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Genomic DNA Methylation Signatures Enable
Concurrent Diagnosis and Clinical Genetic Variant
Classification in Neurodevelopmental Syndromes

Erfan Aref-Eshghi,1,2 David I. Rodenhiser,3 Laila C. Schenkel,1 Hanxin Lin,1,2 Cindy Skinner,4

Peter Ainsworth,1,2 Guillaume Paré,5 Rebecca L. Hood,6 Dennis E. Bulman,7 Kristin D. Kernohan,7

Care4Rare Canada Consortium, Kym M. Boycott,7 Philippe M. Campeau,8 Charles Schwartz,4

and Bekim Sadikovic1,2,*

Pediatric developmental syndromes present with systemic, complex, and often overlapping clinical features that are not infrequently

a consequence of Mendelian inheritance of mutations in genes involved in DNA methylation, establishment of histone modifica-

tions, and chromatin remodeling (the ‘‘epigenetic machinery’’). The mechanistic cross-talk between histone modification and

DNA methylation suggests that these syndromes might be expected to display specific DNA methylation signatures that are a reflec-

tion of those primary errors associated with chromatin dysregulation. Given the interrelated functions of these chromatin regulatory

proteins, we sought to identify DNA methylation epi-signatures that could provide syndrome-specific biomarkers to complement

standard clinical diagnostics. In the present study, we examined peripheral blood samples from a large cohort of individuals encom-

passing 14 Mendelian disorders displaying mutations in the genes encoding proteins of the epigenetic machinery. We demonstrated

that specific but partially overlapping DNA methylation signatures are associated with many of these conditions. The degree of over-

lap among these epi-signatures is minimal, further suggesting that, consistent with the initial event, the downstream changes are

unique to every syndrome. In addition, by combining these epi-signatures, we have demonstrated that a machine learning tool

can be built to concurrently screen for multiple syndromes with high sensitivity and specificity, and we highlight the utility of

this tool in solving ambiguous case subjects presenting with variants of unknown significance, along with its ability to generate ac-

curate predictions for subjects presenting with the overlapping clinical and molecular features associated with the disruption of the

epigenetic machinery.
Introduction

Genes encoding the epigenetic protein machinery that

read, write, and erase post-translational signals on DNA

and histones and remodel chromatin are implicated in a

wide range of constitutional neurodevelopmental disor-

ders.1–3 The pathogenesis of such disorders is likely caused

by the downstream events orchestrated by the primary

functional defect in these proteins of the so-called epige-

netic machinery.1–3 Furthermore, specific mutations in

these readers, writers, erasers, and chromatin remodelers

are linked to the variability in clinical phenotype seen in

their associated disorders. It is well established that histone

modifications overlap and interact with genomic DNA

methylation to affect chromatin remodeling,4 and thus,

that mutations in the genes that are involved in histone

modifications are expected to have an impact within the

DNA methylome. Supporting this concept, we have previ-

ously reported DNA methylation epigenetic (epi-) signa-

tures in the peripheral blood of subjects carrying muta-

tions in genes involved in chromatin regulation,

including the mutations in SRCAP (MIM: 611421) causing
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Floating-Harbor syndrome (MIM: 136140),5 DNMT1

(MIM: 126375) resulting in adult-onset autosomal-domi-

nant cerebellar ataxia, deafness, and narcolepsy (ADCA-

DN [MIM: 604121]),6 and ATRX (MIM: 300032), which is

responsible for the alpha thalassemia/mental retardation

X-linked (ATRX) syndrome (MIM: 300448).7 Epi-signa-

tures in subjects with Sotos (MIM: 117550), CHARGE

(MIM: 214800), and Kabuki (MIM: 147920) syndromes

have also been reported.8–10

While the number of developmental and cancer-related

conditions for which a DNAmethylation epi-signature has

been reported is increasing, the extent of overlap or

distinction of these epi-signatures is not clear. Clinical

overlap is a common finding in the diseases that result

from such defects, and it is postulated that mechanistic

overlap could be a basis for such phenotypic similarity.

This is further acknowledged by noting that all of the pro-

teins associated with these conditions regulate the epige-

nome through complex interactions with each other.

Hence, the question has been raised as to how accurately

one can use these epi-signatures as a tool in the molecular

diagnosis of these conditions.9,10 This is particularly
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Table 1. Structure and Demographics of the Study Cohort

Syndrome Total
Testing
Cohort

Discovery-Training Cohort Control Cohort
Probes
Passing
QC

Probes
Found

DMRs
Found

No. of
Individuals

Percentage
Female

Mean
Age 5 SD

No. of
Individuals

Percentage
Female

Mean
Age 5 SD

Rett 17 4 13 92% 7.6 5 11 52 92% 7.4 5 10 448,775 N/A no

Saethre-
Chotzen

25 6 19 63% 10.6 5 11 76 63% 10.11 5
10

442,079 N/A no

Weaver 7 2 5 40% age
unknown

20 40% – 455,427 N/A no

Coffin Siris 9 3 6 50% 5.9 5 6 24 50% 5.8 5 5 453,321 N/A no

Coffin Lowry 11 3 8 12% 9.8 5 6 32 12% 9.7 5 6 453,285 N/A no

ATRX 19 4 15 0% 11.4 5 7 60 0% 11.3 5 7 450,748 1,112 41

Floating-
Harbor

17 4 13 76% 12.7 52 76% 12.2 5 11 453,189 1,078 54

Sotos 38 10 28 57% 8.8 5 4 112 57% 8.9 5 4 448,131 6,858 1,372

ADCA-DN 5 0 5 40% age
unknown

20 40% – 330,788 3,562 52

Claes-Jensen 10 2 8 0% 22.5 5 14.2 32 0% 21.2 5 13 454,978 698 14

Kabuki 44 11 33 57% 9.5 5 6 132 57% 9.7 5 7 401,051 919 31

CHARGE 79 40 39 41% 5.8 5 6 156 48% 5.9 5 6 448,876 1,320 18

GTPTS 3 0 3 33% 2.1 5 5.8 20 33% 2.2 5 5.1 454,489 707 6

SBBYSS 1 0 1 100% 6.3 5 0 20 100% 6.5 5 0.8 456,134 864 6
important in the context of utilizing these epi-signatures

as functional evidence to classify variants of uncertain clin-

ical significance.

In the present study, we try to address these questions

by concurrently examining 14 Mendelian conditions

that result from direct or indirect disruptions of the pro-

teins involved in the regulation of the epigenome. These

conditions (see Table 1) include Rett syndrome (MIM:

312750) (methyl-CpG-binding protein 2; MeCP2 [MIM:

300005]), ADCA-DN (DNA methyltransferase 1; DNMT1),

Kabuki syndrome (lysine-specific methyltransferase 2D;

KMT2D [MIM: 147920]), ATRX syndrome (ATRX), Sotos

syndrome (nuclear receptor binding SET domain protein 1;

NSD1 [MIM: 117550]), Floating-Harbor syndrome (Snf2

related CREBBP activator protein; SRCAP), Weaver syn-

drome (MIM: 277590) (enhancer of zeste 2 polycomb

repressive complex 2 subunit; EZH2 [MIM: 601573]),

CHARGE syndrome (chromodomain helicase DNA bind-

ing protein 7; CHD7 [MIM: 608892]), Claes-Jensen syn-

drome (MIM: 300534) (lysine-specific demethylase 5C;

KDM5C [MIM: 314690]), Genitopatellar syndrome (GTPTS

[MIM: 606170]), and Say-Barber-Biesecker-Young-Simpson

syndrome (SBBYSS [MIM: 603736]), both caused by

mutations in lysine acetyltransferase 6B (KAT6B [MIM:

605880]), and Coffin-Siris syndrome (MIM: 135900)

(SWI/SNF related, matrix associated, actin dependent regu-

lator of chromatin, subfamily B1 SMARCB1 [MIM:

601607], and AT-rich interaction domain 1B; AR1D1B

[MIM: 614556]). These genes are directly involved in epi-
The Americ
genomic regulation of the chromatin. We have also

included two other conditions that result from mutations

in genes that interact with the components of the epige-

nomic machinery. Saethre-Chotzen syndrome (MIM:

101400) is caused by mutations in the Twist family

BHLH transcription factor 1 gene (TWIST [MIM:

