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Abstract

Cardiovascular magnetic resonance imaging has become the gold standard for evaluating 

myocardial function, volumes, and scarring. Additionally, cardiovascular magnetic resonance 

imaging is unique in its comprehensive tissue characterization, including assessment of 

myocardial edema, myocardial siderosis, myocardial perfusion, and diffuse myocardial fibrosis. 

Cardiovascular magnetic resonance imaging has become an indispensable tool in the evaluation of 

congenital heart disease, heart failure, cardiac masses, pericardial disease, and coronary artery 

disease. This review will highlight some recent novel cardiovascular magnetic resonance imaging 

techniques, concepts, and applications.
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Cardiovascular magnetic resonance (CMR) is now a mature imaging modality and has 

become the gold standard technique for evaluating myocardial function, quantifying 

myocardial volumes, and detecting myocardial scar. CMR has the unique ability to provide 

detailed tissue characterization, including assessment of edema, iron overload, and diffuse 

myocardial fibrosis. Recent guidelines and appropriate use criteria documents increasingly 
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include new indications for CMR for the evaluation of congenital heart disease, heart failure, 

and coronary artery disease (CAD). CMR is a field characterized by ongoing technical 

development producing many novel clinical applications, and as such, this review will 

describe only a subset of evolving CMR techniques.

Advanced Image Reconstruction Techniques

Recent advances in image reconstruction techniques have the potential to further increase 

the clinical utility of CMR by significantly accelerating image acquisition, enabling robust 

3-dimensional (3D) volumetric imaging and fostering the development of novel CMR 

imaging techniques.

Conventional CMR Reconstruction Techniques

Currently, most clinical CMR imaging is performed by sequentially acquiring lines of raw 

data on a Cartesian grid. This process is inherently slow, and without any acceleration 

techniques, it would take ≈250 ms to acquire a single image. A single-shot image with this 

temporal footprint would be corrupted by cardiac motion, and a cine acquisition would have 

only 4 frames per second. To overcome this limitation and increase effective temporal 

resolution, most CMR images are acquired in a segmented fashion, where a portion of the 

total required lines are acquired in each heartbeat during a breath hold, and the acquisition is 

synchronized to the ECG using cardiac gating. However, because images are synthesized 

from data acquired over multiple heartbeats, this technique is sensitive to changes in the 

cardiac cycle length, which occur during arrhythmias, and to changes in respiratory position 

because of inadequate breath holding. The situation becomes even more challenging for 

high-resolution, dynamic, or 3D acquisitions, which require even more data to be acquired. 

Thus, approaches for speeding up CMR image acquisition rely on using other prior 

information to produce images with fewer lines of data.

Parallel Imaging and k-t-Accelerated Imaging

The number of lines required to accurately reconstruct an image can be reduced using 

parallel imaging techniques which use differences in the spatial sensitivity of multiple 

receiver coils placed around the patient to provide the additional information needed for 

image reconstruction. Parallel imaging approaches are widely used on commercial magnetic 

resonance imaging systems with acronyms such as Sensitivity Encoding (SENSE), 

Generalized Autocalibrating Partial Parallel Acquisition (GRAPPA), and Autocalibrating 

Reconstruction for Cartesian imaging (ARC), but are typically limited to 2- to 3-fold 

acceleration factors because of the geometry of the coil elements and reduction in signal-to-

noise ratio because of acquiring less data.

The amount of data needed for image reconstruction can be further reduced by taking 

advantage of the correlation between images at different times in the cardiac cycle or 

between different heartbeats in a dynamic acquisition. Images can be reconstructed with a 

reduced number of data lines using techniques such as k-t Broad-use Linear Acquisition 

Speed-up Technique (BLAST),1 k-t SENSE, or k-t Principal Component Analysis (PCA).2 

These innovative techniques have enabled 3D perfusion imaging, 4-dimensional flow, and 
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real-time imaging with high temporal and spatial resolution. Accelerations of 12× have been 

achieved using these techniques for 3D data acquisition.3 However, these techniques can be 

corrupted by respiratory motion.

