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Abstract

Gypsy moth (Lymantria dispar L., Lymantriinae) is a major pest of pedunculate oak (Quercus 
robur) forests in Europe, but how its infections scale with foliage physiological characteristics, in 

particular with photosynthesis rates and emissions of volatile organic compounds has not been 

studied. Differently from the majority of insect herbivores, large larvae of L. dispar rapidly 

consume leaf area, and can also bite through tough tissues, including secondary and primary leaf 

veins. Given the rapid and devastating feeding responses, we hypothesized that infection of Q. 
robur leaves by L. dispar leads to disproportionate scaling of leaf photosynthesis and constitutive 

isoprene emissions with damaged leaf area, and to less prominent enhancements of induced 

volatile release. Leaves with 0% (control) to 50% of leaf area removed by larvae were studied. 

Across this range of infection severity, all physiological characteristics were quantitatively 

correlated with the degree of damage, but all these traits changed disproportionately with the 

degree of damage. The net assimilation rate was reduced by almost 10-fold and constitutive 

isoprene emissions by more than 7-fold, whereas the emissions of green leaf volatiles, 

monoterpenes, methyl salicylate and the homoterpene (3E)-4,8-dimethy-1,3,7-nonatriene scaled 

negatively and almost linearly with net assimilation rate through damage treatments. This study 

demonstrates that feeding by large insect herbivores disproportionately alters photosynthetic rate 

and constitutive isoprene emissions. Furthermore, the leaves have a surprisingly large capacity for 
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enhancement of induced emissions even when foliage photosynthetic function is severely 

impaired.
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Introduction

In field environments, plants are frequently exposed to a multitude of abiotic and biotic 

stressors. To cope with environmental and biological stressors, more than 100,000 secondary 

chemical products are synthesized by plants and at least 1,700 of these are known to be 

volatile (Bauer et al., 1998; Copolovici and Niinemets, 2016; Kesselmeier and Staudt, 1999; 

Pichersky and Gershenzon, 2002). These biogenic volatile organic compounds (BVOC) 

serve many functions such as pollinator attraction (Lucas-Barbosa, 2016) and protection of 

plants against herbivore attacks (Heil, 2014; Pichersky and Gershenzon, 2002; Poelman, 

2015), against excess temperatures (Becker et al., 2015; Possell and Loreto, 2013), and 

oxidative stress, e.g. that generated by ozone exposure (Loreto and Schnitzler, 2010; Possell 

and Loreto, 2013; Vickers et al., 2009).

While constitutive volatile emissions occur in only a limited number of species (Fineschi et 

al., 2013), stress-driven volatile emissions can be induced by abiotic and biotic stresses in all 

plant species (Copolovici and Niinemets, 2016; Harrison et al., 2013; Niinemets, 2010). Key 

biotic stresses eliciting major volatile emission responses are infestations by fungi, bacteria, 

herbivores and insects (Copolovici and Niinemets, 2016; Niinemets et al. 2013). Different 

biotic stressors elicit the same major classes of volatile compounds, green leaf volatiles 

(such as C5 and C6 alcohols and aldehydes), ubiquitous (e.g., α-pinene, β-pinene, Δ-3-

carene) and specific monoterpenes (e.g., β-ocimene, linalool), sesquiterpenes (e.g. β-

caryophyllene) and homoterpenes ((3E)-4,8-dimethy-1,3,7-nonatriene (DMNT) and (3E,

7E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT)) (Blande et al., 2014; Copolovici and 

Niinemets, 2016; Holopainen, 2011; Kleist et al., 2012). However, as comparative 

experiments among different stresses, e.g., among infested, mechanically damaged and 

jasmonic acid-treated plants (Giorgi et al., 2015), and among leaf wounding and darkening 

(Brilli et al., 2011), demonstrate, different biotic stresses result in different volatile emission 

fingerprints.

Stress-induced volatiles can directly protect plants against biotic stress by serving as 

repellents of herbivores (Lucas-Barbosa et al., 2011) or inhibitors of fungal and bacterial 

growth (Schmidt et al., 2016). They can also confer indirect defense by attracting predators 

to their herbivore prey or oviposition host (Arimura et al., 2000a; Dicke and Baldwin, 2010; 

Johnson and Gilbert, 2015; Koski et al., 2015). For both functions, the composition of the 

emission blend as well as the total emission rates play important roles, the first determining 

the specificity of the signal for repelling or attraction, and the second, determining the 

dispersal of the signal as well as its chemical and physiological activity. Herbivore-induced 

changes in emissions of volatiles have been shown in numerous papers (Dicke, 2016; Heil, 
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2014 for reviews), but only a few studies have focused on quantitative relationships between 

the degree of damage and amount of compounds emitted (Bruce, 2015; Copolovici et al., 

