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Abstract Numerous methods to segment tumors using 18F-
fluorodeoxyglucose positron emission tomography (FDG
PET) have been introduced. Metabolic tumor volume
(MTV) refers to the metabolically active volume of the tu-
mor segmented using FDG PET, and has been shown to be
useful in predicting patient outcome and in assessing treat-
ment response. Also, tumor segmentation using FDG PET
has useful applications in radiotherapy treatment planning.
Despite extensive research on MTV showing promising re-
sults, MTV is not used in standard clinical practice yet,
mainly because there is no consensus on the optimal method
to segment tumors in FDG PET images. In this review, we
discuss currently available methods to measure MTV using
FDG PET, and assess the advantages and disadvantages of
the methods.
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Introduction

18F-fluorodeoxyglucose (18F-FDG) positron emission
tomography/computed tomography (PET/CT) has been used
in the staging, restaging, and monitoring of treatment response
in multiple types of malignancies. The high metabolic activity
of a tumor in a pretreatment PETscan is associated with worse
prognosis, and changes in metabolic activity from pretreat-
ment to follow-up can be used in predicting response to treat-
ment. The most commonly used parameter for the quantifica-
tion of metabolic activity is the standardized uptake value
(SUV), which is a ratio of tissue radioactivity concentration
and the injected dose normalized by body weight (or lean
body weight). The maximum SUV (SUVmax) is the maxi-
mum voxel value of SUV in the tumor. Since measuring
SUVmax is simple and observer independent, SUVmax is
the most commonly used parameter in clinical practice.
However, SUVmax does not represent the whole tumor met-
abolic burden because the value is from only one voxel. Also,
for the same reason, SUVmax is sensitive to image noise, and
is therefore impacted by various patient characteristics and
imaging parameters. Peak SUV (SUVpeak), which is the av-
erage value within a small, fixed-size region of interest (ROI)
in the tumor, can be a more robust alternative to SUVmax.
However, SUVpeak is sensitive to the size and the shape of
the region of interest (ROI), and standards for measuring
SUVpeak have not been established yet [1]. Metabolic tumor
volume (MTV) is a measurement of the tumor volume with a
high metabolism, while total lesion glycolysis (TLG) is de-
fined as the product of the mean SUVand the MTV. In 1999,
Larson et al. introduced the concept of TLG [2]. Since then,
MTV and TLG have been extensively evaluated and have
demonstrated efficacy in multiple types of malignancies.
Moreover, MTVand TLG are considered to be more compre-
hensive parameters that better reflect metabolic tumor burden
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than SUVmax [3–5]. Also, tumor volume measurement using
FDG PET has advantages over using anatomic imaging
methods such as magnetic resonance imaging (MRI) or com-
puted tomography (CT). Firstly, measuring MTV is easier and
faster than tumor volume measurement from anatomic imag-
ing. Also anatomic imaging methods may not reflect the
shrinkage of the viable tumor portion after chemo- or radio-
therapy. For example, it has been reported that MTV is more
useful than tumor volume measured from MR for prediction
of histologic response in osteosarcoma [3, 6]. However, the
volumetric parameters (MTVand TLG) of FDG PET/CT have
not been incorporated into standard clinical practice yet. This
is because volumetric measurements of FDG PET/CT require
an accurate segmentation of the tumor, unlike SUVmax. The
optimal segmentation method to measure these values has not
been established, and these values are significantly affected by
segmentation methods [7, 8].

In this review, we briefly summarize the clinical utility of
MTV and TLG, describe multiple segmentation methods to
measure MTV, summarize the results of studies comparing
multiple segmentation methods, and lastly, discuss what may
be the most suitable method for measuring MTV.

Clinical Utility of MTVand TLG of FDG PET/CT

MTV and TLG have shown prognostic value in a variety of
malignancies [9–12]. Multiple studies have shown that base-
line MTVand TLG have prognostic value [13–15]. In partic-
ular, in non-small cell lung cancer, high MTV and TLG pre-
dicted worse prognosis in patients with low TNM stage who
were treated with curative surgery [16], and also in patients
with advanced stages treated with chemotherapy [17]. Also, in
osteosarcoma, baseline MTV was an independent prognostic
factor for metastasis-free survival [18]. A recent meta-analysis
revealed that MTV and TLG are prognostic factors in non-
small cell lung cancer and head and neck cancer [19, 20]. In
the meta-analysis of non-small cell lung cancer, patients with
high MTV had a worse prognosis with a hazard ratio of 2.71
for adverse events and a hazard ratio of 2.31 for death [19].

