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Abstract

Objective

The present study aimed to compare a range of cooling methods possibly utilised by occupa-

tional workers, focusing on their effect on body temperature, perception and manual dexterity.

Methods

Ten male participants completed eight trials involving 30 min of seated rest followed by 30

min of cooling or control of no cooling (CON) (34˚C, 58% relative humidity). The cooling

methods utilised were: ice cooling vest (CV0), phase change cooling vest melting at 14˚C

(CV14), evaporative cooling vest (CVEV), arm immersion in 10˚C water (AI), portable water-

perfused suit (WPS), heliox inhalation (HE) and ice slushy ingestion (SL). Immediately

before and after cooling, participants were assessed for fine (Purdue pegboard task) and

gross (grip and pinch strength) manual dexterity. Rectal and skin temperature, as well as

thermal sensation and comfort, were monitored throughout.

Results

Compared with CON, SL was the only method to reduce rectal temperature (P = 0.012). All

externally applied cooling methods reduced skin temperature (P<0.05), though CV0 resulted

in the lowest skin temperature versus other cooling methods. Participants felt cooler with

CV0, CV14, WPS, AI and SL (P<0.05). AI significantly impaired Purdue pegboard perfor-

mance (P = 0.001), but did not affect grip or pinch strength (P>0.05).

Conclusion

The present study observed that ice ingestion or ice applied to the skin produced the great-

est effect on rectal and skin temperature, respectively. AI should not be utilised if workers

require subsequent fine manual dexterity. These results will help inform future studies inves-

tigating appropriate pre-cooling methods for the occupational worker.
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Introduction

There is a fine balance between maintaining productivity and safety of individuals working in

environmental extremes. While high environmental temperatures will result in body heat gain

at rest [1], the additional heat production from physical activity further hastens heat storage in

these environments [2]. The resultant increase in body temperature is associated with reduc-

tions in work capacity [3–5]. Further, continuation of physical activity in these environments

may result in serious heat-related injury or even death [6].

Alleviating thermal strain during work in hot conditions may be possible with some form

of cooling before work. Broadly, an individual may utilise external or internal cooling methods

[7,8]. External cooling involves the application of a cooling medium (e.g. cold water, ice vest)

to an individual’s skin. The cooled skin may subsequently cool the cutaneous circulating blood

and abate the rise in deep body temperature during work [9,10]. Internal cooling involves an

individual ingesting (e.g. ice slushy) or inhaling (e.g. cold air) a medium capable of cooling.

Both internal cooling methods may result in a decrease in deep body temperature, with little

change in skin temperature [7].

Using internal or external cooling strategies before work (i.e. pre-cooling) may improve

performance or reduce thermal strain during fixed exercise intensity [11–16]. Specific to occu-

pational workers, Tokizawa [17] was able to reduce participants’ thermal strain during walking

in the heat (37˚C, 40% relative humidity) dressed in a chemical protective garment with the

use of 30 min of pre-cooling using a fan and water sprayed over the entire body. Similarly, a

reduction in thermal strain during work was achieved with ice slushy ingestion before walking

in the heat (39˚C, 18% relative humidity) dressed in wildland firefighting garments [18].

Deciding on the cooling method to utilise involves consideration of the effectiveness (of

cooling), access, transport, time and cost [14–16]. Within occupational settings, particularly

emergency response teams, the unknown location, resources and time available are all factors

that may influence the choice of pre-cooling method. At present, there are no clear guides and

limited data in an occupational context on the optimal length of time a cooling method should

be applied for before work. This may result in individuals undertaking a cooling protocol for a

longer period than necessary. Additionally, individuals should also consider any detrimental

impact the type of pre-cooling method may have on subsequent occupational task require-

ments [19]. For example, while arm immersion may be successful in reducing thermal strain

[20], cooling the arms may subsequently negatively impact manual dexterity [21].

Unfortunately, many investigations assessing the effect of cooling on body temperature are

limited by the number of pre-cooling methods compared. Investigations often compare a sin-

gle pre-cooling method against a control of no cooling [22,23], where others have compared

only two [12,24,25] or three [15,26] pre-cooling methods. Therefore, the aim of the present

study is to compare a broad range of pre-cooling methods as a repeated measures design,

focusing on their effect on body temperature and manual dexterity. As the present study

focuses on those who may utilise cooling before work in an occupational setting, the opportu-

nity to assess a potentially novel internal cooling method, Heliox inhalation, is investigated. It

is hypothesised that external cooling methods will lower skin temperature, while ice slushy

ingestion will lower deep body temperature. Additionally, it is hypothesised manual dexterity

will be negatively impacted by arm immersion only.