2014a; Holopainen and Gershenzon, 2010; Niinemets et al., 2013). Presence of correlations 

among the degree of herbivory damage and emission of volatiles seems trivial, however, it 

crucially depends on local and systemic emission responses. While local response in 

immediately impacted leaf areas is induced rapidly, e.g., emissions of green leaves volatles 

(GLV) can occur within seconds due to constitutive activity of lipoxygenases (Portillo-

Estrada et al., 2015), induction of emissions of mono- and sesquiterpenes that need de novo 
expression of responsible synthases is more time-consuming, from hours to days 

(Copolovici et al., 2014a; Copolovici et al., 2011; Pazouki et al., 2016). Also, the induction 

response is quenched relatively rapidly, within a few days upon relief of herbivory stress 

(Copolovici et al., 2014a; Copolovici et al., 2011). Thus, the whole leaf response is a 

complex amalgamate of local and systemic induction and quenching responses. This is 

biologically highly relevant considering the huge diversity of herbivore impacts plants 

encounter in the field. While the rate of leaf area consumption is low for small solitary 

herbivores, leaving plenty of time for systemic responses in non-impacted leaf areas, 

simultaneous presence of many small herbivores and large solitary herbivores can rapidly 

consume a major proportion of leaf area, implying that the systemic emission response 

might not even occur in the major part of the leaf. In addition, while small herbivores mainly 

consume the intercostal leaf parts, large herbivores can also consume major veins and lead to 

catastrophic dysfunction of leaf water-, nutrient- and carbohydrate-conducting networks 

(Sack et al., 2003; Sack et al., 2004). Infections by small herbivores can lead to 

compensatory increases of leaf photosynthetic activity in remaining leaf parts, but the 

damage of major veins could mean that feeding by large herbivores can lead to 

disproportionate reductions in foliage physiological activity, including photosynthetic 

activity and constitutive isoprenoid emissions as well as hindered elicitation of induced 

emissions (Copolovici et al., 2014a; Copolovici et al., 2011).

Quantitative understanding of stress-dependent elicitation of volatile organic compound 

emission is further relevant for large-scale processes in biosphere-atmosphere system. This 

is because BVOCs affect atmospheric OH radical and O3 concentrations and participate in 

the formation of secondary organic aerosols (SOA) (Shen et al., 2013; Zhang et al., 2015; 

Ziemann and Atkinson, 2012). For example, in the Southeastern United States BVOC 

emissions can have a significant influence on the total aerosol burden due to condensation on 

acidic sulfate seed aerosols and concomitant growth of particles (Lee et al., 2012; Link et al., 

2015). The current estimates of BVOC emissions and their role in atmospheric processes 

only consider constitutive emissions (Arneth et al., 2011; Guenther, 2013; Guenther et al., 

2012), but stress-dependent elicitation of volatiles can significantly modify the overall 

volatile blend and amount of volatiles released into the atmosphere (Hare, 2011; Holopainen 

and Blande, 2013; Holopainen and Gershenzon, 2010; Niinemets et al., 2010a). In particular, 

under major outbreaks of feeding herbivores that regularly occur in nature (Abrams and 

Orwig, 1996; Dwyer et al., 2004; Mattson and Haack, 1987) induced volatiles can dominate 

the release of BVOC from vegetation over large areas, underscoring the importance of 

gaining a better knowledge of quantitative scaling of induced emissions with the degree of 

herbivory damage.
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Pedunculate oak (Quercus robur L.) is a widely distributed constitutively isoprene-emitting 

tree species that is one of the most economically important broad-leaved forest trees in 

Europe. Oak forests currently exhibit declining productivity and crown dieback in several 

sites throughout Europe. Various abiotic and biotic factors, including herbivory by the larvae 

of phyllophagous insects have been shown to importantly contribute to the oak decline 

(Batos et al., 2014; Thomas et al., 2002; Tonioli et al., 2001). The most important defoliating 

insects feeding on Q. robur are winter moth (Operophtera brumata L.), tortrix moth (Tortrix 
viridana L.) and European gypsy moth (Lymantria dispar dispar L.) (Thomas et al., 2002). 

Among these, L. dispar is a species with large larvae that can grow to the size of 50-90 mm 

(Milanovic et al., 2014) and that are capable of consuming 10 cm2 leaf area per day per 

larva, including the second order veins and the terminal part of the mid-rib (Milanovic et al., 

2014). In the current study, we used L. dispar larvae as a model to characterize the influence 

of large insect herbivore on constitutive and induced volatile release in Q. robur. We tested 

the hypothesis that the physiological activity of Q. robur leaves infected with the large 

herbivore L. dispar is quantitatively associated with the degree of damage, in particular, that 

the infection leads to a major decline in leaf photosynthetic activity and isoprene emissions 

and a modest increase in induced emissions.