Changes inMTVand TLG during chemotherapy have been
shown to be associated with overall tumor response. Larson
et al. used a change of TLG after chemotherapy to measure
treatment response [2]. Since then, there have been multiple
studies that show the predictive role of MTV and TLG for
treatment response [21, 22]. For example, MTV and TLG
are reported to correlate better with histopathological response
in NSCLC compared to SUVmax [23]. Also, changes inMTV
after only 1 or 2 cycles of neoadjuvant chemotherapy were
associated with tumor necrosis fraction in osteosarcoma and
breast cancer [3, 4].

Tumor delineation using FDG PET has also been utilized
for radiotherapy treatment planning in multiple types of

malignancies [24–27]. CT is the standard imaging modality
for defining gross target volume (GTV) for radiotherapy in
lung cancer. In multiple recent reports, however, MTV from
FDG PET/CT showed better characteristics for tumor delinea-
tion in lung cancer than CTand the results are summarized in a
previous review article [28]. For example, Ashamalla et al.
reported that FDG PET-based MTV had lower inter-observer
variability than CT-based gross tumor volume (GTV). Also,
MTV resulted in clinically significant modification of GTV in
52% of the enrolled patients [29]. Mah et al. reported that PET
lowers physician variation in GTV delineation and alters pa-
tient management [30].

As briefly described above, multiple studies have shown
the usefulness of MTV and TLG for prediction of treatment
response or patient outcome, and tumor delineation for radio-
therapy planning. However, there is no consensus on the op-
timal way to measure MTV using FDG PET/CT.

Current Methods to Segment Tumor for Measuring
MTV

The definition of MTV is the volume inside a user- or
algorithm-defined ROI that segments the metabolically active
tumor. To determine the boundaries of the ROI, threshold-
based or algorithm-based methods have been proposed and
evaluated.

Numerous PET segmentation algorithms have been devel-
oped and applied to FDG PET images. It is challenging to
group the numerous segmentation methods into distinct clas-
ses because of the vast variety of methods that have been
developed. More advanced algorithms often integrate tech-
niques from a variety of methods. Nonetheless, PET segmen-
tation algorithms can generally be classified into threshold-
based methods and algorithm-based methods. Both classes
can be further broken down into subclasses. In this section,
segmentation methods to measure MTVare described.

Threshold-Based Methods

In threshold-based methods, the image is partitioned into tu-
mor and background using a distinct threshold value—all
voxels with SUVabove the threshold are assigned to the tumor,
and all SUV below the threshold belong to the background.

Fixed Absolute Threshold

Absolute SUV thresholds are commonly used for measuring
MTV. SUVs of 2.0, 2.5, 3.0, 4.5, 5.0 have all been reported as
potential absolute thresholds. Among them, SUV 2.5 is the
most widely accepted. SUV 2.5 was selected based on the
results of early studies which reported SUV 2.5 as the optimal
cut off between malignant and benign pulmonary nodule [31].
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However, SUV 2.5 has been widely used in other types of
malignancy as well. MTV and TLG measured using a thresh-
old of SUV 2.5 have shown consistently good predictive value
for prognosis in most studies, and have been associated with
patient outcome in a meta-analysis [19]. Also, MTV measured
using fixed absolute threshold was useful for assessing treat-
ment response as well [3, 4]. However, absolute thresholds
have clear limitations. Certain tumors with lower uptake can
completely fall outside an absolute threshold, precluding the
measurement of MTV in such tumors. Also, if a tumor has
intense FDG uptake such as over SUV of 15, tumor volume
can easily be overestimated by spillover effect (Fig. 1,Table 1).