Methods

This study was approved by the Queensland University of Technology’s Human Research Eth-

ics Committee and complied with standards set in the Declaration of Helsinki. The partici-

pants were made aware of the purpose, procedures and risks of the study before giving their
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informed written consent. Ten male participants volunteered; their physical characteristics

were as follows (mean [SD]): 23 (3) years of age, height of 180 (6) cm, body mass of 86 (7) kg

and body fat of 26 (8) %. All participants were non-smokers and free from any vascular, blood

and respiratory conditions. Participants were instructed to refrain from alcohol, caffeine and

strenuous exercise in the 24 h preceding each visit to the laboratory.

Experimental sessions

Following familiarisation, participants attended the laboratory for eight experimental sessions

at the same time of day, separated by a minimum of 24 h. Within each visit participants

remained seated in a climate controlled chamber (dry bulb temperature 34.4 [0.5] ˚C, wet bulb

temperature 27.6 [0.8] ˚C, relative humidity 58 [4] %) for a baseline period of 30 min followed

by 30 min of cooling application or control (CON) of no cooling (detailed below). Environ-

mental temperature and humidity were recorded throughout and measured using a wet bulb

globe thermometer (QUESTemp 36, 3M, Minnesota, USA). The order of testing was rando-

mised using a random number generator (Research Randomiser, v4, Social Psychology Net-

work). Participants wore the same t-shirt, shorts and shoes for each trial. Where applicable, the

cooling garment was applied over participant’s clothing.

Immediately before and after cooling, participants were asked to perform a battery of tests

to assess their manual dexterity. These tests included: 1) Purdue Pegboard test, 2) grip strength

and 3) pinch strength. The Purdue Pegboard test (Model 32020, Lafayette Instrument, Lafa-

yette, USA) was utilised to assess fine manual dexterity where participants are required to

place pins into the right- or left-hand row of vertical holes in the board for 30 s. Separated by

30 s, participants started with their dominant hand first, followed by their non-dominant hand

and then each hand simultaneously. All three scores were summed. Following this, grip and

then pinch strength was assessed using a dynamometer (Digital Multi-Myometer, MIE Medi-

cal Research Ltd., Leeds, UK). For grip strength, participants were measured with the shoulder

at 0˚ flexion, elbow at 90˚ and their wrists in a neutral position. For pinch strength, the shoul-

der and elbow were positioned the same as for grip strength, whereas the wrist was pronated

with participants pinching the dynamometer between the thumb and index finger only. Peak

force (N) of grip and pinch strength were averaged over three attempts that were held for 3 s,

each separated by 60 s.

Cooling methods

Cooling vests. Three different cooling vests were tested: 1) an ice-based cooling vest

(CV0), stored in a -20˚C freezer (ICEEPAK Australia, Mooloolaba, Australia); 2) a non-ice-

based cooling vest with a melting temperature of 14˚C (CV14), stored in a 4˚C fridge (KewlFit,

Model 6626-PEV, TechNiche, Vista, USA); 3) an evaporative cooling vest, immersed in water

(~17˚C) for at least 2 min immediately before the commencement of cooling (CVEV) (Kewl-

Shirt, Model 6201, TechNiche, Vista, USA).

Arm immersion (AI). Participants sat in a collapsible chair (Kore Kooler Rehab Chair,

DQE, Indianapolis, USA) with disposable bags placed in the troughs built into the armrests

and filled with cold water (10.4 [0.7] ˚C) immediately before arm immersion. Participants

were instructed to fully immerse their hands and forearms to approximately 5 cm above the

medial epicondyle of the humerus. No attempt was made to maintain the water temperature

which rose to 19.9 (0.8) ˚C by the end of cooling.

Water-perfused suit (WPS). Participants donned a three-piece portable battery-operated

water-perfused suit (WPS; BCS4 Cooling System, Med-Eng, Ottawa, Canada) that covered the

entire body, except the face, hands and feet. The WPS consists of tubing sewn into a stretchable
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pullover, trousers and hood. Water was circulated at ~375 mL�min–1 from an integrated porta-

ble pump (Delta Wing Pump, Med-Eng, Ottawa, Canada) connected to a specifically designed

bottle which initially contained 90% ice and 10% water. This resulted in ~10˚C water entering

the WPS when first turned on. Like the AI protocol, no attempt was made to maintain water

temperature.