Constrained Reconstruction and Compressed Sensing

An active area of image reconstruction research involves compressed sensing (CS), which 

enables reconstruction of images from significantly fewer lines of data by relying on the 

concept that the information content of CMR images is compressible, which is referred to as 

sparsity. CS has been used for several applications, including perfusion imaging,4–6 flow 

imaging,7 angiography, T1 mapping,8 and real-time free-breathing cine imaging.9 The CS 

technique has also been applied to continuously acquired free-breathing radial techniques, 

such as in the Extra-Dimensional Golden-angle Radial Sparse Parallel Imaging (XD-

GRASP)10 technique, which enables separation of the data in both cardiac and respiratory 

dimensions without the need for cardiac gating or breath holding (Figure 1) While these 

nonstandard reconstruction methods are often computationally demanding, the recent 

availability of improved computer hardware, such as graphical processing units, is making 

them practical. CS techniques are still in evolution and will need more research to determine 

whether they will be robust enough for routine clinical application.

Advanced Techniques and Applications for First-Pass Perfusion CMR

With recent hardware and software improvements, first-pass perfusion imaging using CMR 

has emerged as an attractive alternative to single photon emission computed tomography 

myocardial perfusion imaging (MPI) for assessment of patients with suspected CAD. 

Perfusion is assessed using CMR by imaging the first pass of a gadolinium-based contrast 

agent (GBCA) through the myocardium during vasodilator stress. Regions that are 

hypoperfused have a slower uptake and lower concentration of the GBCA and appear as 

hypointense perfusion defects on the image series.

Current clinically available techniques typically image 3 short-axis myocardial slices 

(thickness, 8–10 mm) with an in-plane resolution of 2 to 3 mm for conventional methods 

and <2 mm for advanced high-resolution approaches typically using parallel imaging 

techniques or k-t acceleration, as described earlier. The diagnostic performance of qualitative 

perfusion CMR versus single photon emission computed tomography MPI has been studied 

in multiple clinical trials for detection of significant CAD. The CE-MARC11 study (Clinical 

Evaluation of Magnetic Resonance Imaging in Coronary Heart Disease) demonstrated a 

superior diagnostic performance for perfusion CMR compared with single photon emission 

computed tomography MPI in 752 patients (area under the receiver-operating characteristic 

curve, 0.89 versus 0.74; P<0.001). The performance of high-resolution perfusion CMR was 

compared with positron emission tomography MPI in a limited study of 41 CAD patients 

and demonstrated similar performance both in terms of visual analysis and in terms of 

quantification of perfusion reserve.12
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Recent Technical Advances

Whole-Heart Spatial Coverage—Among the most significant recent advancements is 

the ability to achieve improved spatial coverage, either by extending the number of 2-

dimensional slices or by acquiring 3D volumetric data (Figure 2).3 Unlike nuclear MPI 

methods, which intrinsically achieve whole-heart coverage, extending the spatial coverage of 

CMR-based perfusion methods to image the whole heart involves technical trade-offs, such 

as reducing spatial resolution or increasing the temporal acquisition window, both of which 

could lead to lower image quality when compared with high-resolution 3-slice methods.13 

However, a recent multicenter study14 showed excellent diagnostic performance for 3D 

whole-heart perfusion CMR for detection of functionally significant CAD defined by 

fractional flow reserve (sensitivity and specificity, 84.7% and 90.8%, respectively).

Improved Imaging of Subendocardial Perfusion—In contrast to nuclear MPI, 

including positron emission tomography, CMR perfusion imaging has the unique ability to 

resolve the differences in myocardial perfusion between subepicardial and subendocardial 

layers because of its potential for high spatial resolution ranging from 1.2 to 3 mm. This is 

relevant because the subendocardium is the most susceptible layer to ischemia and typically 

the earliest affected. Conventional CMR techniques, however, are limited by the so-called 

subendocardial dark-rim artifact (DRA) and may fall short of reliable imaging of 

subendocardial perfusion.15 High-resolution (1.4 mm in-plane) perfusion CMR with 

Cartesian sampling, based on k-t BLAST, reduces the extent of DRA and, thereby, enables 

accurate detection of subendocardial ischemia, clearly visualizing subendocardial perfusion 

defects in this patient with 2-vessel CAD (Figure 3A).16 A different approach involves data 

acquisition along non-Cartesian patterns, such as spiral and radial trajectories. These 

techniques are less susceptible to DRA because of their reduced motion sensitivity.15 Spiral 

perfusion CMR is effective in reducing DRA,17,18 enabling visualization of subendocardial 

perfusion defects (Figure 3B) with good clinical performance in a single-center study.19 