Fixed Relative Threshold

Relative thresholds, which are defined as a certain percentage
of SUVmax of a tumor, are also commonly used to measure
MTV. In an early study, Erdi et al. found that relative thresh-
olds of 36-44% produced similar volumes to the volumesmea-
sured from CT in lung cancer lesions bigger than 4 ml.
Consequently, 40% or 42% have been the most widely used
relative thresholds to measure MTV [32]. A limitation of
thresholds, in general, is that a tumor volume with heteroge-
neous uptake (e.g., necrotic cores) could be underestimated by
a relative threshold (Fig. 2). Also, as in the study by Erdi et al.,
a small lesion with low signal to background ratio can be
overestimated by fixed relative threshold method. This can
be problematic for treatment response assessment: a tumor
with decreasing SUVmaxmay appear to grow in volumewhen
in fact its boundaries remain the same (Table 1). Thus, using
one fixed relative threshold for segmenting cancer lesions with
a variety of sizes and signal-to-backgrounds can produce

misleading results. Biehl et al. reported that there is no single
threshold which provides accurate tumor delineation [33].

Background Threshold

To find a more accurate threshold which is both patient- and
scan-specific, a background threshold has been proposed. In
background thresholding, an ROI is placed in the liver or
mediastinal blood pool to measure background SUV.
Generally, SUVmean plus 1 or 2 standard deviation (SD) of
the background is then used for the threshold [21, 34]. The
shortcoming of the method is that the method is relatively
more time-consuming than the other thresholding methods
because background uptake needs to be measured separately.
Also, even with the added efforts, the thresholds typically end
up being consistently around SUV 3-4 with liver based thresh-
olds, or around SUV 2 with mediastinal blood pool based
thresholds. Instead of using the liver or blood pool as the
background reference region, the background uptake immedi-
ately surrounding the tumor can be used to estimate the back-
ground uptake [23]. In this method, the mode of the ROI is
used to describe the background uptake instead of the mean
value. Based on the assumption that background activity has a
Gaussian distribution, the Gaussian distribution can be
subtracted from original ROI to get tumor segmentation.
While fixed relative threshold can exclude a large part in the
case of heterogeneous tumor, back ground subtracted volume
(BSV) can include most of the heterogenous tumor (Fig. 3,
from [23]). Burger et al. reported that BSV outperformed a
42% of SUVmax threshold in predicting histologic response
in patients with lung cancer [23]. Further comparison study
with other segmentation methods such as SUV 2.5 or algo-
rithm based methods are needed to reinforce the utility of the

Fig. 1 Overestimation of MTV
by a fixed absolute threshold. A
patient with melanoma had a
metabolically active soft tissue
metastasis in left peritoneal space
with SUVmax of 80.8. Tumor
segmentation using a threshold of
SUV 2.5 resulted in
overestimation of the tumor
volume because of spillover effect
of FDG PET image. Red volume
of interest indicates MTV using
threshold of SUV 2.5
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BSV. Also, the sensitivity of the method to ROI size has not
been reported (Table 1).

Adaptive Threshold

Adaptive thresholds do not use fixed relative thresholds or
absolute thresholds, but rather adjust the threshold on a case-
by-case basis according to different measurable properties of
the image. Adaptive thresholds are commonly calculated as
functions of the tumor volume, tumor uptake, background
uptake, and/or contrast. For example, Erdi et al. describe an
adaptive threshold that decreases as an exponential function of
tumor volume [32]. Nestle et al. reported an adaptive method
based on tumor and background uptake, and showed that the
method is more suitable for heterogeneous tumor than relative
thresholds [35]. Since multiple factors are considered for an

adaptive threshold, there can be multiple ways to calculate an
adaptive threshold, and there is no consensus yet on the opti-
mal method (Table 1).

Algorithm-Based Methods

Threshold-based segmentationmethods are easy to implement
and widely used, but they do have several well-known short-
comings. Thresholding may exclude cold regions inside het-
erogeneous tumors, or erroneously include regions of elevated
background. Also, thresholding assumes that a tumor volume
has the same intensity value at every point along its boundary,
an assumption that is often violated. Consequently, more ad-
vanced algorithms have been developed to address some of
these issues.