601622]), encoding a transcription factor that binds to

the p300 and p300/CREBBP-associated factor domains of

histone acetyltransferases and regulates their activity,11

and Coffin-Lowry syndrome (MIM: 303600), which results

from mutations in ribosomal protein S6 kinase (RSK2

[MIM: 300075]), a protein required for phosphorylation

of histone H3 that regulates chromatin remodeling and

gene expression.12

In this study, we have identified DNA methylation

profiles in peripheral blood samples from a large cohort

of individuals who carry mutations in the associated

candidate genes responsible for their respective develop-

mental syndromes, including previously unreported sig-

natures in cohorts for GTPTS and SBBYSS (KAT6B) and

Claes-Jensen syndrome (KDM5C). We have also exam-

ined the degree of positional overlap between these

epi-signatures and have evaluated whether a single clas-

sification tool, built on the combined epi-signatures of

these conditions, can generate accurate predictions for

subjects presenting with the overlapping clinical and

molecular features associated with mutations in these

genes that play an essential role in the epigenetic

machinery.
an Journal of Human Genetics 102, 156–174, January 4, 2018 157



Material and Methods

Source of Data
This study utilized data and specimens from multiple sources. Pe-

ripheral blood DNA samples from subjects with ADCA-DN,

Coffin-Siris syndrome, SBBYSS, GTPTS, and Floating-Harbor syn-

drome were collected from the Care4Rare Canada Consortium.

Samples from subjects with clinical characteristics of Kabuki

syndrome, ATRX, Saethre-Chotzen syndrome, Coffin-Lowry syn-

drome, Rett syndrome, Claes-Jensen syndrome, and CHARGE syn-

drome were collected from the Greenwood Genetic Center (Green-

wood, SC, USA). The Kabuki and CHARGE cohorts were

supplemented by methylation array files publicly available from

GEO (GSE97362).9 Epigenomic data from subjects with Sotos and

Weaver syndromes were downloaded from GEO (GSE74432).8 All

of these subjects had clinical features of the aforementioned syn-

dromes and were screened for mutations in the related genes. The

mutation report from every subject was reviewed according to the

American College of Medical Genetics Guidelines for interpretation

of genomic sequence variants,13 and only individuals confirmed to

carry a pathogenic or likely pathogenicmutation were used to iden-

tify epi-signatures (subject-level data are summarized in Table S1

where available). Control subjects were selected from our lab

reference cohort, which is composed of individuals with no known

aberrant epigenomic change. This reference cohort was previously

preselected from a larger cohort of approximately 1,000 individuals

across a broad range of age, sex, and ethnicity distribution.

Methylation Array and Quality Assessment
Genomic DNAwas extracted from peripheral blood using standard

techniques. Following bisulfite conversion, DNA methylation

analysis of the samples was performed using the Illumina Infinium

bead chip array, according to the manufacturer’s protocol at the

Genetic and Molecular Epidemiology Laboratory at McMaster

University and the London Health Sciences Molecular Genetic

Laboratory. Except for a cohort of subjects with CHARGE syn-

drome (n ¼ 39), which was assayed using Illumina Infinium

methylation EPIC array, all of the samples were assayed using

the HumanMethylation450 bead chip. The two arrays harbor

96% overlap in CpG probes. Methylated and unmethylated inten-

sity data were generated as idat files and imported into R 3.4.0 for

analysis. Normalization was performed using Illumina normaliza-

tion method with background correction using the minfi package.

Probes with detection p value > 0.01 were excluded from the

downstream analyses. For further quality improvement, probes

located on chromosomes X and Y and probes known to contain

SNPs at the CpG interrogation, or the single-nucleotide extension,

were removed. As an additional quality-control step, the sex of the

samples was predicted using the signal intensity of the X and Y

chromosomes using the minfi package, and the files representing

a discordance between the predicted and labeled sex were not used

for identification of the DNA methylation profile. All of the sam-

ples were examined for genome-wide methylation density, and

those deviating from a bimodal signal distribution were excluded.

Files generated by the EPIC array were cast as 450k array, and the

same analytical procedures used on the 450k array were applied.

Selection of Discovery/Training and Testing Cohorts

and Controls
The identification of disease-specific epi-signatures was performed

using a randomly selected 75% subset of the database (discovery/
158 The American Journal of Human Genetics 102, 156–174, January
training set) using caTools package. The remaining samples were

only used as a testing cohort to assess the performance of the clas-

sification model developed later in the study. This procedure was

not performedwhen%5 samples were available for a disease group

(ADCA-DN, GTPTS, and SBBYSS). Given probe differences and

technology variations between the two array types (450k and

EPIC), it was ensured that the entire discovery/training cohort is

assayed using one array (450k). Therefore, all of the CHARGE-

affected subjects who were assayed using the 450k array were

selected as the discovery/training cohort and the rest were

included in the testing cohort. For every disease group in the dis-

covery cohort, a sex- and age-matched control group with a sam-

ple size at least four times larger (minimum n ¼ 20) was selected

from the reference control group using MatchIt package. The

methylation profile of each disease group in the discovery cohort

was compared with its matched control separately to identify the

disease-specific epi-signature (Table 1). Figure 1 represents the

flowchart of the study.
Identification of Disease-Specific Methylation Epi-

signatures
Analysis was performed using a modification of our previously pub-

lished protocol.5–7,10,14 The methylation level for each probe was

measured as a beta value, calculated from the ratio of the methyl-

ated signals versus the total sum of unmethylated and methylated

signals, ranging between 0 (no methylation) and 1 (full methyl-

ation). This value was used for biological interpretation and visual-

ization. For statistical analysis, wherever a normal distribution was

required (linear regression modeling), beta values were logit trans-

formed to M-values using the following equation: log2(beta/

(1-beta)). A linear regression modeling using the limma package

was used to identify the differentially methylated probes. The anal-

ysis was adjusted for blood cell type compositions predicted using

minfi package. The generated p values were moderated using the

eBayes function in the limma package and were corrected for mul-

tiple testing using Benjamini and Hochberg method. Probes with a

corrected p value < 0.01 and a methylation difference greater

than 10%–20% were considered significant. The effect size cutoffs

(10%–20%) were determined separately for every condition

following the examination of the volcano plots generated in every

comparison as previously conducted by Butcher et al.9 The identi-

fied probes were examined using an unsupervised hierarchical

clustering to ensure their ability in separating the subjects from con-

trols. In the case of the Coffin-Siris syndrome, which was caused by

two genes in our dataset, the cohort was first split based on the

causing genes and then re-analyzed regardless of the gene.
Control for Batch Effect and Robustness of the Identified

Epi-signatures
Given that the study cohort was composed of data generated by

multiple centers, different dates, and via various instruments,

several measures were utilized to minimize possible batch effects

and other sources of variability. These steps involved: (1) when-

ever the sample size allowed, control subjects were selected from

the same batch (as with ADCA-DN); (2) if case subjects and their

control subjects in a comparison were assayed in multiple batches

(as with Kabuki syndrome samples), the batch variable was

included as a confounding factor in the regression model; (3)

where a particular sample was assayed using both 450k and EPIC

arrays (CHARGE syndrome), only files from 450k were used for

identification of the signature; (4) for all other disease cohorts, a
4, 2018



Figure 1. Flowchart of the Study
machine learning model (Support vector machine) was trained on

the identified probes, and we examined how well it could distin-

guish the batch structure from the disease status. Failure to pass

this step resulted in the findings being regarded as non-reliable.

Identification of Genomic Regions with Methylation

Changes
To identify genomic regions harboring methylation changes

(differentially methylated regions [DMRs]), a bump hunting

approach was used by the bumphunter package.15 The analysis

considered regions with greater than 10% change in the overall

methylation between case and control subjects with gaps no

more than 500 bp among neighboring CpGs. As suggested in

the package, 1,000 bootstrapping procedure was performed to

compute family-wise error rate (FWER). We selected regions

containing a minimum of three consecutive probes and

FWER < 0.01. The identified regions were mapped to CpG islands

and coding genes. Gviz package was used for visualization of the

DMRs.