Recent spiral approaches using compressed sensing have enabled wholeheart data 

acquisition.6

Radial imaging has also been shown to be effective in minimizing the DRA.20 Radial 

perfusion CMR is well suited for continuous acquisition and self-gating, effectively 

eliminating the need for ECG gating, and has the potential to achieve high diagnostic 

accuracy in arrhythmic patients.21 Radial perfusion imaging, using a slice-interleaved 

continuous approach (Figure 3C), has demonstrated potential for acquiring high-resolution 

perfusion images (1.4 mm in-plane) at the end-systolic phase without the need for ECG 

gating.5 These techniques are largely experimental and have not been fully validated 

clinically.

Quantitative Perfusion CMR in CAD and Microvascular Dysfunction—
Quantitative perfusion CMR methods have continued to advance, and recent studies have 

demonstrated incremental diagnostic utility of quantifying absolute myocardial blood flow 

over visual interpretation and semiquantitative analysis.22,23 The main challenges for CMR 

perfusion quantification include a lack of standardization of postprocessing approaches and 

the overall perception that quantitative perfusion CMR protocols are complex and require 
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labor-intensive postprocessing. Regarding the latter, several efforts are underway to simplify 

the data acquisition protocol, for example, eliminating the need for breath holding or ECG 

gating and to simplify the quantification procedure by enabling fully automatic 

postprocessing. One of the emerging application areas for perfusion CMR is assessment of 

coronary microvascular dysfunction, which is typically characterized by signs and 

symptoms of ischemia in the absence of obstructive CAD. Performance of semiquantitative 

perfusion CMR for detection of coronary microvascular dysfunction was evaluated in a 

recent study of 118 women who also underwent coronary reactivity testing, resulting in a 

sensitivity and specificity of 73% and 74%, respectively.24 It is expected that quantification 

of myocardial blood flow and perfusion reserve will further improve the diagnostic 

performance compared with semiquantitative analysis. Further standardization of techniques 

and improved inline automatic postprocessing for rapid quantification of myocardial blood 

flow will be necessary for widespread utility and clinical impact.

Noncontrast Parametric Mapping Techniques

Given recent safety concerns of using GBCAs in patients with impaired renal function, there 

has been renewed interest in the development of techniques which can perform tissue 

characterization without the need for contrast agents. These techniques rely on the intrinsic 

magnetic T1, T2, and T2* relaxation properties of the myocardium. By measuring images 

with different sensitivity to these intrinsic properties, parametric maps can be created.25

T1 Mapping

Native T1 mapping is acquired before the administration of exogenous agents to provide a 

quantitative map of T1 relaxation times of the tissues being imaged on a pixel-by-pixel 

basis. Native T1 values reflect signals originating from the intracellular and extracellular 

(including interstitial and intravascular) compartments and reflect intrinsic differences in 

tissue properties. A range of T1 mapping techniques are available based on inversion 

recovery (eg, Modified Look-Locker Imaging [MOLLI],26 shortened MOLLI 

[ShMOLLI]27), saturation recovery (Saturation Recovery Single-Shot Acquisition 

[SASHA],28 Saturation Method Using Adaptive Recovery Times for Cardiac T1 Mapping 

[SMARTT1]), or hybrid techniques (SaturationPulse Prepared Heart Rate Independent 

Inversion-Recovery [SAPPHIRE]).29

Increased native T1 is useful for detecting acute myocardial pathologies, such as edema, 

infarction, and myocarditis,30 and subacute cardiomyopathies, such as cardiac amyloidosis, 

hypertrophic cardiomyopathy, and dilated cardiomyopathy, and for assessing diffuse fibrosis.
29,31–34 Low global myocardial T1 values have clinical utility in myocardial iron overload 