Table 1 Threshold based methods for measuring MTV

Methods Examples Advantage Disadvantage

Fixed absolute • SUV 2.0~ 5.0 • Simple and easy
• High reproducibility
• Observer independent

• Arbitrary
• Overestimation in tumor with intense FDG

uptake

Fixed relative • 30~60% of tumor SUVmax • Simple and easy
• Observer independent

• Underestimation in heterogeneous tumor
• Overestimation in low signal to noise lesion

(low tumor uptake and/or high background)
• Limitation in assessment of treatment response

Background • Liver +1SD, 2SD
• Mediastinal blood pool +1SD, 2SD
• Tumor background (BSV)

• Patient and scan adjusted
threshold

• More time consuming
• Relatively low reproducibility

Adaptive • (0.15 x SUVmean of tumor) + SUVmean
of local background

• Signal to background ratio

• Patient and scan adjusted
threshold

• Relatively low reproducibility
• Many different methods but no comparison

study yet

SUV standardized uptake value, SD standard deviation, BSV background subtracted volume

Fig. 2 Underestimation of MTV
by a fixed relative threshold. A
patient with osteosarcoma had the
primary lesion in his right distal
femur. The tumor had
heterogeneous uptake with
SUVmax of 13.6. Tumor
segmentation using a relative
threshold of 40% of SUVmax
resulted in an underestimation of
the tumor volume
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Gradient-Based Methods

Gradient-based methods define the tumor boundary by
exploiting the image gradient that exists between the high
SUV in tumor cells and the lower SUV in adjacent non tumor
tissues [36]. Gradient methods have been shown to outperform
threshold methods in phantom studies [37] and for resected
cancer specimens [38, 39]. An advantage of gradient methods
is that they are not necessarily dependent on tumor uptake
levels. However, gradient methods can be sensitive to the re-
construction parameters of the PET images. Also, the method
has the disadvantage of assuming uniform contrast around tu-
mor edges (Table 2). There are different implementations of
gradient-based segmentation because there are different ways
to extract boundaries from gradient images. For example,
Geets et al. used a watershed algorithm together with clustering
to determine tumor edges [38]. More recently, the PET Edge
tool was developed and implemented by MIM Software
(Cleveland, OH) and has been used to evaluate MTV in lung
cancer [40]. As with all algorithms, segmentation results
should always be checked manually, although one report sug-
gested that manual adjustment may not be necessary for one
such gradient method [41].

Image gradients are often used as inputs to more advanced
segmentation algorithms. One such class of algorithms is ac-
tive contours, or, as they are commonly called, snakes. The
basic concept of active contours is that a contour is placed
around the tumor as an initial guess. The contour is then ac-
tively deformed to better fit the edges of the tumor—like a
snake wrapping around its prey. The deformation is controlled

by a function which considers different aspects of the ROI,
such as the image gradient and possibly other features, de-
pending on its implementation [42]. Active contours have
been used in many image processing applications, including
segmentation of lung tumors in PET images [43].

Classifier-Based Method

Classification is the general term used in statistics and com-
puter science for partitioning data into groups with similar
characteristics. For this review, we will consider two types
of classifiers used in segmentation: clustering and supervised
learning algorithms.

In clustering, voxels with similar features are grouped into
clusters by the algorithm. These clusters of voxels then define
the ROIs (e.g., tumor and background clusters). Each voxel
can have multiple features that are considered by the algo-
rithm, such as the voxel’s SUV and its gradient. The number
and type of features used as inputs vary depending on the
implementation. A popular clustering algorithm is the fuzzy
c-means (FCM) algorithm. FCM is considered ‘fuzzy’ be-
cause, for each voxel, it reports the probability of the voxel’s
belonging to the tumor cluster and to the background cluster.
FCM has shown good reproducibility in 18F-FDG and 18F-
FLT PET images [44]. Many variations of FCM have been
developed over the years, with a recent implementation dem-
onstrating high accuracy and robustness in phantoms, simu-
lated tumors, and in patients with non-small cell lung cancer
[45]. The method is simple, fast and adaptable, but not highly
stable with heterogeneous tumors (Table 2).