Materials and methods

Plant material

The field measurements were performed in Lipova forest at Arad county, Romania (46° 5′ 
30″ N, 21° 41′ 30″ E) in May 2014. The site supports a broad-leaved deciduous forest that 

is mainly dominated by Quercus robur (canopy height 4-5 m), whereas Q. petraea, Alnus 
glutinosa, and Q. rubra are minor canopy components. The forest expands more than 6,300 

ha and more than half of the trees (51%) were infected at the time of the study. The infection 

was spatially highly heterogeneous, and forest patches with infested (more than 50 different 

patches with most trees infected observed) and non-infested patches with almost all trees 

lacking herbivores were interspersed. The weather conditions at the time of measurements 

were: average air temperature of 26 ± 2 °C, relative humidity of 62% and atmospheric 

pressure of 102.4 kPa. The plants of Q. robur included for measurements were 10-12 years 

old and 4-5 m tall. At the time of the measurements, the length of L. dispar larvae was about 

30-40 mm. We took all measurements with control leaves from the clean plots with healthy 

trees. These control leaves were further checked for presence of eggs and small larvae, and 

discarded if there was evidence of biotic interactions. As all experiments were performed in 

natural conditions, the past and current larval damage as well as the actual number of 

herbivores that had been feeding in the leaf could not be controlled. Therefore, we only 

report the relationships of leaf physiological traits with the degree of leaf damage.

Photosynthetic measurements

Foliage photosynthetic characteristics during larval feeding were determined in the field 

with a portable gas exchange system GFS-3000 (Waltz, Effeltrich, Germany) as in 

Niinemets et al. (2010b), except for minor modifications in environmental conditions as 

stated below. This system has an environmental-controlled cuvette with 8 cm2 window area 

and a full-window leaf chamber fluorimeter for sample illumination and fluorescence 
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measurements. Each time, a leaf fully filling the cuvette area was enclosed and standard 

measurement conditions (light intensity of 1000 nmol m-2 s-1, leaf temperature of 25°C, 

chamber air humidity of 70%, and CO2 concentration of 385 µmol mol-1) were established. 

The leaf was stabilized under the standard conditions until stomata opened and steady-state 

CO2 and water vapor exchange rates were reached. Steady-state values of net assimilation 

(A) and transpiration (E) rates, and stomatal conductance to water vapor (gs) were calculated 

according to von Caemmerer and Farquhar (1981).

Volatile sampling and GC-MS analyses

Volatile organic compounds (VOC) were sampled via the outlet of the gas-exchange cuvette 

at a flow rate of 200 ml min−1 for 20 min with a constant flow air sample pump 

210-1003MTX (SKC Inc., Houston, TX, USA). The leaf chamber air was drawn through a 

multibed stainless steel cartridge (10.5 cm length, 4 mm inner diameter, Supelco, Bellefonte, 

USA) filled with Carbotrap C 20/40 mesh (0.2 g), Carbopack B 40/60 mesh (0.1 g) and 

Carbotrap X 20/40 mesh (0.1 g) adsorbents (Supelco, Bellefonte, USA) to quantitatively 

sample all volatiles in C5-C15 range (Kännaste et al., 2014). Volatiles were also collected 

using L. dispar larvae without plants in the laboratory conditions using a 3 L glass chambers 

with a flow rate of 2 L min-1 similarly as in Copolovici et al. (2011b). To estimate the 

background VOC concentrations (blank samples), air samples were taken from empty 

chambers before and after enclosure of leaves or larvae.

The adsorbent cartridges were analyzed for volatile lipoxygenase (LOX) pathway products 

(also called green leaf volatiles, GLV), terpenes and methyl salicylate using a Shimadzu 

TD20 automated cartridge desorber integrated with a Shimadzu 2010 Plus GC-MS 

instrument (Shimadzu Corporation, Kyoto, Japan) according to the method of Toome et al. 

(2010) and Kännaste et al. (2014). Briefly, for tube desorption, He purge flow was set at 40 

ml min-1, primary desorption temperature at 250 °C, and primary desorption time was 6 min. 

The mass spectrometer was operated in electron-impact (EI) mode at 70 eV, with the transfer 

line temperature set at 240 °C and ion-source temperature at 150 °C. The identification of 

terpenes, green leaf volatiles and isoprene was done using NIST spectral library ver. 14 and 

authentic standards (Sigma-Aldrich, Taufkirchen, Germany). The absolute concentrations of 

compounds were calculated based on an external authentic standard consisting of known 

amount of VOCs as described in full detail in Kännaste et al. (2014). Briefly, 1 μl of 

calibration sample has been injected into the multi-bed tube followed by passing a nitrogen 

gas at 300 ml min-1 through the tube for 5 min in order to evaporate the solvent and trap the 

volatiles on the adsorbent. Finally, the tube has been analyzed in GC-MS using the same 

program as for the samples. The background (blank) VOC concentrations were subtracted 

from the concentrations with leaf samples and volatile emission rates were calculated 

according to Niinemets et al (2011).

