Skip to main content
. Author manuscript; available in PMC: 2018 Mar 1.
Published in final edited form as: J Aging Health. 2016 Dec 8;30(3):342–364. doi: 10.1177/0898264316678756

Table 3.

Odds Ratios From Logistic Regression Models Predicting Antihypertensive Medication Use.

Antihypertensive use

A

Women Men All



Model 1 Model 2 Model 3
Education (less than high school)
  High school 1.691*** 0.986 1.016
  Some college 1.797*** 1.063 1.105
  Bachelor’s degree 1.475** 1.235 1.257
Female 1.108
Interactions (less than high school × male)
  High school × female 1.623**
  Some college × female 1.579*
  Bachelor’s degree × female 1.141
Demographic (non-Hispanic White)
  Hispanic 1.034 0.663** 0.817
  Non-Hispanic Black 1.006 1.255 1.094
  Age 1.049*** 1.052*** 1.050***
  Partnered 1.304** 1.232 1.281**
Simultaneous diagnosis
  Diabetes 0.532* 0.352*** 0.428***
  Heart problem 2.098** 2.530*** 2.301***
  Stroke 1.299 0.596 0.819
  Cancer 1.103 1.607 1.380
  Psychological problem 0.999 0.499* 0.752
Control variables
  Health insurance 1.607*** 1.035 1.321**
  Using any other medications 3.074*** 4.668*** 3.784***
Constant 0.083*** 0.100*** 0.085***
Sample size 2,256 1,621 3,877
Panel observations 2,256 1,621 3,877

Note. Reference categories shown in parentheses. All models also control for a prior diagnosis (i.e., diabetes, heart problem, or stroke), none of which were significant predictors of behavioral modifications.

*

p < .1.

**

p < .05.

***

p < .01.