Fig. 3 Comparison of fixed
relative threshold and background
based threshold methods. (Left)
Relative threshold of SUVmax of
42% has shown to delineate tu-
mor volume optimally in a spher-
ical tumor with homogenous up-
take. (Right) In contrast, hetero-
geneous real tumors are often
underestimated using the 42%
threshold (green ROI). Using
background based threshold (blue
line), Gaussian normal distribu-
tion representing the background
can be subtracted and all tumor
voxels can be included in MTV.
(Reproduced with permission
[23])
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Supervised learning is a form of machine learning where the
user trains the algorithm by giving it training data together with
known results. In segmentation, this means the algorithm is
trained by feeding it PET images together with the best ROIs
for those images. The algorithm then learns how to predict the
best ROIs for future PET images. Different supervised learning
algorithms exist. Artificial neural networks (ANNs) are one of
the oldest machine learning techniques, and continue to be one
of the best. ANNs have been used in multiple different image
segmentation tasks, including segmenting lung tumors in PET
images [46]. The method has a potential to be a highly accurate
method which can handle various conditions after training with
large data sets. However, it is hard to get a large quantity of high
quality training data with accurate true volume data (Table 2).

Statistical Methods

Statistical-based segmentation algorithms are a broad class of
methods that attempt to describe the image in terms of statis-
tical distributions of voxel intensity values. The goal is to
describe the PET image as a mixture of the intensity distribu-
tion belonging to the tumor class together with the intensity
distribution belonging to the background class. Those voxels
belonging to the tumor’s intensity distribution are then seg-
mented accordingly.

The fuzzy locally adaptive Bayesian (FLAB) algorithm
uses a Bayesian framework for determining whether a voxel
belongs to the tumor or background. It combines various sta-
tistical models and includes fuzzy classes (in addition to tumor
and background classes) which helps to simultaneously ad-
dress issues of both noise and blur resulting from partial-
volume effects in PET images. FLAB is also able to deal with
highly heterogeneous tumors when three classes are used in
the algorithm [47]. Hatt et al. introduced FLAB method for
MTVmeasurement and showed robustness of the method in a
phantom study [48]. Robustness of FLAB also has been re-
ported in lung cancer [47] and breast cancer [49]. The method

is reproducible across a variety of conditions but implementa-
tion of the method is complicated (Table 2).

The Otsu method for thresholding is one of the earliest
statistical image segmentation techniques [50]. The method
classifies pixels in an image into two classes by exhaustively
searching for a threshold value that minimizes the intra-class
variances, defined as the weighted sum of the two classes. The
weighting factor is the class-probabilities determined from the
histogram. As a result, the threshold effectively separates the
image pixels into background features and foreground fea-
tures (corresponding to high metabolism). Several different
improvements and variations of the Otsu method have been
developed over the years, including a recently developed
multi-Otsu method [51]. Using the algorithm, tumor with high
FDG uptake can be segmented with very minimal user inter-
action. The method has demonstrated stable and consistent
delineation across a range of tumor sizes and SUV values in
phantom study and metastatic melanoma lesions [51]. Also
multi-Otsu method can segment the heterogenous tumor more
reliably than fixed relative threshold (Fig. 4). Also, multiple
lesions can be segmented in one process. However, clinical
relevance of the measured MTV using the method has not
been evaluated (Table 2).

Comparison of the FDG PET Tumor Segmentation
Methods

Lung cancer is one of the most extensively evaluated malig-
nancies using MTV and TLG. MTV and TLG have demon-
strated clinical utilities in lung cancer in a number of applica-
tions including risk stratification, response evaluation and ra-
diotherapy planning. A systematic search of PUBMED and
MEDLINE was performed using the keywords BFDG^, Blung
cancer^ and BMTVor TLG or GTV .̂ A total of 132 studies
were identified, and 32 studies were excluded which were
reviews, meta-analysis, or included only CT based volume.
Among 100 studies, 70 studies (70%) used the single

Table 2 Algorithm based methods for measuring MTV

Methods Description Advantages Disadvantages

Gradient method • Image gradients (spatial derivative)
used to find tumor edges

• Not dependent on tumor
uptake level

• Errors due to reconstruction steps
• Assumes uniform contrast around

tumor edges

Fuzzy C-means (FCM) • Clustering method • Simple, fast, and adaptable • Struggles with heterogeneous tumors
or for certain geometries

Artificial neural networks • Machine learning method • Can learn to handle various
conditions

• Requires a large quantity of high
quality training data

Fuzzy locally adaptive
Bayesian (FLAB)

• Statistical modeling method • Accurate and reproducible
across a variety of conditions