Leaf pigment analysis

Pigment extraction was performed according to the method of Opris et al. (2013) with minor 

modifications. Briefly, leaf samples of 4 cm2 were taken after leaf gas-exchange 

measurements and volatile sampling and immediately frozen in liquid nitrogen. The 

pigments were extracted in ice-cold 100% acetone with calcium carbonate (Sigma-Aldrich, 
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Steinheim, Germany), and centrifuged with a Hettich centrifuge (Hettich 320 R Universal, 

Hettich GmbH, Tuttlingen, Germany) at 0 ºC and 9500 g for 3 min. Then the supernatant 

was decanted, and the extraction was repeated till the supernatant remained colorless, but at 

least three times. The extracts were pooled and brought to a final volume of 10 mL and then 

filtered through a 0.45 µm PTFE membrane filter (VWR International, Radnor, PA, USA). 

The obtained extracts were analyzed for carotenoid and chlorophyll pigments by a high 

pressure liquid chromatograph (HPLC-MS Shimadzu 2010, Kyoto, Japan) equipped with a 

diode array detector (DAD) according to Niinemets et al. (1998) using a Lichrosorb® RP-18 

column (length 125 mm, inner diameter 4 mm, film thickness 5 μm; Hichrom, UK). The 

column temperature was maintained at 10 ºC and the flow rate at 1.5 ml min–1. The solvents 

used for the chromatographic elution consisted of ultra-pure water (A) and HPLC grade 

acetone (B) (Sigma-Aldrich, Steinheim, Germany). The chromatographic elution was started 

by isocratically running a mixture of 25% A and 75% B for the first 7.5 min, followed by a 

9.5 min linear gradient to 100% B, which was run isocratically for 3 min. Further, the eluent 

was changed to the initial composition of 25% A and 75% B by a 2 min linear gradient. The 

HPLC was calibrated using commercially available chlorophyll a, chlorophyll b, and β-

carotene standards (Sigma-Aldrich, Steinheim, Germany), and the calibration curves were 

developed at corresponding spectral maxima (430 nm for chlorophyll a, and 455 nm for 

chlorophyll b and β-carotene).

Estimation of the degree of leaf damage

The leaves were scanned at 200 dpi, and the total leaf area and the leaf area damaged by L. 
dispar larvae were estimated with the “Leaf Area Measurement” software (www.plant-

image-analysis.org). Leaf dry mass was estimated after oven-drying at 70 ºC, and leaf dry 

mass to leaf area was calculated. Foliage photosynthetic rates, volatile emissions and 

pigment contents per unit leaf area were estimated after correction for the consumed leaf 

area.

Statistical analysis and data handling

All measurements have been done in triplicates and data points correspond to averages of 

three replicate leaves in each individual plant (±SE). The data were analyzed by linear and 

non-linear regression analyses, and the herbivory treatment effect at a certain level of 

damage severity relative to non-infected leaves was also tested by ANOVA. All statistical 

analyses were conducted with ORIGIN 10.0 (OriginLab Corporation, MA, USA) and the 

statistical tests were considered significant at P < 0.05.

Results

Effects of herbivory on foliage photosynthetic characteristics

Herbivore feeding by L. dispar reduced leaf net CO2 assimilation rate (A), and even a 

moderate feeding, ca. 10% of leaf area removed, resulted in ca. 12% reduction of net 

assimilation rate, i.e. resulting in values of about 10 μmol m−2 s−1 (Fig. 1a). Net assimilation 

rate decreased with further increases in insect feeding, reaching values of 1-2 μmol m−2 s−1 

in leaves with ca. 50% of leaf area eaten (Fig. 1a).
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Differently from A, the stomatal conductance to water vapor (gs) was only moderately 

affected by larval feeding (Fig. 1b). In fact, the average (± SE) gs of 109 ± 20 mmol m-2 s-1 

for strongly damaged leaves with 30-35% leaf area eaten was not different from the average 

gs in non-damaged leaves (141 ± 6 mmol m−2 s−1; P = 0.18 for the comparison among the 

means; Fig. 1b). Nevertheless, the regression analysis indicated that through the entire 

damage range of 0-50%, gs was reduced by ca. 30%. Given the smaller gs than A response to 

herbivory, the intercellular CO2 concentration (Ci) increased with increasing the degree of 

herbivory damage (Fig. 1c).