(siderosis)35 and Fabry disease.36 In Anderson–Fabry disease, which is characterized by 

intramyocardial lipid deposition, low native T1 facilitates differentiation from other causes 

of left ventricular hypertrophy, such as hypertrophic cardiomyopathy and amyloidosis, 

which increase native T1. Native T1 mapping can detect the increase in myocardial blood 

volume associated with coronary vasodilation downstream of significant coronary stenoses.
37 This may potentially be an emerging application to detect myocardial ischemia without 

the need for GBCA. In addition to its ability to diagnose disease, there is increasing 
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evidence that native T1 mapping carries prognostic power in risk stratification, including in 

patients with acute myocardial infarction, amyloidosis, and dilated cardiomyopathy.29

T2 Mapping

Myocardial edema plays a role in many disease processes that affect the myocardium, 

including myocarditis and myocardial infarction. Prior to the widespread availability of T2 

mapping pulse sequences, edema was typically imaged using dark-blood T2-weighted spin 

echo pulse sequences, but these sequences have several inherent limitations. Newly 

developed T2-mapping sequences can overcome these limitations by quantifying T2 

relaxation times.38 Studies in myocarditis and acute myocardial infarction have consistently 

demonstrated that T2 mapping provides increased diagnostic accuracy as compared with T2-

weighted techniques for detection of myocardial edema.39,40 T2-mapping techniques are 

replacing T2-weighted techniques for most diagnostic applications.

New Applications of T2* Mapping

T2* mapping has become well established for the detection of myocardial iron overload and 

predicts both the progression to heart failure and the requirement for future chelation 

therapy.41 However, there are several other important and emerging applications of T2* 

mapping.

T2* Mapping of Myocardial Infarction—In the early 1980s, myocardial hemorrhage 

was observed in animal studies as a potential complication of myocardial ischemia and 

reperfusion injury.42 Recent studies using T2* mapping have demonstrated that hemorrhagic 

infarction leads to chronic iron deposition in the myocardial scar, which is associated with 

ongoing inflammation and monocyte infiltration, specifically colocalized in the iron-

deposition zones.43 In patients with chronic ischemic cardiomyopathy who subsequently 

received an ICD, early evidence suggests that iron may be a strong predictor of ventricular 

arrhythmias with a 33-fold increase in odds for a significant arrhythmic event.44 CMR has 

revealed hemorrhagic infarction and chronic iron deposition as potentially new physiological 

mechanisms of heart failure and arrhythmia in CAD.

Assessment of Extracellular Volume as a Novel Imaging Biomarker

The late gadolinium–enhanced technique has become an important imaging biomarker for 

the detection of focal fibrosis in both ischemic and nonischemic cardiomyopathies. 

However, several cardiac pathologies result in more diffuse alterations of the extracellular 

matrix, which are not easily detected using late gadolinium–enhanced. CMR T1 mapping 

techniques may be used in conjunction with magnetic resonance imaging contrast agents to 

quantify the expansion of the extracellular volume (ECV) resulting from inflammation, 

edema, infiltration, or fibrosis.

Measurement of ECV was first described in the late 1990s by Arheden et al,45 who validated 

the technique using radioisotopes and light microscopy and demonstrated that ECV was 

23% in normal myocardium and 90% in infarcted myocardium (Figure 4) The development 

of rapid breath-hold T1 cardiac mapping sequences, such as the MOLLI technique,26 has 
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made ECV mapping clinically feasible. The relatively fast exchange kinetics of the contrast 

agent between the blood pool and myocardium, and slow excretion by the kidneys, enable 

stable measurement of ECV typically after 5 to 10 minutes after a bolus injection.45–48 

Thus, ECV measurement can easily be integrated into a standard clinical protocol.

The consensus statement on T1 mapping from the Society of Cardiovascular Magnetic 

Resonance, which is currently being updated, highlights several challenges and best 

practices for obtaining reliable assessment of T1 and ECV.49 It is important to note that ECV 

expansion can be caused by several factors in addition to diffuse fibrosis, including edema, 

infiltration, or changes in intravascular volume. Thus, ECV can only be used as a surrogate 

maker for diffuse fibrosis when these other factors have been considered.

