Table 2. Multivariate logistic regression model to assess the associations between uterine leiomyoma and VTE.
VTE case | Control | Adjusted odds ratioModel 1 (95 % CI) | p value | Adjusted odds ratioModel 2 (95 % CI) | p value | |
Before matching data | ||||||
Non-leiomyoma | 2166 (94.92%) | 375659 (95.68%) | 1 (reference) | 1 (reference) | ||
Leiomyoma | 116 (5.08%) | 16955 (4.32%) | 1.464 (1.2-1.78) | 0.0001 | 1.547 (1.27-1.88) | < 0.0001 |
Frequency matching data | ||||||
Non-leiomyoma | 2166 (94.92%) | 8798 (96.38%) | 1 (reference) | 1 (reference) | ||
Leiomyoma | 116 (5.08%) | 330 (3.62%) | 1.485 (1.17-1.88) | 0.0011 | 1.486 (1.19-1.86) | 0.0005 |
Propensity score matching data | ||||||
Non-leiomyoma | 2116 (95.02%) | 8334 (95.90%) | 1 (reference) | 1 (reference) | ||
Leiomyoma | 111 (4.98%) | 356 (4.10%) | 1.287 (1.03-1.61) | 0.025 | 1.26 (1.01-1.57) | 0.0405 |
Model 1 adjusted for uterine leiomyoma and the significantly different variables in Table 1. Model 2 adjusted for uterine leiomyoma, age and propensity score.
VTE, venous thromboembolism.