Assessment of the Overlap between the Epi-signatures
Probes and regions differentially methylated in each disease group

were examined to identify potential overlap. The number of

probes shared inmore than one disease group was visualized using
The American Journal of Human Ge
a circos plot. Probes that were shared in >2

and 3 disease groups were used to measure

the pairwise correlations in the disease

cohort. Calculated correlation coefficients

were visualized using a correlation plot.

Genomic regions harboring differentially

methylated probes were assessed for over-

lap using GenomicRanges package, and re-

gions found in more than one disease

type were reported. Functional annotation

clustering and gene set enrichment anal-

ysis was performed using missMethyl

and ReactomePA packages for the genes

harboring the shared probes.

Construction and Validation of a

Multi-class Prediction Model
The identified signatures were used to

build a classificationmodel with the ability

to concurrently assess a given methylation

profile belonging to any of the disease

groups in the study. Caret package was

used for feature selection from every signa-

ture. First, a receiver operating character-

istic curve analysis was performed to iden-

tify the most differentiating probes. Those

probes with an area under the curve above

0.8 were retained. Next, pairwise correla-

tions among the remaining probes were

measured to identify and exclude the

redundant signals with R-squared > 0.8.

A multi-class support vector machine

(SVM) with linear kernel was trained on
the remaining probes using e1071 package. To determine the

best hyperparameters and to measure the accuracy of the model,

a 10-fold cross-validation was performed. In this process, the

training set was divided into ten folds. Nine folds were used for

training the model and one fold for testing. After repeating this

iteration for all of the ten folds, the mean accuracy was calculated

and the hyperparameters with the optimal performance were

selected. For every sample, the model was set to generate multiple

classification scores between 0 and 1 as the probability of having a

methylation profile related to every disease. To assess the sensi-

tivity of the model, the testing cohort, which was not used for

identification of the signature or construction of the SVM, was

supplied to the model. To determine the specificity, we supplied

all of the healthy subjects that were not used in the earlier stages

of the study to the model. To understand whether this model is

sensitive to other medical conditions representing developmental

delay and intellectual disabilities, we tested, using the constructed

model, a large number of subjects in our database with a

confirmed clinical diagnosis of various diseases including autism

spectrum disorders, imprinting defects, RASopathies, chromo-

somal aberrations, and Down syndrome. As well, we tested

whether this classifier is sensitive to other diseases of epigenomic

machinery for which no epi-signature was identified in this study.

To further confirm that this classifier is not sensitive to the blood
netics 102, 156–174, January 4, 2018 159



cell type compositions, we downloaded normalized methylation

data from isolated cell populations of healthy individuals

from GEO (GSE35069)16 and supplied them to our model for

prediction.

Assessment of Ambiguous Case Subjects and Variants of

Unknown Significance
The approved model was used to perform a prediction on the

DNA methylation profiles of individuals with variants of un-

known significance in the respective genes that were not previ-

ously included in the identification of the signature or in con-

struction and validation of the classification model. In addition,

a prediction was made on subjects with predicted sex discor-

dance, samples obtained from tissues other than blood, healthy

subjects carrying pathogenic mutations, and the single subject

with Kabuki syndrome resulting from the less common KDM6A

gene mutation.

Ethics Statement
This study has been approved by the Western University Research

Ethics Boards (REB ID 106302) and the Hamilton Integrated

Research Ethics Board (REB ID 13-653-T). All of the samples and re-

cords were de-identified before the study.
Results

Description of the Study Cohort

Figure 1 represents the flowchart of the study. Mutation

analysis of the subjects with clinical features resembling

each of the 14 syndromes (Table 1) identified a total of

285 subjects with pathogenic or likely pathogenic muta-

tions, which were classified according to the American

College of Medical Genetics (ACMG) guidelines. The re-

maining subjects (n ¼ 176) carried benign variants or

variants of unknown significance (VUS), leaving them

unsolved. Our data also included healthy female carriers

with pathogenic mutations in KDM5C (n ¼ 8), fibroblast

samples from individuals with Sotos syndrome (n ¼ 3),

and one individual affected with Kabuki syndrome

with a pathogenic truncating mutation in KDM6A. Table

S1 summarizes the mutation types and demographic

characteristics where available. A sample of 196

randomly selected subjects from the 285 individuals

with a pathogenic mutation was used as the discovery/

training cohort for identification of epi-signatures as

well as for training the classification model. The remain-

ing 89 subjects were regarded as the testing cohort to be

used for measuring the sensitivity of the classification

model. For each disease group in the discovery/training

cohort, a sex- and age-matched sample group four times

larger (minimum n ¼ 20) was selected from our reference

healthy cohort (n ¼ 650) for comparison. A total of 190

healthy samples never selected as a control for any of the

diseases were later used to assess the specificity of the

classification model. Table 1 shows the count, age, and

sex distributions from every subject group in the discov-

ery/training cohort along with the information from the

matched control subjects.
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Disease-Specific DNA Methylation Epi-signatures and

Differentially Methylated Regions (DMRs)

The comparison of disease cohorts with their matched

control subjects was performed using the subset of CpG

probes that passed the quality assessment (Table 1). No reli-

able epi-signature was observed for five of the diseases

tested here, including Saethre-Chotzen, Coffin-Siris,

Coffin-Lowry, Rett, andWeaver syndromes, as the findings

did not meet the criteria described in the methods. For

other conditions (i.e., Floating-Harbor, ADCA-DN, Kabuki,

ATRX, CHARGE, Sotos, GTPTS, SBBYSS, and Claes-Jensen

syndromes), reliable epi-signatures were identified (Ta-

ble 1). Of these, Sotos (n ¼ 6,858) and ADCA-DN

(n ¼ 3,562) revealed the largest number of probes, mostly

composed of hypomethylated CpGs. The identified probes

from every cohort were confirmed to separate the subjects

from the controls using hierarchical clustering (data not

shown).

Consistent with the methylation profiles, the bump

hunting approach did not identify any genomic segment

to be differentially methylated in subjects with Saethre-

Chotzen, Coffin-Siris, Coffin-Lowry, Rett, and Weaver syn-

dromes. For the other nine syndromes, however, multiple

genomic coordinates containing a minimum of 3 consecu-

tive CpG probes, an average regional methylation differ-

ence > 0.10, and a family-wise error rate (FWER) < 0.01

were identified. Subjects with Sotos syndrome showed

the largest number of identified regions (n ¼ 1,372),

mostly composed of hypomethylated segments (data not

shown).

To further ensure that adjustment for blood cell type

compositions has not masked a potential methylation pro-

file in the five syndromes with negative results, we

repeated the analysis without inclusion of the blood cell

type estimates correction. Similar to the previous analyses,

a significant methylation profile was not detected. At this

stage, we concluded that either no epigenomic profile ex-

isted for these five conditions, or their methylation

changes were too obscure to pass the thresholds and

quality assessment criteria set in this study (see Material

and Methods). Thus, our subsequent analyses described

below focused on the syndromes for which a differential

epigenomic profile was observed: i.e., Floating-Harbor,

ADCA-DN, Kabuki, ATRX, GTPTS, SBBYSS, CHARGE,

Sotos, and Claes-Jensen syndromes.

Overlap between the Epi-signatures and DMRs

Of the total number of 15,408 probes that composed the

epi-signatures of the 9 conditions, only 1,598 (�10%)

CpGs were shared across more than one disease group.