• Challenging to implement

Multi-Otsu method • Statistical method • Simple and fast
• Stable and consistent

• Clinical significance has not been
evaluated yet
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threshold based method. The threshold based methods consist
of fixed absolute, fixed relative, background, and adaptive
methods. In 14 studies (14%) with algorithm based methods,
13 studies used gradient methods and one study used the
FLAB method (Fig. 5). The other 16 studies used multiple
segmentation methods and the results of the studies were sum-
marized in Table 3. Among the 16 studies, 11 studies evalu-
ated the predictive value of MTV [23, 52–61]. Seven studies
showed comparable predictive value between the different
segmentation methods. Park et al. reported that MTVs using
fixed thresholds of SUV 1.5, 2.0, 2.5, and 3.0 showed com-
parable abilities for predicting occult LN metastasis [61]. In a
study by Yoo et al., predictive values of MTVs using fixed
thresholds of SUV 2.5, and 25%, 50%, 75% of SUVmax had
comparable performance in predicting patient outcome.
However, MTVusing liver based threshold was not predictive
of survival [54]. Lin et al. reported thatMTVusing an absolute
threshold of SUV 2.5 was predictive of survival but MTVs
using relative thresholds of 40% and 50% of SUVmax were
not predictive of survival [55]. Also, Abelson et al. reported
that MTVs using thresholds of SUV 7 and SUV 10 were
predictive of survival, but MTVs using thresholds of SUV 2,
SUV 4, and 50% of SUVmax were not [56]. Among the
studies that employed multiple tumor segmentation methods,
only one study included an algorithm based method. Harris
et al. reported that MTVusing 50% of SUVmax as a threshold
and a gradient based method were comparable in predicting
prognosis [58].

This review of the previous studies suggests that using fixed
absolute thresholds to measureMTVmay be better at extracting
clinically-relevant MTV information than using a relative fixed
threshold to measure MTV, although we caution that this con-
clusion would need to be tested in a large study designed to

measure such an endpoint. As we discussed above, a tumor with
intense FDG uptake is overestimated by fixed absolute thresh-
old, and underestimated by fixed relative threshold. On the other
hand, a tumor with faint FDG uptake is underestimated by fixed
absolute threshold, and overestimated by fixed relative thresh-
old. In consequence, the difference in metabolism between the
tumors would be increased by fixed absolute threshold and re-
duced by fixed relative threshold. This may be the reason that
fixed absolute threshold is more predictive of prognosis than
relative threshold.

Four studies compared the accuracy of the tumor delinea-
tion using different thresholds [33, 62–64]. Burger et al. re-
ported that BSV has higher correlation with true tumor vol-
ume than MTV using a threshold of SUV 2.5 or 42% of

Fig. 4 Multi-Otsu method (MO,
blue) showed better tumor
segmentation than 40% threshold
(red) in a case of osteosarcoma
with heterogenous uptake

Fig. 5 Segmentation methods for measuring MTV used in lung cancer
studies. Of the studies 70% used single threshold based methods, and
while 15% used single algorithm based methods; 15% of the studies
used multiple methods to measure MTV

Nucl Med Mol Imaging (2018) 52:5–15 11



SUVmax [62]. Chen et al. reported that the adaptive method
was better than SUV 2.5 or 40% or 50% of SUVmax [63]. By
comparing multiple fixed relative thresholds, Biehl et al. re-
ported that the optimal threshold is different according to CT
volume [33]. In summary, a single fixed threshold may be not
well suited for assessing actual tumor volume. Thus, tumor
background based or an adaptive threshold or algorithm based
method would be more appropriate for accurate tumor delin-
eation and assessment of the actual tumor volume [51].

Several algorithm-based methods including PET Edge do
not allow hollow inside the tumor contour. Meanwhile,
threshold-based methods allow hollow inside the contour.
Thus, the tumor part with lower FDG uptake can be excluded
using threshold-based methods, which can be problematic in
some cases. Especially, since a tumor region with lower FDG
uptake may represent the heterogeneous nature of the tumor,
threshold-basedmethodsmay lose information regarding tumor
heterogeneity. Therefore, when a researcher tries to estimate the
heterogeneity of the tumor, it might be better to use algorithm-
based MTV. However, a systematic study is warranted to con-
firm which method is better for evaluating tumor heterogeneity.