Clinical Validation and Utility

Clinical validation using biopsies to correlate collagen content to ECV was first performed 

after a bolus of GBCAs followed by an infusion using a regular late gadolinium–enhanced 

sequence50 and later also using ECV mapping techniques after a single contrast injection.51 

The study by Ugander et al48 nicely demonstrated the clinical utility of ECV mapping in 

patients with overt and subclinical myocardial pathology (Figure 5)

Several studies have demonstrated that T1 mapping and ECV mapping contribute 

mechanistic and prognostic insights into valve disease, infarction, and hypertension.29,52 T1 

and ECV have demonstrated potential utility in cases of suspected cardiomyopathy, 

infiltrative disease,53 myocarditis,30 and hypertrophic cardiomyopathy.54 Widespread 

availability of fully automatic generation of ECV maps on the scanner will facilitate routine 

clinical use of this technique.55

Recent Developments in Non-Breath-Hold and Non-ECG-Gated CMR 

Techniques

Challenges of Conventional Techniques

Motion of the heart resulting from both cardiac and respiratory cycles remains a challenge 

for robust CMR imaging. In patients with shortness of breath, breath holding may be 

inadequate, resulting in image artifacts. Free-breathing CMR techniques which use 

navigators to track diaphragmatic motion have been implemented in most MR systems from 

all major vendors and have been used in many CMR applications, such as noncontrast 

whole-heart coronary MRA,56 3D myocardial T1 mapping,57 and 3D cardiac diffusion-

weighted CMR.58 However, relatively low gating efficiency, typically between 30% and 

50%, may result in lengthy and unpredictable imaging times, particularly with whole-heart 

imaging. Recent navigator techniques which retrospectively correct motion, such as Three-

Dimensional Retrospective Image-Based Motion Correction (TRIM), can achieve nearly 

100% gating efficiency.59 Although clinically useful, diaphragmatic navigator gating 

provides an indirect measure of heart motion and requires time and expertise to set up 

correctly. Several factors can cause poor ECG gating, particularly at 3T, resulting in motion-

induced artifacts. While real-time imaging can be performed without ECG triggering, 
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conventional techniques have reduced temporal or spatial resolution, limiting quality as 

compared with breath-held imaging.

Non-Breath-Hold and Non-ECG-Gated CMR Techniques

The CMR examination could be greatly simplified if high-quality images could be obtained 

without the need for breath holding or ECG gating, and this is an active area of CMR 

research. By significantly undersampling the raw data, it is possible to perform real-time 

CMR without ECG gating, which provides tolerance to arrhythmias. Non-Cartesian 

sampling patterns are often used for real-time cine imaging because they are more time-

efficient and robust to flow and motion. With radial sampling and nonlinear inverse 

reconstruction with temporal regularization, Zhang et al60 achieved a temporal resolution of 

20 ms with online reconstruction using a graphical processing unit. Feng et al61 showed 

improved signal-to-noise ratio, contrast-to-noise ratio, and image quality of spiral 

acquisition over radial sampling for real-time cine CMR. Sharif et al5 used a continuous 

magnetization-driven radial sampling for non-ECG-gated myocardial perfusion magnetic 

resonance imaging. One of the problems with real-time CMR is limited temporal and spatial 

resolution. Kellman et al62 developed a retrospective reconstruction method to improve 

temporal and spatial resolution of real-time cine by combining data acquired over multiple 

heartbeats using respiratory motion correction and rebinning of data.

Direct measurement of heart motion can be obtained from a self-navigator derived from the 

imaging data itself.63 Image projections,64 2-dimensional images,65 or 3D66 images have 

been used to derive self-navigator signals. In more recent techniques, motion data for both 

respiratory gating and cardiac triggering can be extracted by filtering a self-gating projection 

because cardiac and respiratory motion have different temporal frequency ranges and 

information content (Figure 6). These methods have been used for 2-dimensional67 and 3D 

cine imaging68 and 4-dimensional whole-heart coronary MRA.59 An alternative approach is 

to resolve cardiac and respiratory motion using a CS technique, such as XD-GRASP, as 

described earlier.10 Although these techniques hold significant promise, they have yet to 

undergo significant clinical validation. These techniques may allow drastic simplification of 

the workflow or push-button CMR, which may facilitate the wide clinical application of 

CMR.