Elicitation of volatile emissions in herbivory-infected leaves

Constitutive isoprene emission in herbivore-fed leaves was reduced from 30.3 ± 0.7 nmol 

m-2 s-1 (average ± SE) in healthy leaves to 4-5 nmol m-2 s-1 in heavily infected leaves 

(40-50% of leaf area eaten by insects), and a strong negative correlation between isoprene 

emission rate and percentage of leaf area eaten was observed (Fig. 2a). Larval feeding 

induced emissions of green leaf volatiles [GLV; primarily, (Z)-3-hexenol, (E)-2-hexenal, 

(Z)-3-hexenyl acetate and 1-hexanol), Fig. 2b], that increased with the degree of damage, 

reaching very high values of 3.0-4.4 nmol m-2 s-1 (sum of all GLV) in heavily eaten leaves 

(Fig. 2b). Herbivory also induced emissions of ubiquitous monoterpenes (α-pinene, 

camphene, Δ-3-carene, limonene and β-phellandrene) and typical stress-marker 

monoterpenes such as (E)-β-ocimene and linalool (Table 1). The total emission rate of 

monoterpenes increased with the degree of leaf damage from close to zero level in control 

leaves to values as high as ca. 5.3 nmol m-2 s-1 in strongly infected leaves (Fig. 2c). 

Herbivory feeding also led to low-level emissions of the benzenoid methyl salicylate 

(MeSA) and the homoterpene (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), whereas the 

emission rates increased curvilinearly with the percentage of leaf damage to maximum 

values of 0.17 nmol m-2 s-1 for MeSA and 0.08 nmol m-2 s-1 for DMNT (Figure 3).

Responses of foliage chlorophyll and β-carotene contents to herbivory

Both chlorophyll a and b contents decreased strongly with the area eaten by the larvae, e.g., 

the average chlorophyll a content decreased from 231 ± 2 mg m-2 in non-infected leaves to 

95 ± 3 mg m-2 in leaves with 30-50% damage (Fig. 4). The chlorophyll a/b ratio was on 

average 2.48 ± 0.26 and did not depend on the degree of leaf damage (r= 0.5, P > 0.05). β-

Carotene content did not significantly correlate with the degree of larval damage (Fig. 4).

Negative scaling among constitutive and induced isoprenoids

Through different damage severities, foliage net assimilation rate scaled negatively with the 

emissions of induced volatiles (Fig. 5a for total monoterpenes, 5b for isoprene and 5c for 

total chlorophylls, r= 0.83, P < 0.01 for GLV; r= 0.89, P < 0.01 for MeSA; r= 0.87, P < 0.01 

for DMNT, for linear regression used). Constitutive isoprene emissions were negatively 

correlated with induced emissions (r= 0.97, P < 0.001 for total monoterpenes; r= 0.88, P < 

0.01 for GLV; r= 0.93, P < 0.01 for MeSA; r= 0.91, P < 0.01 for DMNT).
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Discussion

Changes in photosynthetic function in leaves infected by large larvae

Plant photosynthetic responses to biotic stresses such as herbivory can range from 

stimulating effects, no effect or even significant impairment (Attaran et al., 2014; Gog et al., 

2005; Nabity et al., 2009, 2013; Roslin et al., 2006; Zhou et al., 2015). Especially, 

colonization by solitary small herbivores can lead to compensatory enhancement of 

photosynthesis in remaining leaf parts (Copolovici et al., 2014a; Copolovici et al., 2011; 

Delaney et al., 2008). In Quercus robur in our study, we observed a drastic, disproportionate 

reduction in net assimilation rate (Fig. 1a), consistent with the hypothesis that herbivory by 

large larvae capable of biting through and consumption of also major veins can seriously 

impair photosynthesis. Yet, stomatal conductance was surprisingly little affected, seemingly 

inconsistent with this hypothesis (Fig. 1b). However, the low change in calculated stomatal 

conductance might be an artifact due to evaporation of water from free water surfaces 

generated upon herbivory, as well as due to transient increases in stomatal conductance upon 

relaxation of epidermal tension due to damage and concomitant opening of stomata (so-

called Ivanov’s effect, Moldau et al., 1993).

On the other hand, longer-term reductions in photosynthesis in herbivore-fed leaves have 

also been associated with impaired electron transport rate (Nabity et al., 2013). In our study, 

the chlorophyll content decreased with leaf damage severity (Fig. 4). Such a reduction has 

been observed in some studies looking at diffuse massive leaf infection, e.g. mustard 

(Brassica juncea) leaf infection by phloem-sucking mustard aphid (Lipaphis erysimi) 
(Rehman et al. (2014) and tomato (Solanum lycopersicum) infection by cotton mealybug 

(Phenacoccus solenopsis) (Huang et al. (2013)), but not necessarily upon infection by tissue-

removing herbivores. However, damage of major veins and concomitant reduction in water 

availability of isolated mesophyll areas can well lead to the start of senescence processes 

(Munné-Bosch, 2007, 2008). Given the reduction of leaf pigment content (Fig. 4), changes 

characteristic to programmed cell death such as inhibition of photosynthetic electron 

transport and reductions in the amount or activity of photosynthetic rate-limiting enzymes 

were also likely responsible for reduction in net-assimilation rate in larval-eaten leaves.