Fixed relative threshold methods are not suitable to use for
tumor volume measurement during or after treatment because

the methods have high variability according to SUVmax of
the tumor. In particular, if SUVmax of the tumor declines
during or after treatment, MTV using fixed relative threshold
will overestimate the residual tumor volume because of the
declined SUVmax. Also, residual tumor volume can be
underestimated by fixed absolute threshold. Thus, algorithm-
based methods may be more suitable for estimating MTV
during or after treatment since the methods are compatible
with tumors with various ranges of FDG uptake values.

Conclusions

The optimal tumor segmentation method may be different
according to the purpose of the study. To predict patient out-
come, MTV measured using fixed absolute thresholds consis-
tently performs well and has better prognostic value than even
MR-defined volumes in several studies [18–20]. Thus, fixed
absolute thresholds may be a suitable choice to evaluate the
prognostic value ofMTV, since the method is simple, fast, and
maximizes the difference of metabolic burden between differ-
ent tumors. Meanwhile, fixed absolute and relative thresholds
have shown clear limitations in tumor segmentation tasks,

Table 3 Lung cancer studies including multiple methods to measure MTV

First author (ref) Design Purpose Pt no. Segmentation methods Findings

Mehta et al. [52] Retrospective Predict outcome 288 40%, 50% Comparable (predictive)

Arslan et al. [53] Retrospective Predict outcome 25 SUV 2.5 / 50% Comparable (predictive)

Yoo Ie et al. [54] Retrospective Predict outcome 58 SUV 2.5 / 25%, 50%,
75% / liver based

Liver based threshold was inferior.
The others were comparable.

Lin et al. [55] Retrospective Predict outcome 60 SUV 2.5 / 40%, 50% SUV 2.5 was better than 40%, 50%.

Abelson et al. [56] Retrospective Predict outcome 54 SUV 2, 4, 7, 10 / 50% SUV 7, 10 were better than the others.

Kim et al. [57] Retrospective Predict outcome 91 SUV 2.5, 3.0, 3.5, 4.0 Comparable (predictive)

Harris et al. [58] Retrospective Predict outcome 29 50% / Gradient Comparable (predictive)

Carvalho et al. [59] Retrospective Predict outcome 220 2.5, 3, 4 / 40%, 50% Comparable (not predictive)

Lee et al. [60] Retrospective Predict outcome 57 40%, 50% Comparable (not predictive)

Park et al. [61] Retrospective Predict occult LN metastasis 39 SUV 1.5, 2.0, 2.5, 3.0 Comparable, SUV 2.0 selected

Burger et al. [23] Retrospective Predict treatment
response

44 42% / BSV BSV had higher correlation with
response.

Burger et al. [62] Retrospective Compare accuracy of the
tumor delineation

50 2.5 / 42% / BSV BSV had higher correlation with
reference volume.

Chen et al. [63] Retrospective Compare accuracy of the
tumor delineation

37 SUV 2.5 / 40%, 50%
/ Adaptive

Adaptive method had higher
correlation with CT volume.

Yu et al. [64] Prospective Compare accuracy of the
tumor delineation

15 SUV 1.5~5.5 / 15~60% Optimal relative and absolute
thresholds were 31% ± 11%
and 3.0 ± 1.6.

Biehl et al. [33] Retrospective Compare accuracy of the
tumor delineation

20 10%, 20%, 30%, 40%,
50%

The optimal threshold is different
according to CT volume.

Laffon et al. [65] Retrospective Assess variability of TLG
measurement

13 40%, 50%, 60%, 70%,
80%

Variability was the lowest in 40%.

BSV background subtracted volume, SUV standardized uptake value, __% relative fixed threshold using __% of SUVmax of the tumor, TLG total lesion
glycolysis, CT computed tomography
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while adaptive or algorithm based methods can segment the
tumor more accurately in tumors with wide ranges of uptake
and size. Thus, for tumor response prediction or accurate tu-
mor delineation (e.g., for radiotherapy applications), algo-
rithm based methods seem to be better than fixed threshold
methods. However, since the numerous algorithm-based seg-
mentation methods have not been systematically tested for
accuracy, robustness, and repeatability on the same datasets,
it is hard to select the best algorithm based method for now.
Therefore, unbiased phantom data acquired under various
conditions and publically-available patient images with
ground truth (e.g., consensus segmentations) to compare mul-
tiple algorithm-based methods are warranted.
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