Heliox (HE). Participants breathed a mixture of 21% O2 and 79% He (BOC Limited, Ips-

wich, Australia) from a Douglas bag attached to a two-way T-shape non-rebreathing valve

(Model 2700, Hans-Rudolph, Shawnee, USA) and head support (Model 2726, Hans-Rudolph,

Shawnee, USA). The temperature of the heliox mixture was matched to the ambient tempera-

ture (i.e. 35˚C).

Ice slushy (SL). Participants ingested 7.5 g�kg–1 of ice slushy (-2.2 [0.4] ˚C) at a rate of

1.25 g�kg–1 every 5 min to standardise the ingestion rate [11]. Each drink was prepared using a

slushy machine (Model SSM-180, ICETRO, Incheon, South Korea) with the same flavouring

used for each participant (Fruchilla Natural 99% Fruit Juice, The Slushie Specialists, Bentleigh

East, Australia).

Measurements and calculations

Body composition was measured using dual-energy X-ray absorptiometry (Lunar Prodigy, GE

Healthcare Lunar, Madison, USA) and analysed using dedicated software (enCORE, version 9,

GE Healthcare Lunar, Madison, USA). Pre-trial hydration status was confirmed by urine spe-

cific gravity (PAL 10s, ATAGO, Tokyo, Japan) of<1.020 [27]. If participants provided a sam-

ple>1.020 they were given an additional 500 mL of tap water, which was consumed 30 min

before the commencement of the trial.

The experiments followed the termination criteria set in ISO 12894 [28]; however, no par-

ticipants terminated early. Deep body temperature was estimated from rectal temperature

(Trec) using a thermistor (YSI 400, DeRoyal, Knox, USA) self-inserted 12 cm beyond the anal

sphincter and recorded using a data logger (Squirrel 2020 series, Grant Instruments, Cam-

bridge, UK). Mean skin temperature (Tmsk) was estimated using wireless iButton thermocrons

(DS1922L-F50 iButtons, Maxim Integrated, San Jose, USA) attached to eight sites using a sin-

gle piece of adhesive tape (Premium Sports Tape, AllCare, Kumeu, New Zealand) and calcu-

lated as (ISO 9886 [29]):

Tmsk ¼ 0:07Thead þ 0:175Tscapula þ 0:175Tchest þ 0:07Tupperarm þ 0:07Tforearm þ 0:05Thand

þ 0:19Tthigh þ 0:20Tcalf

Mean body temperature (Tb) was calculated as [30]:

Tb ¼ 0:8Trec þ 0:2Tmsk

Both Trec and Tmsk were recorded at 2 s intervals, averaged per min and analysed every 5

min. The temperature of SL and water during AI were measured using a calibrated thermome-

ter (TL-1W, ThermoProbe, Pearl, USA). Thermal sensation was assessed using a modified

scale [31], where 1 had the anchor of ‘unbearably cold’, 7 ‘neutral’ and 13 ‘unbearably hot’.

Similarly, thermal comfort was assessed using a modified scale [31], where 1 had the anchor of

‘comfortable’ and 5 ‘extremely uncomfortable’. Both thermal sensation and thermal comfort

were recorded every 5 min.
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Statistical analyses

Statistical analyses were conducted using SPSS version 23 for Windows (IBM Corporation,

New York, USA). An α of 0.05 was used to determine statistical significance. Data were

assessed for normality with a Shapiro-Wilk test and visual inspection of data (e.g. boxplots).

Baseline values between cooling methods were compared using a one-way repeated measures

analysis of variance. As baseline physiological responses were similar between cooling methods

(see Results), delta (Δ) Trec, DTmsk; DTb and thermal sensation and comfort were compared

between cooling methods and CON (i.e. trial) across time using a two-way repeated measures

analysis of variance.