In contrast, β-carotene content was weakly affected by larval feeding (Fig. 4). Differently 

from chlorophylls, β-carotene primarily functions as antioxidant and its sustained level 

might serve protective function. Although carotenoids can be destroyed under severe abiotic 

stress conditions (Ashraf and Harris, 2013), carotenoids are maintained longer than leaf 

chlorophylls in leaf tissues though senescence (Garcia-Plazaola et al., 2003; Niinemets et al., 

2012).

Modification of constitutive isoprene emissions by herbivory

Concomitant reductions of net assimilation rates and constitutive isoprene emissions as 

observed in herbivore-fed leaves in our study (Fig. 1b) have been reported in several other 

herbivory studies (Laothawornkitkul et al., 2008; Loivamaeki et al., 2008; Loreto et al., 

2014) as well as in fungal-infected leaves (Copolovici et al., 2014b; Jiang et al., 2016). Such 

a simultaneous reduction might indicate that limited plastidic carbon availability or delayed 
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activation of alternative carbon sources can have resulted in the reduction of the pool size of 

the immediate isoprene precursor, dimethylallyl diphosphate (DMADP) in chloroplasts 

(Rasulov et al., 2011; Rasulov et al., 2009), thereby reducing the emission rate. In addition, 

simultaneous reduction of isoprene synthase activity and isoprene emission can indicate 

overall decreases in foliage primary metabolism and constitutive isoprene synthesis in non-

consumed leaf areas. Such a reduction is supported by significant declines in foliage 

chlorophyll contents in infected leaves (Fig. 4).

On the other hand, chloroplastic isoprene and monoterpene syntheses rely on the same 

plastidic DMADP pool, but the in vivo effective Michaelis-Menten constant for DMADP 

(Km) is much smaller for monoterpenes than for isoprene (Rasulov et al., 2014). Lower Km 

for monoterpene synthesis implies that the competition for DMADP is one-sided, and thus, 

elicitation of monoterpene synthesis upon herbivory feeding, can also partly explain the 

decline in isoprene emission rates (Fig. 5b).

Induction of green leaf volatile emissions in larval-eaten leaves

As a result of an attack by insects, specific elicitor molecules are generated by chemical or 

physical damage to plant membranes (Heil, 2014). Our study demonstrated elicitation of all 

key stress-induced volatile compound classes, green leaf volatiles (GLV), mono- and 

sesquiterpenes, homoterpenes and methyl salicylate in herbivory-infected leaves (Table 1). 

GLV are synthesized in a process where free octadecanoid fatty acids (linoleic acid = 18:2 

and linolenic acid = 18:3) are released from plant membranes by phospholipases. Upon 

release of these free fatty acids, lipoxygenases (LOX) then produce 9- or 13-

hydroperoxylinoleic or -linolenic acid or a mixture of both (Matsui, 2006). A hydroperoxide 

lyase further catalyzes the breakdown of 13-hydroperoxylinole(n)ic acid to a C6-compound, 

(Z)-3-hexenal, and a C12-product (12-oxo-(Z)-9-dodecenoic acid). (Z)-3-Hexenal can 

further give rise to (Z)-3-hexenol, (E)-2-hexenol, (E)-3-hexenol or (E)-2-hexenal in 

consequent reactions (Feussner and Wasternack, 2002; Matsui, 2006). The emission of green 

leaf volatiles is a reliable marker of oxidative stress and membrane-level damage (Porta and 

Rocha-Sosa, 2002). GLV are rapidly released upon herbivory feeding due to constitutive 

activity of LOX, and their almost immediate release has been typically associated with 

mechanical damage upon wounding (Matsui et al., 2012; Portillo-Estrada et al., 2015; Scala 

et al., 2013). In our study, we observed a strong correlation between the emissions of green 

leaf volatiles and the percentage of leaf area damaged (Figure 2b). Similarly to our study, 

increases in the emission of GLV with the degree of herbivore feeding were also observed in 

experiments with Caberia pusaria feeding on grey alder (Alnus incana) (Copolovici et al., 

2011) and in experiments with Epirrita autumnata feeding on hybrid aspen (Populus tremula 
x P. tremuloides) (Schaub et al., 2010). Given that in these studies and in our study, the 

degree of damage quantified as the percentage of leaf area removed includes both fresh and 

somewhat older damage, the question is how such a correlation can occur if GLV release is 

exclusively associated with immediate damage. However, conversion of (Z)-3-hexenal to 

more reduced and less toxic volatiles can also occur in non-impacted leaf areas (Matsui et 

al., 2012), and GLV release can continue for a certain period of time after the immediate 

biotic impact (Copolovici et al., 2011; Jiang et al., 2016). Thus, scaling of GLV emissions 
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with the degree of damage (Fig. 2b) might be explained by the sustained GLV release from 

non-impacted leaf areas.