Other Emerging Clinical Techniques

There are several techniques on the verge of clinical translation which deserve mention but 

cannot be discussed in detail because of the scope of this review. Recent advances in 

diffusion-weighted CMR, such as diffusion tensor imaging, have enabled detailed 

assessment of myocardial fiber orientation. These techniques are providing novel 

physiological insights into cardiovascular physiology, such as the difference in sheet-let 

orientations in both dilated and hypertrophic cardiomyopathies.69 Diffusion-weighted CMR 

imaging can detect edema and fibrosis in myocardial infarction. A recent study has 

demonstrated significant correlation between the apparent diffusion coefficient and ECV, 

suggesting that diffusion-weighted CMR imaging could be a noncontrast surrogate for ECV.
70 Current techniques are limited by long acquisition times, but advances in image 
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acquisition and reconstruction will make this technique clinically feasible. CMR has the 

ability to measure blood flow and noninvasively assess Qp/Qs, making it an indispensable 

tool in assessment of congenital heart disease. There has been growing interest in the 

technique of 4-dimensional flow imaging, which can simultaneously assess myocardial 

structure and function and blood flow dynamics within a single scan.71 The technique holds 

promise for assessment of congenital heart disease and diseases of the aorta.71 There has 

also been a growing interest in rapid assessment of myocardial strain, partially driven by the 

success of speckle tracking echocardiography. New techniques, such as displacement 

encoding with stimulated echoes (DENSE)72 and feature tracking from cine imaging, are 

bringing CMR strain techniques into routine clinical practice.73 Another area of active 

research is improving CMR imaging in the presence of cardiac devices. New techniques, 

such as wideband late gadolinium–enhanced, are extending the utility of CMR to the 

growing number of patients with implantable cardiac devices.74

Conclusions

The diagnostic and prognostic utility of CMR continues to evolve, with new techniques 

providing novel insights into cardiac pathophysiology and providing unprecedented tissue 

characterization of the myocardium. Novel acquisition strategies combined with advanced 

reconstruction techniques are enabling high-resolution, truly 3D dynamic acquisitions, 

which will be the future of CMR. Recent development of fast T1, T2, and T2* mapping 

techniques are rapidly entering the clinical CMR arsenal of techniques for tissue 

characterization. T1 mapping combined with GBCAs is enabling in vivo assessment of ECV, 

which is finding applications in multiple cardiac pathologies. Finally, limitations because of 

cardiac and respiratory motion are being overcome, which could revolutionize how CMR is 

performed in routine clinical practice and lead to more widespread clinical adoption of 

CMR.
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Figure 1. 
Free-breathing Extra-Dimensional Golden-angle Radial Sparse Parallel Imaging (XD-

GRASP) cine imaging. A, In a patient without arrhythmia, free-breathing XD-GRASP has 

similar image quality to standard breath-held acquisition. B, In a patient with premature 

ventricular contractions, XD-GRASP produces high-quality cine images, while reference 

breath-held technique demonstrates ghosting artifacts. Images are reconstructed as 2-

dimensional (2D) arrays of physiological phases, permitting study of cardiorespiratory 

interactions. Reproduced from Feng et al10 with permission of the publisher. Copyright 

©2015, John Wiley and Sons.
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Figure 2. 
Enabling quantification of myocardial ischemic burden using 3-dimensional (3D) whole-

heart perfusion cardiovascular magnetic resonance imaging (CMR). A, Consecutive slices of 

a 3D perfusion CMR scan during adenosine stress in a patient with 3-vessel coronary artery 

disease (CAD). The acquired voxel size is 2.3×2.3×10 mm3. B, Identical images illustrating 

volumetry of perfusion defects using a signal intensity threshold of 2 SD below the remote 

myocardium for the hypoenhanced regions (red areas). The ischemic burden (volume of 

myocardial hypoenhancement) was 24% of the total myocardium. Reprinted from Journal of 
the American College of Cardiology, 57.4, Manka et al, Dynamic 3-Dimensional Stress 