Additionally, ΔTrec, DTmsk and DTb were analysed within trial over time, with time points

analysed sequentially. That is, the first comparison was always made between baseline and sub-

sequent time points (e.g. 0 vs 5, 0 vs 10). When a significant difference was observed (e.g. 10th

min), that time point was compared to the next time point (e.g. 10 vs 15). These steps were

repeated until all pairwise comparisons were conducted (i.e. six for each trial). Hand Tsk and

manual dexterity variables between cooling methods and CON were analysed before and after

cooling using a two-way repeated measures analysis of variance. When a main effect or signifi-

cant interaction was achieved, paired samples t-tests were conducted with Bonferroni adjust-

ments applied for multiple comparisons.

Effect sizes were calculated for pairwise comparisons using Cohen’s dav [32] and interpreted

as small (0.2–0.4), moderate (0.5–0.7) or large (�0.8) [33,34]. All data in text, figures and tables

are presented as mean and SD.

Results

Physiological responses

All baseline physiological variables were similar between trials (Table 1; P> 0.05).

Delta rectal temperature. There was a significant main effect for trial (P< 0.001), time

(P = 0.001) and interaction (P < 0.001). Pairwise comparisons of the main effect for trial

revealed ΔTrec for WPS was significantly different versus CVEV, AI, HE and SL. Within trial

analyses revealed Trec was lowered throughout cooling in SL (0 > 20 > 25 > 30 min), while

it increased in WPS (0 < 10< 15 min). Pairwise comparisons of the interaction revealed

CON ΔTrec significantly differed from SL at minute 25 (Fig 1A; P = 0.048, dav = 1.8) and 30

(P = 0.012, dav = 2.3).

Delta mean skin temperature. There was a significant main effect for trial (P< 0.001),

time (P = 0.036) and interaction (P< 0.001). Pairwise comparisons of the main effect for trial

revealed ΔTmsk differed between cooling methods (CV0 < CV14, AI < CVEV < CON, HE, SL).

Table 1. Baseline rectal, mean skin and mean body temperature.

Trec (˚C) Tmsk(˚C) Tb(˚C)

CON 37.2 (0.1) 34.8 (0.4) 36.7 (0.1)

CV0 37.3 (0.2) 34.7 (0.6) 36.8 (0.3)

CV14 37.4 (0.2) 35.0 (0.4) 36.9 (0.2)

CVEV 37.3 (0.2) 34.8 (0.3) 36.8 (0.1)

AI 37.3 (0.2) 34.9 (0.6) 36.8 (0.2)

WPS 37.3 (0.2) 34.7 (0.4) 36.7 (0.2)

SL 37.3 (0.2) 34.8 (0.6) 36.8 (0.3)

HE 37.3 (0.2) 35.1 (0.5) 36.8 (0.2)

https://doi.org/10.1371/journal.pone.0191416.t001
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Fig 1. Delta rectal (A), mean skin (B) and mean body temperature (C) throughout cooling. Note: Abbreviations

denote significant (P< 0.05) difference from CON.

https://doi.org/10.1371/journal.pone.0191416.g001
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WPS produced a lower Tmsk compared with HE and SL but was greater than CV0. Within trial

analyses revealed DTmsk increased over time for CON (0 < 30 min), SL (0< 20 < 25< 30

min) and HE (0 < 15 min), and lowered over time for CV0 (0> 5> 10> 20 min), CV14

(0> 5> 10 > 20 min) and CVEV (0> 5 min). Initially AI lowered Tmsk but subsequently rose

(0> 5< 10 < 15 < 25 < 30 min). Pairwise comparisons of the interaction revealed CON

DTmsk differed from CV0 (Fig 1B; P< 0.001, dav = 7.1–9.1), CV14 (P< 0.001, dav = 5.8–8.1),

CVEV (P< 0.001, dav = 3.4–5.0), AI (P < 0.001, dav = 5.3–14.7) and WPS (P = 0.032–0.039,

dav = 2.5–2.7) throughout cooling.

Delta mean body temperature. There was a significant main effect for trial (P< 0.001),

time (P = 0.010) and interaction (P< 0.001). Pairwise comparisons of the main effect for

trial revealed DTb was significantly lower in CV0 than all other trials (P< 0.05) except CV14

(P> 0.05). Tb was lower in CV14 and AI compared with CVEV, HE, SL and CON (P< 0.004).