There is evidence that GLV release is higher upon damage of veins than upon damage of 

intercostal tissues (Portillo-Estrada et al., 2015). Interestingly, the increase of GLV release 

with the degree of damage in leaves with minor to moderate damage of 5-20% was much 

less than in leaves with moderate to extensive damage of 20-50% (Fig. 2b). Such a 

difference might reflect the circumstance that in leaves with 5-20% damage, there was 

limited big vein severance by herbivores, while herbivores also bit through major veins in 

leaves with extensive damage. This result is in a marked contrast with the linear relationship 

of GLV release vs. leaf area damage in the study with small herbivores Caberia pusaria 
(Copolovici et al., 2011) and Monsoma pulveratum (Copolovici et al., 2014a) that are 

incapable of biting through major veins.

Elicitation of emissions of terpenoids and MeSA

As a widespread consensus, isoprene and monoterpenes are thought to be synthesized via 2-

C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids (Copolovici et al., 2014a; 

Fineschi et al., 2013; Vranova et al., 2012) and sesquiterpenes via mevalonate (MVA) 

pathway in cytosol (Lombard and Moreira, 2011), although there is recent evidence of 

possible monoterpene synthesis in cytosol depending on substrate availability (Pazouki and 

Niinemets, 2016). DMNT is synthesized from the sesquiterpene (E)-nerolidol likely in the 

cytosol (Baldwin et al., 2006; Tholl et al., 2011). Although present in different cellular 

compartments, both isoprenoid synthesis pathways are upregulated upon herbivory stress 

and several terpene synthase genes involved have already been identified (Arimura et al., 

2000a; Arimura et al., 2000b; Baldwin et al., 2006; Loreto et al., 2014). Thus, elicitation of 

emissions of mono-, sesqui-, and homoterpenes has been found in different deciduous trees 

under herbivore stress (Stam et al., 2014; Zhu et al., 2014 for reviews). The interplay 

between different terpene synthase pathways is still somewhat unclear, especially given that 

different compounds serve different ecological functions. In Q. robur infected by the moth 

Tortrix viridana, Ghirardo et. al (2012) demonstrated that the larvae were attracted to the 

plants releasing higher amounts of homoterpene DMNT and monoterpene (E)-β-ocimene, 

while sesquiterpenes α-farnesene and germacrene D acted as a repellent.

We observed that the monoterpene emission rate increased with increasing leaf damage (Fig. 

2c), indicating that the activity of monoterpene synthases increased upon herbivore feeding. 

In addition, as discussed above, monoterpene synthesis could have been further favored by 

greater competitive capacity for chloroplastic DMADP compared with isoprene synthesis 

(Fig. 5b) and inhibition of pigment synthesis as evident in the reduction in leaf pigment 

content (Fig. 5c). Scaling of mono- and sesquiterpene emissions with the degree of damage 

has been observed in several experiments looking at lepidopteran larval feeding effects on 

volatile release (for example Copolovici et al., 2014a; Copolovici et al., 2011). As we 

hypothesized, there was evidence of leveling off of monoterpene and DMNT vs. damage 

severity relationships at higher severity of damage (Fig. 2c, Fig. 3). In fact, the ratios of 

monoterpene to GLV emissions and DMNT to GLV emissions decreased with increasing the 

degree of damage, indicating that the induction response was relatively less prominent in 
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more severely damaged leaves compared with the immediate stress response (or with the 

rapidly induced stress response). This is different from infection by small larvae (Copolovici 

et al., 2014a; Copolovici et al., 2011) or from infection by slowly developing biotic stresses 

such as fungal infections (Copolovici et al., 2014b; Jiang et al., 2016), where GLV and 

monoterpene and GLV emissions are almost proportional.

The emission of shikimate pathway derived compound, methyl salicylate (MeSA), is 

typically observed for sap-sucking herbivores such as aphids or whiteflies (Li et al., 2006; 

Zarate et al., 2007) and is not usually considered as part of chewing herbivore response. 