Cardiac Magnetic Resonance Perfusion Imaging Detection of Coronary Artery Disease and 

Volumetry of Myocardial Hypoenhancement Before and After Coronary Stenting, pages 

437–444, Copyright 2011, with permission of American College of Cardiology Foundation.
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Figure 3. 
Enabling improved subendocardial perfusion imaging using high-resolution and non-

Cartesian cardiovasular magnetic resonance imaging (CMR). A, High-resolution (1.4 mm 

in-plane) stress perfusion CMR with Cartesian sampling at 1.5T using 5-fold acceleration 

with k-t BLAST reconstruction demonstrates subendocardial stress-induced perfusion 

defects in the inferior and inferolateral walls. Angiography revealed a subtotal occlusion of 

the right coronary artery and a significant stenosis in the left circumflex coronary artery 

territory. Reprinted from Manka et al16 with permission of the publisher. Copyright ©2010, 

Elsevier. B, Non-Cartesian adenosine perfusion CMR with spiral sampling at 1.5T at stress 

(top) and rest (bottom) demonstrates subendocardial perfusion abnormality in the anterior 

and lateral walls (arrows). Coronary angiogram demonstrated multivessel-coronary artery 

disease (CAD). Variable density spiral sampling with apodization can detect subendocardial 

defects without dark-rim artifacts. Reprinted from Salerno et al19 with permission of the 

publisher. Copyright ©2014, Wolters Kluwer Health, Inc. C, High-resolution (1.4 mm) non-

Cartesian perfusion CMR performed using non-ECG-gated continuous acquisition radial 

sampling enables systolic imaging of all slices at 3T at stress (top) and rest (bottom) in a 

patient with a history of CAD and prior revascularization. A transmural perfusion gradient 

with hypoperfused subendocardium in the inferior wall is consistent with the chronic total 

occlusion of the right coronary artery shown by angiography. Continuous radial acquisition 

achieves high-resolution systolic imaging without ECG-gating, which is free of dark-rim 

artifact. Reprinted from Sharif et al5 with permission of the publisher. Copyright ©2015, 

John Wiley and Sons.
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Figure 4. 
A, Tissue distribution of extracellular tracers in normal and reperfused infarcted 

myocardium. B, Extracellular volume (ECV) measurements by magnetic resonance (MR) 

imaging in vivo in normal and infarcted rat myocardium after a single injection of Gd-

DTPA-BMA (orange bars). T1 measurements were performed in ROIs on single-shot echo-

planar inversion recovery MR images (TR 7000 ms). Blue bars show validation experiments 

by independent radioisotope autoradiography technique using 99mTc-DTPA ex vivo. The 

ECV in normal myocardium by MR imaging was 23±2% and the corresponding value in 

infarcted myocardium was 90±5%, indicating almost complete necrosis. Reproduced from 

Arheden et al45 with permission of the publisher. Copyright ©1999, Radiological Society of 

North America.
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Figure 5. 
Three examples of late gadolinium–enhanced (LGE) images (left column) and 

corresponding extracellular volume (ECV) maps (right column) in patients with lateral 

infarction (top row), hypertrophied cardiomyopathy (middle row), and normal myocardium 

(bottom row). All images acquired after a single magnetic resonance (MR) contrast 

injection. ECV maps can contribute information on subtle myocardial diseases. Reprinted 

from Ugander et al48 with permission of the publisher. Copyright ©2012, Oxford University 

Press.
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Figure 6. 
A case of failed ECG triggering (A) cardiac component. B, ECG waveform. C, Respiratory 

component. D, Superior-inferior (SI) translation detected by template matching. E, Self 

gating (SG) projection time series. The cardiac SG waveform showed distinct valleys as 

triggering features. F, The ECG waveform yielded incorrect triggers, likely caused by the 

chest deformity shown in the sagittal scout image. G, The ECG-triggered cine image showed 

significant blurring because of the unresolved cardiac motion. H, Switching to pulse 

triggering improved the image quality. I, The same 4-chamber view was reformatted from 

the self-gated 4D series, showing excellent image quality. Reprinted from Pang et al59 with 

permission of the publisher. Copyright ©2014, John Wiley and Sons.
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