into a “cortical” arrangement at the periphery 

of the cell. This rearrangement toward a spread morphology may reflect relaxation of 

tension within the endothelial cell or, conversely, development of pulling forces in the peri-

junctional region; this remains to be determined. Angpt-1 stimulation favors the junctional 

accumulation of VE-cadherin. This may relate to transcriptional and post-translational 

actions (27, 31, 54, 55, 57, 64-70). Activated Tie2 is also thought to inhibit the inflammatory 

transcription factor NFκB via a signaling intermediate ABIN2 (71).

During inflammation, a series of changes collaborate to attenuate Tie2 signaling (Fig 3). 

Pre-formed Angpt-2 protein is rapidly released from Weibel-Palade bodies. Tie1 is cleaved. 

Tie2 is cleaved, albeit more slowly than Tie1. Tie2 and Angpt-1 expression decline through 

mechanisms requiring further study—for example, reduced microvascular flow may itself 

downregulate Tie2 expression (72, 73). Angpt-2 production is induced by the de-repressed 

transcription factor Foxo1, which is otherwise held in an inactivated and phosphorylated 

state as long as Tie2 signals to PI3-kinase and Akt (33, 74). During inflammation, the fall in 

Tie2 signaling enables Foxo1 to relocate to the nucleus and transcribe ANGPT2 (33). Thus a 
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pernicious feedback loop is activated. While Angpt-2 is not required for endothelial barrier 

disruption or endothelial inflammation, it potentiates both processes (30-32, 75).

Angpt-2’s pivotal role in the phenotypic shift of inflamed blood vessels is emphasized by 

striking results from multiple laboratories in which endothelial-specific genetic, RNAi, or 

antibody-induced Angpt-2 neutralization enhances survival in experimental infections, 

protects organ function, defends barrier function, reduces inflammation, and thwarts long-

term pathological vascular remodeling (34, 35, 76). A recent study has gone one step further 

by developing an antibody that clusters Angpt-2 monomers, thereby converting Angpt-2 into 

a Tie2 activator (75). Perhaps not surprisingly, this clustering antibody was found to be 

superior to an Angpt-2 neutralizing ability in terms of enhancing Tie2 phosphorylation in 

vivo. The clustering antibody more effectively protected organ function and enhanced 

survival in experimental sepsis.

Why the Tie2 axis would undergo these several changes that collectively attenuate signaling 

is unclear. Not only would such changes promote inflammation and leakage, but reduced 

Tie2 signaling may also influence the behavior of peri-endothelial cells in ways that would 

be deleterious to blood vessel function—e.g., (A) activated Tie2 induces the production of 

nitric oxide by the endothelium, which helps normal blood vessels maintain their vasomotor 

reactivity and (B) signaling via Tie2 appears to promote closer contacts between the 

endothelium and pericytes, which in turn may physically stabilize microvessels and even 

contribute to barrier function (76, 77).

Perhaps the shift in Tie2 signaling during inflammation relates to an adaptive function to 

facilitate local resolution of infection. A recent study has proposed that genetic variants that 

may lower TIE2 gene expression are actually highly prevalent in the general population (70). 

These variants were associated with a greater risk of developing acute respiratory distress 

syndrome in the intensive care unit. This study in humans echoes another genetics study 

conducted in outbred mice exposed to Ebola virus which showed that mortality was linked 

to subspecies allelic differences at Tie2 (78). Together, these studies suggest that vascular 

leakage and inflammation in a given host may arise at the nexus of genetic susceptibility and 

environmental exposure. Certain animals (or humans) may be genetically predisposed to 

Tie2 axis suppression, but only blossom a measurable phenotype under the stress of 

inflammation. Consistent with this two-hit model, Tie2 heterozygous mice appear normal 

with no excess leakage or inflammation at baseline, but develop more severe leakage and 

greater mortality during severe infection and inflammatory stress (57, 70, 79, 80).

The links between the Tie2 signaling axis and human disease are further buttressed by 

genetic studies implicating polymorphisms of ANGPT2 in acute lung injury (81, 82), and 

even more conclusively by blood-based studies spanning thousands of subjects with sepsis, 

sterile inflammation (e.g., from major trauma or surgery), malaria, and other acute 

inflammatory settings. The first such study linked early elevation of circulating Angpt-2 to 

pulmonary vascular leakage and impaired blood oxygenation during adult sepsis (27). And a 

second early study demonstrated that a fall in circulating Angpt-1, an increase in Angpt-2, or 

an elevated ratio of Angpt-2/Angpt-1 at the time of hospital admission was associated with 

mortality in pediatric septic shock (83). Peripheral levels of the Angiopoietins assayed 
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within the first hour of hospitalization may even predict the future development of shock and 

death in the intensive care unit (31). These remarkable findings have been confirmed and 

advanced by numerous groups around the world (reviewed in (84)). The body of evidence 

supports the proposition that circulating Angiopoietin levels may enable operator-

independent quantitative risk assessment. One of the important reasons that clinical trials in 

critical care are difficult is the wide heterogeneity; early determination of Angiopoietin 

levels may facilitate enrichment of future trial populations for a vascular-dominant 

pathophysiology. And because Angpt-2 expression is itself and indirect readout of Tie2 

activity (Fig 3), serial measures of peripheral Angpt-2 may enable investigators to monitor 

Tie2 signaling over time in individual patients. Such applications could accelerate drug 

development for adjuvant therapies that optimize the host vascular response.