Among these conditions, Floating-Harbor and Claes-Jen-

sen syndromes were found to share the largest proportion

of their epi-signatures with others (mainly with Sotos),

whereas this number was minimal to negligible for other

conditions, including ADCA-DN which, despite having a

large number of CpGs in its epi-signature, shared less

than 3% of its probes with other diseases (Figure 2). The
4, 2018



Figure 2. Quantity of Probes from the Epi-signatures of Every Nine Conditions that Are Shared with Each Other
Thickness of the bonds represents the number of the shared probes by every two diseases as shown by digits on the circumference of the
plot. This plot does not visualize the 217 probes that are shared by more than two conditions.
number of probes that were shared by more than two con-

ditions was limited to 217 probes. Table S2 shows the 217

probes and the related conditions. A gene ontology anal-

ysis of the 217 probes using missMethyl package found

multiple ontology terms related to histone modifications

to be enriched in the harboring genes, including S-methyl-

transferase activity and histone-lysine N-methyltransfer-

ase activity (Table S3). Next, genes overlapping these

probes were evaluated using the ReactomePA package to

identify pathways enriched in them (Table S4). Lysine his-

tone transferase activity was found as the only enriched
The Americ
pathway with a multiple testing corrected p value < 0.05,

which is composed of four genes (PRDM9, SETDB1,

HIST1H3E, NSD1). These four genes also contained the

most number of probes shared by different conditions (Ta-

ble S2), which included PRDM9 with five probes found in

all of the conditions except for ADCA-DN, GTPTS, and

SBBYSS; HIST1H3E, with two probes shared by Floating-

Harbor, ATRX, Claes-Jensen, GTPTS, and SBBYSS syn-

dromes; andNSD1 and SETDB1with three and two probes,

respectively, shared by Sotos, Floating-Harbor, and Claes-

Jensen syndromes. Table S2 also shows that 21 probes in
an Journal of Human Genetics 102, 156–174, January 4, 2018 161



Figure 3. Pairwise Correlation between
Samples with Different Conditions using
the Methylation Values of Ten Probes
that Are Shared by More than Three Con-
ditions
Red represents positive and blue represents
negative correlation. Every visible square
represents the correlations of one subject
on x axis with its correspondence on
y axis. Abbreviations: F-H, Floating-Harbor;
C-J, Cales-Jensen
HOXA5 (MIM: 142952) are shared by three conditions

(Kabuki, CHARGE, and GTPTS).

A pairwise correlation analysis on the methylation levels

of all of these 217 probes for each affected subject in the

disease group revealed that while samples from the same

condition showed the strongest correlation with each

other, only a weak to moderate positive correlation existed

among the samples from across disease groups. The only

exception was with subjects with Floating-Harbor and So-

tos syndromes, which revealed a moderate negative corre-

lation with each other, despite sharing themost number of

probes of all. We further narrowed down the probes to 18

CpGs that were shared by more than three disease groups

and re-evaluated the correlation of the subjects based on

the methylation levels of these 18 probes. We observed a

greater degree of negative correlations between different

syndrome groups (Figure 3). The members of every condi-

tion, however, correlated well with each other in both of

these analyses.

Table 2 shows the genomic coordinates that are shared

between every two diseases. Similar to the results described

at single probe analysis, Floating-Harbor and Sotos syn-

dromes shared the most differentially methylated coordi-

nates (n ¼ 30), more than half of which showed an oppo-

site direction of change in methylation levels by the two

syndromes. As previously observed by the shared CpGs

(Table S2), a segment in the promoter of PRDM9 was

among the regions containing at least three consecutive

hypomethylated probes in both ATRX and Sotos syn-

dromes (Figure 4). The same segment contains disperse
162 The American Journal of Human Genetics 102, 156–174, January 4, 2018
probes hypomethylated in Claes-Jen-

sen syndrome but hypermethylated

in Floating-Harbor syndrome (Table

S2). The only region with multiple

consecutive differentially methylated

probes that was shared by more

than two syndromes was a segment

in the promoter of HOXA5. This

segment is significantly hypomethy-

lated in GTPTS but hypermethylated

in both CHARGE and Kabuki syn-

dromes (Table 2).

Overall, our analyses showed

limited overlap between the epi-sig-

natures, which tend to occur only in
a few genomic coordinates. Within these regions, the

methylation levels do not correlate well across the diseases,

and in many cases the direction of methylation change

(hypo- versus hypermethylation) is opposite. These results

suggested that it might be possible to combine all of the

epi-signatures for building a single classification model

for concurrent classification of all of the diseases.

Development and Validation of a Classification Model

for Prediction of Disease Classes

To develop a classification model, a multi-class support

vector machine (SVM) with linear kernel was trained using

a subset of 929 of the most differentiating and non-redun-

dant probes selected from the epi-signature of every syn-

drome (Table S5). Due to small sample size for GTPTS

(n ¼ 3) and SBBYSS (n ¼ 1), these conditions were not

included in the model, and thus the training was per-

formed only for the remaining seven syndromes. One

model was trained for all of the affected subjects from these

seven syndromes (n ¼ 141) and the control subjects. Only

the samples from the discovery/training cohort were used

for training. The model was set to generate seven classifica-

tion scores between 0 and 1 as the probability of having a

methylation profile related to any of the seven syndromes.

Ten-fold cross-validation of this model revealed an accu-

racy of 99.6%, and it correctly predicted the class of all of

the 141 affected subject that were used for its training (Fig-

ures 5A–5G).

To determine the sensitivity of our model, 71 subjects

from the testing cohort were supplied to the classification



Table 2. Overlapping Genomic Coordinates with Differential Methylation in Nine Conditions Compared to Control Subjects

Chr Disease 1 Coordinates 1
Methylation
Difference 1 Probes 1 Disease 2 Coordinates 2

Methylation
Difference 2 Probes 2

Direction
of Change

Overlapping
Gene(s)

Distance to
CpG Island (bp)

19 Floating-
Harbor

8591364–8591776 �0.4 4 Kabuki 8591364–8591776 �0.28 4 same MYO1F 0

11 Floating-
Harbor

65360123–65360327 �0.27 3 Kabuki 65360123–65360327 �0.19 3 same KCNK7 0

1 Sotos 227746111–227747468 �0.35 7 Kabuki 227746191–
227746882

0.14 4 opposite – 0

3 Sotos 49170496–49171051 �0.22 7 Kabuki 49170599–49170794 0.16 4 opposite LAMB2 12,032

5 Sotos 1856325–1857828 �0.2 7 Kabuki 1856713–1857477 0.16 4 opposite – 0

12 Sotos 133179887–133180698 �0.25 5 Kabuki 133179887–
133180238

0.11 4 opposite LRCOL1 0

5 Sotos 101119084–101119766 �0.24 5 Kabuki 101119084–
101119566

0.11 4 opposite – 512,283

7 Sotos 27170241–27170552 0.19 6 Kabuki 27170388–27170994 �0.14 13 opposite HOXA4 0

19 Sotos 51330265–51330469 �0.24 4 Kabuki 51330265–51330469 0.13 4 opposite KLK15 0

15 Sotos 29968032–29968195 �0.3 3 Kabuki 29968032–29968195 0.18 3 opposite – 410

7 Sotos 27170717–27171051 0.15 9 Kabuki 27170388–27170994 �0.14 13 opposite – 78

2 Sotos 109746691–109747003 �0.21 5 Kabuki 109746691–
109746754

�0.14 4 same SH3RF3 0

7 Sotos 142494148 - 142494492 �0.16 6 Kabuki 142494148–
142494492

�0.15 6 same – 71

5 Sotos 176827082–176827697 �0.16 5 Kabuki 176827392–
176827697

�0.16 3 same PFN3 0

10 Sotos 132099067–132100019 �0.17 3 Kabuki 132099067–
132100019

0.15 3 opposite – 109,734

7 CHARGE 27182493–27183946 0.23 20 Kabuki 27182493–27183816 0.16 18 same HOXA5, HOXA-AS3 0

7 CHARGE 27184316–27184521 0.17 8 Kabuki 27184369–27184441 0.14 4 same HOXA-AS3 0

17 Floating-
Harbor

7486551–7486874 �0.24 7 Claes–Jensen 7486551–7486874 �0.29 7 same – 0

1 Sotos 247694041–247694531 �0.25 6 Claes–Jensen 247694041–
247694531

�0.24 6 same GCSAML,GCSAML-
AS1, OR2C3

0

5 Sotos 176559334–176559563 �0.36 3 Claes–Jensen 176559334–
176559563

�0.32 3 same – 0

13 Sotos 113242878–113243141 �0.21 3 Claes–Jensen 113242878–
113243141

�0.32 3 same TUBGCP3 (396bp
away)

221

(Continued on next page)
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Table 2. Continued

Chr Disease 1 Coordinates 1
Methylation
Difference 1 Probes 1 Disease 2 Coordinates 2

Methylation
Difference 2 Probes 2

Direction
of Change

Overlapping
Gene(s)

Distance to
CpG Island (bp)