However, as in our study, several previous studies have demonstrated the release of methyl 

salicylate upon chewing herbivore attacks (Cardoza et al., 2002; Dicke et al., 1999), 

indicating a complex interplay between jasmonate- and salicylate-dependent signalling 

pathways upon herbivore infestations.

Conclusions

The results of the current study highlight a major negative scaling of foliage photosynthetic 

rates and constitutive isoprene emissions, and concomitant increase in induced volatile 

emissions upon feeding by large herbivore larvae (Fig. 1, 2, 5). While the damage-dependent 

increase of green leaf volatiles was disproportionately greater in leaves with extensive 

degree of damage than in moderately damaged leaves (Fig. 2b), emission rates of terpenoids 

leveled off at higher degrees of leaf damage (Fig. 2c). This suggests that faster and more 

severe damage, especially major vein severance by large herbivores can much more strongly 

influence foliage physiological activity than feeding by smaller herbivores. These 

contrasting herbivore responses need consideration in modeling herbivore elicited emissions 

in large-scale biosphere-atmosphere models.
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Fig. 1. 
Foliage net assimilation rate (a), stomatal conductance to water vapor (b) and intracellular 

CO2 concentration per unit projected leaf area in Quercus robur plants in relation to the 

degree of damage by the larvae of the lymantriid moth Lymantria dispar (percentage of leaf 

area consumed). Data points correspond to averages of three replicate leaves in each 

individual plant (± SE). Data were fitted by linear (a) and non-linear regression in the form y 
= abx (b).
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Fig. 2. 
Emissions rates of isoprene (a), green leaf volatiles (b; GLV, volatiles of lipoxygenase 

pathway, LOX volatiles) and monoterpenes (c) from Q. robur leaves with different degrees 

of feeding by L. dispar larvae (replicates and data presentation as in Fig. 1). Total LOX 

product emission was calculated as the sum of emissions of 1-hexanol, (Z)-3-hexenol, (Z)-2-

hexenal, and (Z)-3-hexenyl acetate and the total monoterpene emission as the sum of 

emissions of α-pinene, β-pinene, camphene, limonene, Δ-3-carene, p-cymene, and β-

phellandrene. Data were fitted by non-linear regressions in the form of y = abx.
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Fig. 3. 
Emissions of the benzenoid methyl salicylate (MeSA) and the homoterpene (3E)-4,8-

dimethyl-1,3,7-nonatriene (DMNT) from leaves of Q. robur in relation to the degree of 

herbivory by L. dispar larvae. Data presentation and replication as in Fig. 1. The 

relationships were fitted by linear regressions.

Copolovici et al. Page 19

Environ Exp Bot. Author manuscript; available in PMC 2018 January 22.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 4. 
Effects of feeding by the larvae of L. dispar on the contents of chlorophyll a and b, and 

carotene in Q. robur leaves. Statistical replicates and data presentation as in Fig. 1. Data 

were fitted by linear regressions.
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Fig. 5. 
Correlations of net assimilation rate (a), isoprene emission rate (b) and chlorophyll (a+b) 

content (c) with monoterpene emission rate in Q. robur leaves with different degrees of 

damage by L. dispar larvae (Fig. 1a, 2a,c and 4 for the correlations of given traits with the 

degree of damage). Data were fitted by non-linear regressions.
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Table 1

Average ± SD emission rates (nmol m-2 s-1) of different volatiles released from leaves of Q. robur in response 

to insect damage

Compound Control Average (±SD) degree of damage (%)

12.2±0.6 18.6±1.0 38.4±9.9

(Z)-3-hexenol nd 0.107±0.005 0.213±0.007 0.90±0.13

(E)-2-hexenal nd 0.100±0.003 0.320±0.010 0.82±0.17

(Z)-3-hexenyl acetate nd 0.054±0.007 0.080±0.010 0.223±0.023

1-hexanol nd 0.223±0.022 0.454±0.017 1.84±0.33

isoprene 30.3±3.2 19.1±3.4 14.0±1.7 3.9±1.4

α–pinene 0.0092±0.0012 0.622±0.011 0.848±0.027 1.58±0.11

camphene nd 0.033±0.002 0.043±0.001 0.111±0.010

Δ-3-carene 0.011±0.006 0.504±0.004 0.663±0.009 1.07±0.07

limonene 0.0094±0.003 0.305±0.032 0.412±0.008 1.02±0.05

β-phellandrene 0.0106±0.007 1.12±0.14 1.09±0.13 0.98±0.15

(E)-β-ocimene nd 0.052±0.001 0.098±0.001 0.297±0.044

linalool nd 0.029±0.001 0.053±0.002 0.128±0.024

DMNT nd 0.007±0.002 0.021±0.006 0.068±0.015

methyl salicylate nd 0.034±0.006 0.045±0.011 0.145±0.021

nd = not detected
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