WPS did not differ from CON (P > 0.05). Within trial analyses revealed DTb was lowered over

time for CV0 (0> 5> 10> 25 min), CV14 (0> 5 min) and CVEV (0> 5 min). AI initially low-

ered Tb but was soon followed by a subsequent increase (0 > 5< 10 min). Pairwise compari-

sons of the interaction revealed CON DTb differed from CV0 (Fig 1C; P< 0.001, dav = 5.1–

6.8), CV14 (P< 0.001, dav = 3.7–6.5), CVEV (P = 0.001, dav = 3.3) and AI (P = 0.001–0.002,

dav = 3.2–9.9) throughout cooling.

Hand skin temperature. There was a significant main effect for trial (P< 0.001), time

(P = 0.010) and interaction (P < 0.001). Hand Tsk was similar between cooling methods

before cooling (CON: 35.0 [0.5] ˚C). Pairwise comparisons revealed at the end of cooling

hand Tsk was cooler following AI (19.6 [1.0] ˚C) compared with CON (35.3 [0.3] ˚C;

P< 0.001, dav = 24.1).

Manual dexterity

Purdue pegboard. There was a significant main effect for trial (P = 0.031), time (P = 0.004)

and interaction (P< 0.001). Pairwise comparisons revealed participants achieved a lower score

following AI compared with CON (Table 2; P = 0.001, dav = 1.7).

Grip and pinch strength. For grip strength, there was a significant main effect for trial

(P = 0.048) and time (P = 0.004), but no interaction (P = 0.272). Pairwise comparisons revealed

participants achieved greater scores before versus after cooling (Table 2; P = 0.028, dav = 0.4).

Table 2. Purdue pegboard, grip strength and pinch strength before and after cooling.

Purdue (score) Grip Strength (N) Pinch Strength (N)

Before After Before After Before After

CON 67 (5) 64 (8) 522 (61) 511 (55) 81 (17) 70 (16)

CV0 62 (4) 65 (3) 517 (61) 478 (45) 76 (7) 74 (11)

CV14 64 (11) 66 (9) 498 (52) 477 (46) 78 (13) 74 (13)

CVEV 62 (6) 62 (5) 493 (49) 476 (58) 78 (14) 74 (12)

AI 66 (4) 49 (5) a 500 (57) 485 (58) 84 (17) 82 (19)

WPS 67 (5) 66 (5) 525 (66) 509 (48) 74 (17) 70 (18)

SL 66 (5) 64 (4) 521 (66) 500 (52) 73 (15) 71 (12)

HE 65 (6) 66 (5) 518 (51) 525 (51) 78 (17) 74 (19)

aSignificant difference from CON after cooling (P < 0.05).

N, Newtons.

https://doi.org/10.1371/journal.pone.0191416.t002
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For pinch strength, there was a significant main effect for trial (P = 0.034) and time

(P = 0.001), but no interaction (P = 0.063). Like grip strength, pairwise comparisons revealed

participants achieved greater scores before versus after cooling (Table 2; P = 0.001, dav = 0.3).

Perceptual responses

For thermal sensation, there was a significant main effect for trial (P< 0.001), time (P = 0.010)

and interaction (P< 0.001). Pairwise comparisons of the main effect for trial revealed com-

pared with CON thermal sensation was lower in CV0, CV14, AI, SL and WPS (P< 0.05).

Further, thermal sensation was lower during the WPS trial compared with CVEV and HE

(P< 0.05). Pairwise comparisons for the interaction revealed CON differed from CV0 (Fig 2A;

P = 0.027–0.047, dav = 2.1–2.3), CV14 (P = 0.09–0.018, dav = 2.3–2.5), AI (P = 0.020–0.033,

dav = 2.0–2.8), SL (P = 0.017–0.047, dav = 1.6–2.3) and WPS (P = 0.007–0.045, dav = 2.3–2.5).

For thermal comfort, there was a significant main effect for trial (P = 0.001), time (P = 0.001)

and interaction (P< 0.001). However, no significant pairwise comparisons were revealed for

the main effect of cooling method or interaction (Fig 2B; P> 0.05).

Fig 2. Thermal sensation (A) and comfort (B) throughout cooling. Note: For reader clarity, SD is shown for CON

and CV0 only. Abbreviations denote significant (P< 0.05) difference from CON.

https://doi.org/10.1371/journal.pone.0191416.g002
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Discussion

This study adds to the current literature by providing data from seven methods that could be

utilised for cooling before work and their effect on body temperature, dexterity and thermal

perception. The primary findings were that SL was the only cooling method to reduce deep

body temperature (Fig 1A) and all external cooling methods reduced Tmsk (Fig 1B). AI reduced

Purdue pegboard performance by 23%, with no effect on grip or pinch strength (Table 2).