6 Sotos 32120625–32121433 �0.31 27 Floating-
Harbor

32120773–32120933 �0.15 10 same – 396

6 Sotos 31650735–31651249 �0.17 17 Floating-
Harbor

31650735–31650835 �0.19 6 same – 0

6 Sotos 31650735–31651249 �0.17 17 Floating-
Harbor

31650916–31651278 �0.15 11 same – 0

6 Sotos 32847702–32847845 �0.29 10 Floating-
Harbor

32847702–32847845 0.18 10 opposite – 0

17 Sotos 36997420–36997740 �0.38 7 Floating-
Harbor

36997420–36997740 �0.23 7 same C17orf98 0

8 Sotos 39171866–39172120 �0.31 7 Floating-
Harbor

39172020–39172120 0.2 6 opposite ADAM5 (61bp away) 206,442

10 Sotos 50649666–50650248 �0.39 5 Floating-
Harbor

50649666–50650248 0.18 5 opposite – 42,882

6 Sotos 33282867–33283055 �0.16 12 Floating-
Harbor

33282867–33283184 �0.18 19 same – 0

2 Sotos 129659018–129659946 �0.24 7 Floating-
Harbor

129659316–
129659946

0.19 6 opposite – 0

5 Sotos 83016779–83017553 �0.25 6 Floating-
Harbor

83017000–83017644 0.19 6 opposite HAPLN1 341

4 Sotos 11369349–11370872 �0.18 8 Floating-
Harbor

11370314–11370565 0.25 3 opposite MIR572 0

8 Sotos 102235927–102236831 �0.23 6 Floating-
Harbor

102236283–
102236831

0.23 5 opposite – 0

2 Sotos 165811816–165812159 �0.26 5 Floating-
Harbor

165811816–
165812159

0.22 5 opposite SLC38A11 112,922

7 Sotos 92672812–92673176 �0.25 5 Floating-
Harbor

92672812–92673176 0.2 5 opposite – 0

4 Sotos 155702409–155703138 �0.18 6 Floating-
Harbor

155702409–
155703138

0.19 6 opposite RBM46 0

1 Sotos 1003126–1003529 �0.25 4 Floating-
Harbor

1003126–1003529 �0.29 4 same – 0

3 Sotos 159557552–159558031 �0.24 4 Floating-
Harbor

159557552–
159558031

0.23 4 opposite SCHIP1, IQCJ-SCHIP1 74,528

2 Sotos 164204628–164204915 �0.24 4 Floating-
Harbor

164204752–
164205343

0.31 6 opposite – 0

(Continued on next page)
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Table 2. Continued

Chr Disease 1 Coordinates 1
Methylation
Difference 1 Probes 1 Disease 2 Coordinates 2

Methylation
Difference 2 Probes 2

Direction
of Change

Overlapping
Gene(s)

Distance to
CpG Island (bp)

22 Sotos 50737978–50738890 �0.22 4 Floating-
Harbor

50737978–50738890 �0.29 4 same PLXNB2 0

12 Sotos 56617576–56617737 �0.28 3 Floating-
Harbor

56617576–56617737 �0.23 3 same – 258

9 Sotos 139258524–139259074 �0.26 3 Floating-
Harbor

139258524–
139259074

�0.23 3 same CARD9 0

19 Sotos 3480363–3480672 �0.21 5 Floating-
Harbor

3480363–3480672 �0.2 5 same SMIM24 1,110

19 Sotos 49222892–49223278 �0.2 5 Floating-
Harbor

49222892–49223278 �0.28 5 same MAMSTR 0

4 Sotos 165898666–165898848 �0.19 5 Floating-
Harbor

165898666–
165898848

0.19 5 opposite TRIM61 20,219

1 Sotos 45278971–45279349 �0.21 4 Floating-
Harbor

45278971–45279349 �0.23 4 same BTBD19 0

19 Sotos 2428350–2428677 �0.19 4 Floating-
Harbor

2428350–2429209 �0.2 6 same LMNB2 0

19 Sotos 1063624–1064218 �0.19 3 Floating-
Harbor

1063624–1064218 �0.24 3 same ABCA7 0

4 Sotos 46126066–46126253 �0.18 3 Floating-
Harbor

46126066–46126448 0.25 7 opposite GABRG1 265,650

12 Sotos 47219737–47219958 �0.14 9 Floating-
Harbor

47219626–47219920 0.18 9 opposite SLC38A4 4,954

5 Sotos 110062384–110062837 �0.16 6 Floating-
Harbor

110062384–
110062837

0.23 6 opposite TMEM232 11,768

11 Sotos 32449254–32449638 �0.17 3 ADCA-DN 32449163–32450692 0.24 11 opposite WT1 0

7 CHARGE 27137922–27138712 �0.15 4 Sotos 27137922–27138396 �0.17 3 same HOTAIRM1 1,185

7 CHARGE 53254947–53255065 0.15 3 Sotos 53254947–53255065 0.18 3 same – 0

5 CHARGE 161178574–161178796 0.14 3 Sotos 161178574–
161178796

0.17 3 same – 203,189

5 ATRX 23507450–23507752 �0.26 10 Sotos 23507573–23507656 �0.22 5 same PRDM9 1,682,751

15 ATRX 39871808–39872186 �0.26 6 Sotos 39871876–39872186 �0.16 5 same – 341

3 ATRX 109056349–109056897 0.29 4 Sotos 109056349–
109056897

�0.26 4 opposite DPPA4 219,259

6 ATRX 34499314–34499504 �0.28 4 Sotos 34499314–34499504 �0.17 4 same PACSIN1 0

16 ATRX 58019866–58019984 �0.37 3 Sotos 58019866–58019984 �0.27 3 same TEPP 0
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model. All of these subjects received a score of close to 1 for

the syndrome to which they belonged to but a low score

for the other six conditions, showing that our model is

100% sensitive for detecting any of the seven conditions

examined (Figures 5A–5G). To estimate the specificity of

our method, we used 190 normal samples from our refer-

ence cohort that were not used for epigenomic profiling

of any of the diseases in this study or training the model.

All of these samples received scores close to zero by our

model for all of the seven disease groups, showing a spec-

ificity of 100% (Figure 5H).

To determine whether this classification algorithm is

sensitive to the composition of blood cell types, we down-

loaded a total of 60 methylation array data from 6 healthy

individuals,16 each being assayed for whole blood, periph-

eral blood mononuclear cells (PBMCs), and granulocytes,

as well as for seven isolated cell populations (CD4þ

T cells, CD8þ T cells, CD56þ NK cells, CD19þ B cells,

CD14þ monocytes, neutrophils, and eosinophils). The

methylation data from these 60 samples were imported

into our classification model. Our algorithm assigned a

score of close to zero for having any of the seven condi-

tions to all of the files, suggesting that the composition

of blood cells will not influence the performance of our

model. The scores obtained in this assessment are pre-

sented in Table S6.

The 7-Disease Classification Model Is Not Sensitive to

Other Developmental Conditions

Next, we examined whether this classification model

could distinguish between the epigenomic profile of

the seven conditions and the five other previously tested

syndromes (Saethre-Chotzen, Coffin-Siris, Coffin-Lowry,

Rett, and Weaver syndromes) for which we did not find

an epi-signature. Hence, the model was supplied with

all of the 69 samples with pathogenic mutations in genes

from these five syndromes, as well as to 55 subjects with

clinical features similar to these conditions but with VUS

variants in the related genes. All of these subjects

received low scores for any of the seven disease classes

in the algorithm. Next, to determine the performance

of this classifier in subjects with developmental delay/in-

tellectual disability (DD/ID) of other etiologies, the

model was supplied with the methylation levels of

additional cohorts composed of individuals with autism

spectrum disorders (n ¼ 146), various chromosomal

abnormalities (n ¼ 12), Down syndrome (n ¼ 7),

imprinting conditions (Angelman, Beckwith-Wiede-

mann, Prader-Willi syndrome, n ¼ 50), and various

forms of RASopathies (n ¼ 97). All of these subjects

had a confirmed clinical and molecular diagnosis of their

respected conditions. We found that similar to our previ-

ous observations, each of these subjects received low

scores for all of the seven diseases in our classification

model, further demonstrating that the epi-signatures of

these seven conditions are highly specific. These results

are demonstrated in Figure 5H.
4, 2018



Figure 4. Hypomethylation of the 50 UTR
of PRDM9 in Both Sotos-Affected and
ATRX-Affected Subjects
The figure illustrates a 302-base pair region
containing 10 CpG probes overlapping
50 UTR of PRDM9. From top to bottom:
chromosome ideogram, CpG probes, gene
region, and methylation level data. Blue,
ATRX; green, Sotos; pink, controls; line,
average methylation; shadow, 95% confi-
dence interval; dots, methylation values
from every single sample (0-1).
Classification of Variants of Unknown Significance,