CONCLUSIONS

The Tie receptors and Angpts were identified in the 1990s and initially implicated in 

vascular inflammation in the early 2000s. Recent studies have advanced our understanding 

of this signaling axis in the contexts of infection and sterile inflammation. Angpt-1 protects 

organs from edema and enhances survival in a growing list of infections. Angpt-2, on the 

other hand, potentiates leakage and inflammation such that maneuvers to reduce Angpt-2 

action are protective for the organism. Whether Tie2 hyperstimulation—e.g., via exogenous 

Angpt-1-like therapy such as an agonistic antibody—or normalization by Angpt-2 inhibition 

confers a better efficacy/safety profile requires further study. These questions will become 

better addressed as Tie2 and its ligands are manipulated in the context of inflammation using 

various tissue-specific genetic strategies. Nonetheless, the Tie2 axis is poised for medical 

translation. Not only can its signaling be manipulated with modern biologics, but the status 

of the Tie2 axis can be rapidly assessed, enabling future trials to focus on individuals with 

measurably deranged Tie2 signaling while minimizing dilution from clinical heterogeneity. 

Efforts toward individualization may be further facilitated by insights into the genetics of 

Tie2 axis members. Understanding the molecular control of the host vascular response may 

open new avenues to predict, track, and treat a spectrum of acute diseases.
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Key Points

• The host vascular response to severe infections and systemic inflammation 

may contribute to adverse outcomes across a spectrum of diseases

• The Tie2 receptor actively signals vascular quiescence

• Inflammation signals a series of changes that attenuate Tie2 signaling, which 

in turn potentiates leakage and inflammation

• Results from genetic, molecular, and cellular studies collectively implicate 

Tie2 signaling as a measurable and modifiable feature of the host vascular 

response

• Translational efforts to assess signaling and target Tie2 may improve 

outcomes in diseases of vascular leakage and inflammation
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Figure 1. Tie2 signaling is finely tuned
Tie2 expression is heavily enriched in the endothelium. Its 2nd immunoglobulin (Ig) domain 

ligates Angpts. Angpt-1 or -2 bind Tie2 via a C-terminal fibrinogen domain, and quarternary 

structural differences driven by the N-terminal superclustering (SCD) or coiled-coil (CCD) 

domains may account for the distinct actions of Angpt-1 as agonist vs. Angpt-2 as antagonist 

on Tie2. Angpt-1 is more highly oligomerized than Angpt-2 in vivo, and clustering of Tie2 

monomers may be important for phosphorylation in its kinase domain. Tie1 is an orphan 

receptor in the endothelium that optimizes Tie2 signaling during inflammation. VE-PTP is a 

transmembrane tyrosine phosphatase that inhibits Tie2 signaling. Other abbreviations: EGF 

= epidermal growth factor repeat; FNIII = type 3 fibronectin domain. Adapted from (20).
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Figure 2. Tie2 signaling prevents vascular leakage
Activated Tie2 migrates to cell junctions, remodels the cytoskeleton, and augments 

junctional accumulation of VE-cadherin. Compartmentalized intracellular signaling at 

intercellular junction may be important. Tie2 signals a complex of NADPH oxidase, its 

regulatory subunit p47phox, and the small GTPase Rac1. Rac1 is stabilized in its active 

GTP-bound form by IQGAP1. Rac1 itself signals the reorganization of the actin 

cytoskeleton toward a spread morphology, and by acting via the regulatory protein 

p190RhoGAP, inhibits the GTPase RhoA. Interaction of cortical actin via catenins (not 

depicted for ease of illustration) stabilizes VE-cadherin at the junction. VE-cadherin is 

essential for effective barrier formation in several microvascular beds.
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Figure 3. Effects of Tie2 signaling in quiescence vs. vascular inflammation
During quiescence, Tie2 is highly phosphorylated and actively maintains homeostasis. One 

example of active maintenance of homeostasis is the inhibition of inflammatory transcription 

factor NFκB via the signaling protein ABIN2. During inflammatory stress, several changes 

collaborate to switch off Tie2 signaling: reduced Tie2 expression, reduced surface Tie2, 

reduced surface Tie1 by proteolysis, reduced extracellular Angpt-1, and increased 

extracellular Angpt-2 that itself arises from at least two distinct mechanisms—rapid release 

of pre-formed Angpt-2 protein from Weibel-Palade bodies and de novo biosynthesis as 

dephosphorylated Tie2 is no longer able to repress Foxo1. Induction of Angpt-2 potentiates 

vascular inflammation and exacerbates vascular leakage

Parikh Page 15

Curr Opin Hematol. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	INTRODUCTION
	Members of the Tie2 Axis
	Tie2 Signaling during Quiescence and Inflammation

	CONCLUSIONS
	References
	Figure 1
	Figure 2
	Figure 3