Normothermic individuals who have ingested SL have experienced a decrease in Trec

between 0.3˚C to 0.66˚C [11,24,25,35,36]. The magnitude of Trec reduction is similar to previ-

ous studies when an ice slushy was consumed in a warm environment (>30˚C) [24,25,36]. In

contrast, Siegel et al. [11] asked participants to consume an ice slushy in an ambient tempera-

ture of 24˚C and reported a 0.66˚C reduction in Trec. It is likely that when an ice slushy is con-

sumed in a warm environment there appears to be a more modest reduction in Trec due to a

reduced dry heat loss.

Occupational settings, such as firefighting, may sometimes require breathing apparatus

filled with compressed air, which could be replaced with other gas mixtures. The effect of

inhaled HE on deep body temperature in animal models is equivocal [37–39]. Data from

human studies are limited, with one study reporting a reduction in deep body temperature

when inhaling heliox within a hyperbaric environment [40]. However, HE did not reduce

deep body temperature in the present study (Fig 1A). The reason for this may relate to the gas

characteristics. Thermal conductivity of helium is six times that of nitrogen [41], however,

respiratory heat loss is dependent on thermal capacity [42,43]. Thus, despite a greater specific

heat capacity for helium versus nitrogen, helium has a lower density [41] and therefore a lower

thermal capacity (i.e. thermal capacity = specific heat × density).

As hypothesised, all external cooling methods reduced Tmsk but did not reduce Trec. Previ-

ous research has demonstrated that application of an ice vest to normothermic individuals

does not reduce deep body temperature [9,12,26]. Similarly, non-ice based cooling vests con-

sistently shows no reduction in deep body temperature [12,44,45], aligning with the present

study’s findings.

Considering work capability (performance or capacity) is limited, in part, by high deep

body temperatures [46], the pre-cooling method that has the greatest effect on deep body tem-

perature would appear the most optimal choice. Despite no Trec reduction within 30 min of

external cooling in the present study, these methods may abate the rise in body temperature

during subsequent work. This is supported by research that has shown external cooling to

reduce thermal strain when applied before work in the heat in protective clothing [17]. Thus,

considering SL and CV0 provided the greatest cooling (physiologically and perceptually) and

are relatively accessible, future work should focus on utilising these cooling methods before

work in the heat and protective clothing.

Pre-cooling protocols are varied in their length of application, ranging from 20 min [26,47]

to 45 min [12] with little rationale. The present study demonstrated CV0 and CV14 resulted in

Tmsk changes within 5 min and further reductions were observed up until the 20th min. How-

ever, CVEV only produced a reduction in Tmsk within 5 min, with AI initially lowering Tmsk

and then subsequently increasing. Practically, if an individual has only 5 min for pre-cooling

then these methods will result in lower Tmsk, but CVEV and AI will not result in further benefits

past this. As no further reductions in Tmsk were observed following 20 min of cooling using the

ice or non-ice cooling vest it is suggested this is an optimal cooling duration.

Colder hand and finger Tsk are associated with reductions in manual dexterity [48]. Previ-

ous research has demonstrated extremity cooling results in a reduction in both fine (e.g. Pur-

due pegboard) [49,50] and gross task performance (e.g. grip strength) [51,52]. In the present
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study, however, AI lowered hand Tsk and adversely affected Purdue pegboard performance,

but did not affect grip or pinch strength (Table 2). The reason for the lack of effect of cold

extremities on grip and pinch strength in the present study is unclear, however, it is obvious

that fine tasks are most affected by cold extremities.

While the present study reports the responses to a broad range of pre-cooling methods, the

results may not accurately translate to all individuals. Factors such as age, sex, body mass, sur-

face area-to-mass ratio and body composition may influence responses to cooling [53]. Despite

this, while the magnitude of responses may differ between distinctive groups, the pre-cooling

methods that are most effective may not.

It is concluded that while SL will lower deep body temperature, the external cooling meth-

ods used in this study will lower Tmsk, with no reductions in deep body temperature. The user

should be mindful that using external cooling methods similar to the present study provides

no further Tmsk cooling past 20 min. Finally, cooling the extremities may compromise manual

dexterity, and therefore individuals requiring fine manual dexterity should opt for an alterna-

tive pre-cooling method.
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