Healthy Carriers, Atypical Case Subjects, and Non-blood

Methylation Profile

Wenext applied our classificationmodel to a heterogeneous

group of subjects (n¼ 176) from our cohort displaying some

clinical features related to multiple of the aforementioned

developmental conditions for which the variant pathoge-

nicity was uncertain (Table S7; Figure 6), in addition to a

few other samples from sources other than blood, healthy

carriers, and a subject with Kabuki syndrome resulting

from KDM6A mutations. Of the 36 subjects within this

cohort with clinical features of Kabuki syndrome but with

benign or VUS variants in KMT2D, seven were predicted

to have a DNA methylation profile specific to Kabuki syn-

drome. The only subject with Kabuki syndrome with a

KDM6A mutation also received a high classification score

for Kabuki syndrome. In this cohort, there was also one in-

dividual with Floating-Harbor syndrome with a discordance

between the predicted and the reported sex. This subject

was predicted to belong to the Floating-Harbor class by

our model. Later assessment confirmed that it was only a

sample-labeling error. Our data contained healthy female

carriers of pathogenic mutations in KDM5C (n ¼ 8). All of

these subjects received low scores for any of the seven con-

ditions, including the Claes-Jensen syndrome. Two subjects

with similar clinical presentations to ATRX but with no

confirmed variants in the ATRX gene were predicted as

not having any of the seven diseases including ATRX. Half

of the 16 samples with VUS in NSD1 were predicted, based

on the methylation score, as having ATRX. Our data con-

tained four subjects suspected of havingCHARGE syndrome

for which sequence analysis results were not available at the

time of the study, but who were all predicted to have

CHARGE syndrome by our methylation prediction model.

Subsequent sequence analysis reports of CHD7 for these

four subjects showed that truncating exon-intron boundary

mutations exist in two of them (GenBank: NG_007009.1,
The American Journal of Human Ge
c.4533þ1G>A [p.(¼)]; GenBank:

NG_007009.1, c.6937�1G>A [p.(¼)]).

The other two subjects shared

one splice site mutation (GenBank:

NG_007009.1, c.5405�17G>A [p.(¼)])

which has previously been reported

in CHARGE syndrome and confirmed
to induce aberrant splicing using RNA-seq analysis in

another subject with CHARGE syndrome. Of the remain-

ing 51 subjects with similar phenotypic presentations to

CHARGE syndrome, for whom CHD7 mutation screening

had not provided a conclusive result, 23 were predicted as

CHARGE, 27 were assigned low likelihood for all of the

seven conditions, and 1 was predicted as having a methyl-

ation profile similar to Kabuki syndrome. Further follow-

up and sequencing of this subject identified a pathogenic

truncating variant (p.Arg5097* [c.15289C>T]; GenBank:

NG_027827.1) in KMT2D, which confirmed the diagnosis

of Kabuki syndrome. The three fibroblast samples from the

Sotos-affected subjects were each predicted to have a

similar methylation profile to the peripheral blood DNA

epi-signature of Sotos syndrome. These findings recom-

mended the high capacity of our method to assign new

molecular diagnoses to subjects for whom the sequence

analysis was not available or not interpretable, or the

initial clinical suspicion was not correct. The complete

classification outcome for these subjects is presented in

Figure 6 and Table S7.

Discussion

Here we report syndrome-specific, minimally overlapping,

DNA methylation epi-signatures in peripheral blood from

a large cohort of individuals who possess pathogenic muta-

tions in genes involved in the regulation of epigenomic

machinery. Fourteen syndromes were represented in this

cohort (Table 1), with reliable epi-signatures being

observed for nine syndromes evaluated. We also describe

here the development of a single classification algorithm

for seven of these syndromes which has a highly sensitive

and specific performance in predicting disease class, and

which confidently rejects the probability of healthy indi-

viduals or other subjects with DD/ID to be affected by

any of these seven conditions. Our results support the
netics 102, 156–174, January 4, 2018 167



Figure 5. Probability Scores Generated by the Classification Model
A 7-disease SVM classifier concurrently generates seven scores for every subject as the probability of having a DNA methylation
profile similar to any of the seven diseases with a confirmed DNA methylation signature. y axis represents scores 0-1, with higher
scores indicating a higher chance of carrying a methylation profile related to any of the seven conditions. x axis represents the
seven classification scores generated for the same group of tested subjects. These include the probability of having a similar DNA
methylation profile to Kabuki syndrome, ATRX, Sotos syndrome, CHARGE syndrome, Floating-Harbor syndrome, ADCA-DN, and
Claes-Jensen, respectively. By default, the SVM classifier defines a cut-off of 0.5 for predicting the class; however, the vast major-
ity of the tested individuals received a score close to 0 or 1. Therefore, for the purpose of better visualization, the points are jit-
tered. Every point represents the probability score received for a single sample. This figure represents scores obtained by both the
subjects in the training and testing cohorts. Shown are probability scores for belonging to any of the seven classes for: 44 subjects
with Kabuki syndrome (A); 19 subjects with ATRX syndrome (B), 38 subjects with Sotos syndrome (C), 79 subjects with CHARGE
syndrome (D), 17 subjects with Floating-Harbor syndrome (E), 5 subjects with ADCA-DN (F), and 10 subjects with intellectual
disability due to KDM5C (G). The last panel (H) shows the probabilities of belonging to any of the seven disease groups for
436 subjects with other conditions presenting with DD/ID including diseases of epigenomic machinery for which no epi-signa-
ture was found, multiple chromosomal aberrations, Down syndrome, various forms of RASopathies, autism spectrum disorders,
and imprinting defect conditions, together with 190 healthy control subjects which were not used in any previous step in the
study.
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Figure 6. Probability Scores Generated by the Classification Model for Case Subjects with Uncertain Diagnosis Carrying Benign or
VUS Variants and Healthy Carriers
A 7-disease SVM classifier concurrently generates seven scores for every subject as the probability of having a DNA methylation profile
similar to any of the seven diseases with a confirmed DNA methylation signature. y axis represents scores 0-1, with higher scores indi-
cating a higher chance of carrying a methylation profile related to any of the seven conditions. x axis represents the seven classification
scores generated for the same group of tested subjects. These include the probability of having a similar DNA methylation profile to
Kabuki syndrome, ATRX, Sotos syndrome, CHARGE syndrome, Floating-Harbor syndrome, ADCA-DN, and Claes-Jensen, respectively.
Every point represents the probability score obtained for a single sample. Shown are probability scores for belonging to any of the seven
classes for: 8 healthy female carriers with pathogenic mutations in KDM5C (A), 16 subjects with VUS variants in NSD1 (B), 36 subjects
with VUS and benign variants in KMT2D (C), and 55 subjects with similar features to CHARGE syndrome but no sequence data available
or with VUS variants in CHD7 (D).
hypothesis that the disruption of normal functions by the

genes that regulate epigenetic marks, particularly those

associated with histone modifications, generate unique

DNA methylation epi-signatures with minimal overlaps

across the conditions.

Epigenetic marks are established and maintained by an

intricate network of proteins that shape the epigenome.
The Americ
These proteins function as writers that establish the epige-

netic marks, readers that interpret them, and erasers that

remove the epigenetic marks.17 The fourth group of re-

modeller proteins comprises chromatin remodeling com-

plexes that further regulate the epigenome to ensure the

contextual (tissue-specific and temporal) accuracy of chro-

matin. Together, when properly integrated, these highly
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coordinated and interactive proteins act within multi-pro-

tein, multifunctional complexes on chromatin to ensure

the tissue- and lineage-specific transcriptional activation

and suppression that is essential for proper embryonic

and fetal development.13 Mutations in the genes encoding

these proteins can compromise the functional complexity

and integration of the epigenetic machinery, lead to errors

in the epigenetic signatures on chromatin, and result in a

broad range of pediatric genetic disorders,2,3 including

those investigated in the present study. Thus, while the

original genetic mutation in that particular epigenetic

regulator may be primarily detrimental to normal neurode-

velopment (and be a significant contributor to that clinical

phenotype), all cells may carry an epigenetic echo (or

legacy) of that original genetic defect in the form of a

DNA methylation signature that may also contribute to

the clinical phenotype. This association between a primary

mutation in a gene encoding a regulator of chromatin

accessibility and a secondary pattern of DNA methylation

is likely due to the cross-talk between those interconnected

pathways responsible for the post-translational histone

modifications and DNA methylation.17

In the context of the cohort addressed in this paper,

ADCA-DN and Rett syndrome resulted from mutations

in proteins that write (DNMT1) and read (MeCP2)

methylation marks on the DNA. Other syndromes re-

sulted from errors in writers (KMT2D, NSD1, and

KAT6B) and erasers (KDM5C) of the histone marks, and

chromatin remodeling proteins (CHD7, SRCAP, ATRX).

Our results show that syndromes caused by defects in

chromatin remodeling proteins (CHARGE, Floating-Har-

bor, and ATRX), DNA methylation writer (ADCA-DN),

histone mark erasers (Claes-Jensen syndrome), and his-

tone mark writers (GTPTS, SBBYSS, Sotos, and Kabuki)

generate specific DNA methylation signatures. On the

other hand, in case subjects where the defect occurs in

reading the methylation marks, such as in Rett syndrome,

our study did not observe any consistent change in DNA

methylation patterns, suggesting that the mutations in

the multifunctional MeCP2 protein that lead to extensive

temporal and spatial errors in levels of metabolites and

gene expression across the entire genome, affect the func-

tion of multiple target pathways across cell lineages,

rather than related to any lineage-specific epi-signa-

ture;18 however, a possibility of a methylation signature

in an alternate tissue cannot be discounted.

Overlap in the DNAMethylation Signatures Is Limited to

the Initiating Event

Phenotypic overlap is a common finding in various condi-

tions resulting from the disruption of the epigenomic

machinery. Clinical overlap between CHARGE and Kabuki

syndrome and the difficulty in distinguishing between

the two conditions by facial features alone has been

reported.19 Sotos syndrome can be challenging to differ-

entiate from Weaver or Beckwith-Wiedemann syn-

dromes.20 Similarly, Floating-Harbor syndrome exhibits
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some clinical overlap with Rubinstein-Taybi syndrome

(MIM: 180849) (another disease of epigenomicmachinery)

as a result of the molecular interaction between the genes

causing the two syndromes.21 Bjornsson et al.2 suggest that

the phenotypic overlap that is seen in some imprinting

disorders and a group of multiple congenital anomalies

and DD/ID syndromes also result from mutations in the

genes encoding components of the epigenetic machinery.

Thus, overlap in these shared molecular targets and biolog-

ical pathways may be the basis for phenotypic overlap in

many of such conditions. The shared presence of a small

number of genes known to be crucial to embryonic devel-

opment within these DNAmethylation profiles of the con-

ditions we evaluated has not been thoroughly investi-

gated. Butcher et al.9 showed a gain of methylation in

HOXA5 in both Kabuki and CHARGE syndromes, which

was also observed in this study (Table 2). Additionally, we

observed the same region to be significantly hypomethy-

lated in subjects with GTPTS. Butcher et al.9 also report a

segment in the MYO1F (MIM: 601480) gene body to be

the most hypomethylated region in Kabuki syndrome-

affected individuals. Our previous study on subjects with

Floating-Harbor syndrome found the same region to be

significantly hypomethylated.5 Our current data also

shows that two CpG probes from the same MYO1F region

are also differentially methylated in CHARGE syndrome

(Table S2), although with an opposite direction of change

(hypermethylation) to those seen in Kabuki and Floating-

Harbor syndromes. Hence, the primary mutational events

in epigenetic regulators associated with these syndromes

may initiate aberrant DNAmethylation and then hardwire

these methylation changes into the epigenome as

abnormal repressive (or activation) signals at loci encoding

developmentally relevant transcription factors, many of

which are observed in our study (Table 2) including WT1

(MIM: 607102) and MAMSTR (MIM: 610349) (Sotos),

DPPA4 (MIM: 614125) (ATRX), and BMP4 (MIM: 112262)

(GTPTS).

The concurrent screening of all of the single probes and

regions with differential methylation levels in any of

the diseases reported in this study have found that the ex-

isting overlap is limited to few specific regions and sites.

Examination of DMRs, except for the segment mentioned

above in HOXA5, did not reveal any region with a mini-

mum of three consecutive probes to be shared by more

than two conditions, and half of the shared regions

(including HOXA5), showed an opposite direction of

change in methylation levels. At the single CpG probe

level, we found only 217 probes that were shared by

more than two disease groups, the methylation levels of

which were not strongly correlated in different conditions

or were negatively correlated as observed between Sotos

and Floating-Harbor, despite sharing the largest number

of probes. Limiting the analysis to the probes shared by

more than three conditions identified further discordance

between the disorders (Figure 3). In addition, ADCA-DN

shared the least number of probes and DMRs (only 1
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DMR with opposite methylation change; Table 2) with

other conditions, possibly due to the causative gene being

a DNAmethyltransferase versus other conditions resulting

from histone modifications errors. Also, GTPTS and

SBBYSS, which are caused by defects in the same gene,

did not reveal any overlap in their epi-signatures and the

total number of the probes they did share was less than a

few dozen.

These limited shared probes were enriched and most

frequently occurred in the genes related to laminin inter-

action (LAMB2/LAMC1), non-integrin membrane-ECM

interactions (LAMB2/LAMC1/NRXN1), and synapse func-

tion (PTPRF/DLG4/NRXN1). Also, an intriguing finding

was that multiple probes were shared across syndromes

and were associated with genes functioning in pathways

involving histone acetylation and methylation. Multiple

ontology terms related to histone modifications were

found to be enriched in the genes harboring these

signatures, including S-methyltransferase activity and

histone-lysine N-methyltransferase activities (Tables S3

and S4). These pathways involved three genes possessing

histone methyltransferase activity (PRDM9, SETDB1,

NSD1) and one coding for a subunit of histone H3

(HIST1H3E).

These results indicate that the shared pathways across

these developmental syndromes include the initiating

events leading to the disruption of the histone modifica-

tion machinery. Once the initial mutation is established,

each condition encompasses differential downstream

paths leading to the generation of distinct epi-signatures.

This is further supported by the single subject in our

database with KDM6A mutation, whom we had predicted

as having Kabuki syndrome, using the same model that is

built on the epigenetic signature of KMT2D mutations.

The immediate targets of these two genes are not overlap-

ping; however, they mutually regulate a large number of

genes downstream22 and their disruption leads to a single

medical condition with indistinguishable clinical fea-

tures. This further suggests that the epigenetic profile of

these conditions is additionally composed of the down-

stream changes unique to the syndrome rather than the

primary epigenomic event. In addition to the aforemen-

tioned components related to histone acetylation and

methylation, the HOXA5 promoter was found to be

differentially methylated in three syndromes, although

with an opposite direction of methylation change.

HOXA5 encodes a transcription factor that spatiotempo-

rally regulates the body segmentation and morphogen-

esis during development. It is well recognized that its

expression is tightly regulated by the methylation status

of its promoter.23 Hypermethylation of HOXA5 promoter

in CHARGE and Kabuki and its hypomethylation in

GTPTS may partly explain the similarity in the pheno-

typic overlap between CHARGE and Kabuki syndromes,

but not in GTPTS, supporting the concept that different

epigenetic changes in a region might result in alternative

phenotypic outcomes.
The Americ
A Model Accounting for DNA Methylation Signatures as

Legacies of Mutations in Genes of the Epigenetic

Machinery

From our results, we propose a mechanistic model by

which syndrome-specific DNA methylation signatures

arise and are maintained. Central to our model is the

concept that the initial dysfunction during early develop-

ment, which is linked to a specific mutated epigenetic

reader, writer, eraser, or remodeler, leaves a specific clini-

cally identifiable and syndrome-related phenotype. In

addition, a broader methylation legacy or ‘‘echo’’ remains

throughout the genome. That epigenetic echo, reflected

in (but not necessarily limited to) DNA methylation, may

be a secondary contributor to the overall clinical pheno-

type through inappropriate activation (or repression) of

gene expression in a cell-lineage-dependent manner. For

example, Kabuki is among a number of syndromes

(including CHARGE and Rubinstein-Taybi) that in addi-

tion to displaying clinical features of intellectual disability

and distinct craniofacial features, can also present with im-

mune dysfunction. This clinical feature can increase sus-

ceptibility to infections and an inability to generate or

maintain immunological memory.24 Similarly, altered

KMT2D function appears to impact cardiac development

and cardiomyocyte function and may lead to defects in

ion transport.24 Several of the target genes reported in

these papers and associated with these physiological func-

tions were detected in the epi-signatures reported here in

our paper, supporting the efficacy and surrogacy of periph-

eral blood DNA as a source for identifying the Kabuki-spe-

cific epi-signature. Furthermore, our approach raises the

potential to directly identify epigenetically silenced genes

that could be the focus of targeted epigenetic or gene-edit-

ing therapies. Such therapies could be focused either on

the primary mutation harbored by the epigenetic machin-

ery gene25 or at the secondary targets that reside within the

epi-signatures and display altered methylation within pro-

moter or enhancer regions.

An additional application of the epigenetic signature

detection extends beyond developmental syndromes to

novel, targeted cancer therapy. In infrequent cases, young

subjects with developmental syndromes including Kabuki,

Coffin-Siris, and Sotos syndromes have been diagnosed

with rare tumors at an early age.26–28 This is not surprising

given that these very same epigenetic regulatory genes

(KMT2D, NSD1, and SMARCB1) are frequently mutated

inmany somatic cancer types.17 Hence, such epigenetic in-

formation reflected by these epi-signatures has the poten-

tial to lead to the development of new targeted therapies

for various adult cancers that are similarly associated

with mutated genes encoding the epigenetic machinery.

DNA Methylation Signatures in Gene Defects across

Different Tissues, Mutations, and Zygosity

A clinically applicable aspect of this study relates to

whether DNA methylation signatures sourced from pe-

ripheral blood samples can act as a surrogate for aberrant
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DNA methylation patterns that have their primary func-

tional consequences in the developing nervous system

and brain. Previous studies have generated conflicting re-

sults on the correlation of DNA methylation patterns

across tissues and cell types.29–32 We were able to directly

address this issue of tissue surrogacy, in that training our

prediction algorithm on the DNA methylation signatures

from peripheral blood of Sotos syndrome-affected individ-

uals also assigned high scores for the three fibroblast DNA

samples also obtained from Sotos syndrome-affected indi-

viduals. This suggests that easily accessible peripheral

blood DNA can be functionally comparable to clinically

relevant yet inaccessible target tissues such as the brain.

Thus, from a developmental standpoint, some DNA

methylation changes associated with primary defects in

epigenetic machinery genes are well established before

the differentiation of organs in embryonic development

and are maintained in these particular cell lineages or

have similar functions across tissues.

In any event, this has to be confirmed by studying mul-

tiple organs of the affected individuals in different disor-

ders. The limited findings that we have presented in this re-

gard comply with this observation. While ADCA-DN

occurs due to one mutation present in all organs, the dis-

ease exclusively exhibits features of the nervous system

involvement. Bjornsson et al.,2 based on this observation,

postulates that various tissues show a specific and dosage-

dependent response to disruption of epigenomic machin-

ery. One observation in our study that may support this

model is that the predictive algorithm that we trained us-

ing the epi-signature of the Claes-Jensen syndrome cannot

detect any of the eight healthy female carriers of KDM5C

pathogenic mutations. This indicates that the disruption

of epigenetic machinery will be well represented in all tis-

sues, but will lead to a functional disruption only when the

dosage is beyond a critical point. This supports the clinical

utility of peripheral blood as a surrogate tissue for

screening for these conditions. Our study also suggests

that the observed signature can be specific to the mutation

type. GTPTS and SBBYSS are both caused by mutations in

KAT6B. Depending on the location of the coding sequence

and type of the mutation (i.e., missense versus frameshift),

the gene product can be absent (loss of function) or

abnormal (change of function), resulting in two distinct

syndromes with overlapping features.33 Our data show

that these two conditions, despite resulting from muta-

tions in the same gene, have distinct epi-signatures. This

finding suggests that epi-signatures can potentially be

useful in differentiating distinct diseases with overlapping

features that are caused by a shared gene defect, where the

gene sequencing alone cannot always assign a diagnosis.

The Clinical Implications of the Multi-class DNA

Methylation Classification Model

The minimal overlap in the DNA methylation signatures

of each of the seven conditions has allowed for training a

classifier with the capacity of concurrent assessment of
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any given subject for all of the seven disease groups with

a complete accuracy, sensitivity, and specificity. Further-

more, using datasets generated across multiple institu-

tions, we have demonstrated generalized applicability of

this approach in clinical setting that is not sensitive to

the confounders such as batch effect. The model not

only distinguished related disorders of the epigenetic ma-

chinery from each other, but also assigned low probability

scores to subjects with various forms of DD/ID ranging

from autism spectrum disorders to chromosomal aberra-

tions and imprinting defect conditions that are not caused

by mutations in these genes. This method will have a prac-

tical value in the clinical diagnosis of such genetic condi-

tions where the disease is rare, clinical features are overlap-

ping, and sequence mutation screening does not always

produce conclusive results. In Kabuki syndrome, for

instance, the mutation screening of KDM6A and KMT2D,

together, identifies pathogenic mutations in only 70% of

subjects.34 A similar figure of 65%–70% is reported for

atypical cases of CHARGE syndrome.35 The vast majority

of rare missense and in-frame in/del variants are currently

not interpretable, and as VUSs present a significant chal-

lenge in clinical interpretation in diagnostic laboratories

and genetic clinics. Some subjects also may carry patho-

genic mutations in noncoding regions which are often

not screened (e.g., promoter, intronic regions).

The method presented here provides an innovative

approach to assigning pathogenicity to these variants by

using the epi-signatures of each condition studied.

Although the findings would have to be complemented

with further clinical assessment, our model has shown its

capacity to resolve a large proportion of the unsolved cases

in our dataset by assigning new classifications to more

than half of the subjects for whom sequence variant assess-

ment alone had not provided a definitive answer. Of inter-

est was a 4-year-old male with cleft palate, dysmorphic

ears, microcephaly, and developmental delay, whowas sus-

pected of having CHARGE syndrome and who was

screened for mutations in CHD7 where only a heterozy-

gous missense VUS variant (GenBank: NM_017780.3,

c.2185A>G; GenBank: NM_017780.3, p.Lys729Glu) was

found. The classification model we have described above

predicted that this subject had an epigenomic profile

similar, not to CHARGE syndrome (score ¼ 0.02), but to

Kabuki syndrome (score ¼ 0.92). This subject was later

confirmed to carry a pathogenic truncating variant in

KMT2D and was subsequently diagnosed with Kabuki syn-

drome. It is worthwhile to note that in many of these con-

ditions, such as Kabuki syndrome, the disease is often

caused by de novo variants. Identification of a de novo

variant increases the chance of the mutation being patho-

genic, although this is not always sufficient to assign path-

ogenicity to a variant. Unlike the assessment of the ‘‘de

novo’’ status of a genetic variant, DNAmethylation analysis

does not require parental sample DNA to assess the impact

of the variant in the proband. However, where both ana-

lyses are available, combined evidence could be used to
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further strengthen the case for variant pathogenicity

status.

With more samples becoming available from such con-

ditions and more diseases being studied for the discovery

of epi-signatures, the methodology that we have presented

here can provide the basis of application in routine molec-

ular diagnostics. Microarray technology has been shown to

be an invaluable tool for the diagnosis of epigenetic condi-

tions including imprinting disorders,36 and as we have

shown in the present study, a combination of microarray

technology with machine learning will have a great, and

as yet relatively unexplored, potential in resolving a large

number of subjects with unsolved etiology that are

frequently seen in medical genetics practice.
Supplemental Data

Supplemental Data include seven tables and can be found with
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